is a maximum or a minimum; as, for instance, in May 1896, July 1897, August 1898, September 1899, &c. Should it then be found that the angular displacement is less than one-tenth of a second, we have at least sufficient data to be able to say that this star has a parallax of less than one-twentieth of a second. Possibly photographs or micrometric measurements are available in some observatories."

THE NEW PLANET WITT DQ.—The discovery of the little planet Witt DQ is of such importance that it behoves astronomers now to seek out a name for it which will be appropriate. The minor planet family, which now numbers some hundreds, has practically monopolised most of the gods and goddesses, so that a suitable choice in its nomenclature is not an easy matter. Prof. S. C. Chandler, with all due regard to the right of the discoverer, both by courtesy and the precedent of custom, of suggesting a name, proposes Pluto, which he thinks is appropriate in many ways. The other sons of Saturn have all worthily been assigned to major and minor planets; but Pluto has been, up to the present, omitted. Moreover, as Prof. Chandler says, 't there is a certain fitness in the appellation arising from its faintness or invisibility on ordinary occasions. Pluto, under his older name, Hades, was the 'invisible' or 'unknown,' the god of darkness. This invisibility, he removes, with the helmet forged for his concealment by Vulcan, when he comes to perihelion opposition, shining then as a comparatively bright star, perhaps visible to the naked eye. This helmet, by the way, could serve as his conventional planetary symbol, if one is desired."

SCIENCE IN EDUCATION.1

 $W^{\mathrm{HEN}}_{\mathrm{century\ comes\ to\ be\ written,\ one\ of\ its\ most\ striking}}$ features will be presented by the rise and growth of science in the general educational arrangements of every civilised country. At the beginning of the century our schools and colleges were still following, with comparatively little change, the methods and subjects of tuition that had been in use from the time of the Middle Ages. But the extraordinary development of the physical and natural sciences, which has done so much to alter the ordinary conditions of life, has powerfully affected also our system of public instruction. The mediaeval circle of studies has been widely recognised not to supply all the mental training needed in the ampler range of modern requirement. Science has, step by step, gained a footing in the strongholds of the older learning, Not without vehement struggle, however, has she been able to intrench herself there. Even now, although her ultimate victory is assured, the warfare is by no means at an end. The jealousy of the older régime and the strenuous, if sometimes blatant, belligerency of the reformers have not yet been pacified; and, from time to time, within our public schools and universities, there may still be heard the growls of oppos-ition and the shouts of conflict. But these sounds are growing fainter. Even the most conservative don hardly ventures nowadays openly to denounce science and all her works. Grudgingly, it may be, but yet perforce, he has to admit the teaching of modern science to a place among the subjects which the university embraces, and in which it grants degrees. In our public schools a "modern side" has been introduced, and even on the classical side an increasing share of the curriculum is devoted to oral and practical teaching in science. New colleges have been founded in the more important centres of population, for the purpose, more particularly, of enabling the community to obtain a thorough education in modern science.

The mainspring of this remarkable educational revolution has, doubtless, been the earnest conviction that the older learning was no longer adequate in the changed and changing conditions of our time; that vast new fields of knowledge, opened up by the increased study of nature, ought to be included in any scheme of instruction intended to fit men for the struggle of modern life, and that in this newer knowledge much might be found to minister to the highest ends of education. Nevertheless, it must be admitted that utilitarian considerations have not been wholly absent from the minds of the reformers. Science has many and far-reaching practical applications. It has called into existence many new trades and professions, and has greatly

¹ An address to the students of Mason University College, Birmingham, at the opening of the session, October 4, by Sir Archibald Geikie, D.C.L., F.R.S.

NO. 1518, VOL. 59

modified many of those of older date. In a thousand varied ways it has come into the ordinary affairs of every-day life. Its cultivation has brought innumerable material benefits; its neglect would obviously entail many serious industrial disadvantages, and could not fail to leave us behind in the commercial progress of the nations of the globe.

So much have these considerations pressed upon the attention of the public in recent years that, besides all the other educational machinery to which I have referred, technical schools have been established in many towns for the purpose of teaching the theory as well as the practice of various arts and industries, and making artisans understand the nature of the processes with which their trades are concerned.

That this educational transformation, which has been advancing during the century, has resulted in great benefit to the community at large can hardly be denied. Besides the obvious material gains, there has been a widening of the whole range and method of our teaching ; the old subjects are better, because more scientifically taught, and the new subjects enlist the attention and sympathy of large classes of pupils whom the earlier studies only languidly interested. Nevertheless, it is incumbent on those who have advocated and carried out this change to ask themselves whether it has brought with it no drawbacks. They may be sure that no such extensive reform could possibly be accomplished without defects appearing somewhere. And it is well to look these defects in the face and, as far as may be possible, remove them. In considering how I might best discharge the duty with which I have been honoured of addressing the students of Mason College this evening, I have thought that it might not be inappropriate if, as a representative of science, I were to venture to point out some of the drawbacks as well as the advantages of the position which science has attained in our educational system.

At the outset no impartial onlooker can fail to notice that the natural reaction against the dominance of the older learning has tended to induce an undervaluing of the benefits which that learning afforded and can still bestow. In this College, indeed, and in other institutions more specially designed for instruction in science, provision has also been made for the teaching of Latin, Greek, and the more important modern languages and literatures. But in such institutions, these subjects usually hold only a subordinate place. It can hardly be denied that generally throughout the country, even although the literary side of education still maintains its pre-eminence in our public schools and universities, it is losing ground, and that every year it occupies less of the attention of students of science. The range of studies which the science examinations demand is always widening, while the academic period within which these studies must be crowded undergoes no extension. Those students, therefore, who, whether from necessity or choice, have taken their college education in science, naturally experience no little difficulty in finding time for the absolutely essential subjects required for their degrees. Well may they declare that it is hopeless for them to attempt to engage in anything more, and especially in anything that will not tell directly on their places in the final class-lists. With the best will in the world, and with even, sometimes, a bent for literary pursuits, they may believe themselves compelled to devote their whole time and energies to the multifarious exactions of their science curriculum.

Such a result of our latest reformation in education may be unavoidable, but it is surely matter for regret. A training in science and scientific methods, admirable as it is in so many ways, fails to supply those humanising influences which the older learning can so well impart. For the moral stimulus that comes from an association with all that is noblest and best in the literatures of the past, for the culture and taste that spring from prolonged contact with the highest models of literary expression, for the widening of our sympathies and the vivifying of our imagination by the study of history, the teaching of science has no equivalents.

Men who have completed their formal education with little or no help from the older learning may be pardoned should they be apt to despise such help and to believe that they can very well dispense with it in the race of life. My first earnest advice to the science students of this College is, not to entertain this belief and to refuse to act on it. Be assured that, in your future career, whatever it may be, you will find in literature a source of solace and refreshment, of strength and encouragement, such as no department of science can give you. There will come times, even to the most enthusiastic among you, when scientific work, in spite of its absorbing interest, grows to be a weariness. At such times as these you will appreciate the value of the literary culture you may have received at school or college. Cherish the literary tastes you have acquired, and devote yourselves sedulously to the further cultivation of them during such intervals of leisure as you may be able to secure.

Over and above the pleasure which communion with the best books will bring with it, two reasons of a more utilitarian kind may be given to science students why they should seek this communion. Men who have been too exclusively trained in science, or are too much absorbed in its pursuit, are not always the most agreeable members of society. They are apt to be somewhat angular and professional, contributing little that is interesting to general conversation, save when they get a chance of introducing their own science and its doings. Perhaps the greatest bore I ever met was a man of science, whose mind and training were so wholly mathematical and physical that he seemed unable to look at the simplest subject save in its physical relations, about which he would discourse till he had long exhausted the patience of the auditor whom he detained. There is no more efficacious remedy for this tendency to what is popularly known as "shop" than the breadth and culture of mind that spring from wide reading in ancient and modern literature.

The other reason for the advice I offer you is one of which you will hardly, perhaps, appreciate the full force in the present stage of your career. One result of the comparative neglect of the literary side of education by many men of science is conspicuously seen in their literary style. It is true that in our time we have had some eminent scientific workers, who have also been masters of nervous and eloquent English. But it is not less true that the literature of science is burdened with a vast mass of slipshod, ungrammatical and clumsy writing, wherein sometimes even the meaning of the authors is left in doubt. Let me impress upon you the obvious duty of not increasing this unwieldy burden. Study the best masters of style, and when once you have made up your minds what you want to say, try to express it in the simplest, clearest, and most graceful language you can find.

Remeber that, while education is the drawing out and cultivation of all the powers of the mind, no system has yet been devised that will by itself develop with equal success every one of these powers. The system under which we have been trained may have done as much for us as it can do. Each of us is thereafter left to supplement its deficiencies by self-culture. And in the ordinary science-instruction of the time one of the most obvious of these inevitable deficiencies is the undue limitation or neglect of the literary side of education.

But in the science-instruction itself there are dangers regard-ing which we cannot be too watchful. In this College and in all the other well-organised scientific institutions of the country, the principles of science are taught orally and experimentally. Every branch of knowledge is expounded in its bearings on other branches. Its theory is held up as the first great aim of instruction, and its practical applications are made subsequent and subordinate. Divisions of science are taught here which may have few practical applications, but which are necessary for a comprehensive survey of the whole circle of scientific truth. Now, you may possibly have heard, and in the midst of a busy industrial community you are not unlikely to hear, remarks made in criticism of this system or method of tuition. The importance of scientific training will be frankly acknowledged and even insisted upon, but you will sometimes hear this admission coupled with the proviso that the science must be of a practical kind; must, in short, be just such and no other, as will fit young men to turn it to practical use in the manufactures or industries to which they may be summoned. The critics who make this limitation boast that they are practical men, and that in their opinion theory is useless or worse for the main purposes for which they would encourage and support a great scientific school.

Now I am quite sure that those science students who have passed even a single session in Mason College can see for themselves the utter fallacy of such statements and the injury that would be done to the practical usefulness of this institution and to the general progress of the industrial applications of science if such short-sighted views were ever carried into effect. There can be no thorough, adequate, and effective training in science unless it be based on a comprehensive study of facts and

principles, altogether apart from any economic uses to which they may be put. Science must be pursued for her own sake, in the first instance, and without reference to any pecuniary benefits she may be able to confer. We never can tell when the most theoretical part of pure science may be capable of being turned to the most important practical uses. Who could have surmised, for instance, that in the early tentative experiments of Volta, Galvani, and others last century lay the germ of the modern world-grasping electric telegraph? Or when Wedgwood, at the beginning of this century, copied paintings by the agency of light upon nitrate of silver, who could have foretold that he was laying the foundations of the marvellous art of photography?

There can be no more pernicious doctrine than that which would measure the commercial value of science by its immediate practical usefulness, and would restrict its place in education to those only of its sub-divisions which may be of service to the industries of the present time. Such a curtailed method of instruction is not education in the true sense of the term. It is only a kind of cramming for a specific purpose, and the knowledge which it imparts, being one-sided and imperfect, is of little value beyond its own limited range. I by no means wish to undervalue the importance of technical instruction. By all means let our artisans know as much as can be taught them regarding the nature and laws of the scientific processes in which they are engaged. But it is not by mere technical instruction that we shall maintain and extend the industrial and commercial greatness of the country. If we are not only to hold our own, but to widen the boundaries of applied science, to perfect our manufactures, and to bring new departments of nature into the service of man, it is by broad, thorough, untrammelled scientific research that our success must be achieved.

When, therefore, you are asked to explain of what practical use are some of the branches of science in which you have been trained, do not lose patience with your questioner, and answer him as you think such a Philistine deserves to be answered. Give him a few illustrations of the thousands of ways in which science, that might have been stigmatised by him as merely abstract and theoretical, has yet been made to minister to the practical needs of humanity. Above all, urge him to attend some of the classes of Mason College, where he will learn, in the most effectual manner, the intimate connection between theory and practice. If he chance to be wealthy, the experiment may possibly open his eyes to the more urgent needs of the institution, and induce him to contribute liberally towards their satisfaction.

Among the advantages and privileges of your life at college there is one, the full significance and value of which you will better appreciate in later years. You have here an opportunity of acquiring a wide general view of the whole range of scientific thought and method. If you proceed to a science degree you are required to lay a broad foundation of acquaintance with the physical and biological sciences. You are thus brought into contact with the subjects of each great department of natural knowledge, and you learn enough regarding them to enable you to understand their scope and to sympathise with the workers who are engaged upon them. But when your academical career is ended, no such chance of wide general training is ever likely to be yours again. You will be dragged into the whirl of life, where you will probably find little time or opportunity to travel much beyond the sphere of employment to which you may have Make the most, therefore, of the advantages which been called. in this respect you meet with here. Try to ensure that your acquaintance with each branch of science embraced in your circle of studies shall be as full and accurate as lies in your power to make it. Even in departments outside the bounds of your own tastes and ultimate requirements, do not neglect the means provided for your gaining some knowledge of them. I urge this duty, not because its diligent discharge will obviously tell in your examinations, but because it will give you that scientific culture which, while enabling you to appreciate and enjoy the successive advances of other sciences than that which you may select for special cultivation, will at the same time increase your general usefulness and aid you in your own researches.

The days of Admirable Crichtons are long since past. So rapid and general is the onward march of science that not only can no man keep pace with it in every direction, but it has become almost hopelessly impossible to remain abreast of the progress in each of the several sub-divisions of even a single

NO. 1518, VOL. 59]

science. We are entering more and more upon the age of specialists. It grows increasingly difficult for the specialists, even in kindred sciences, to remain in touch with each other. When you find yourselves fairly launched into the vortex of life you will look back with infinite satisfaction to the time when you were enabled to lay a broad and solid platform of general acquirement within the walls of this College.

Perhaps the most remarkable defect in the older or literary methods of education was the neglect of the faculty of observation. For the training of the other mental faculties ample provision was made, but for this, one of the most important of the whole, no care was taken. If a boy was naturally observant, he was left to cultivate the use of his eyes as he best might; if he was not observant, nothing was done to improve him in this respect, unless it were, here and there, by the influence of such an intelligent teacher as is described in Mrs. Barbauld's famous story of "Eyes and No Eyes." Even when science began to be introduced into our schools, it was still taught in the old or literary fashion. Lectures and lessons were given by masters who got up their information from books, but had no practical knowledge of the subjects they taught. Classbooks were written by men equally destitute of a personal ac-quaintance with any department of science. The lessons were learnt by rote, and not infrequently afforded opportunities rather for frolic than for instruction. Happily this state of things, though not quite extinct, is rapidly passing away. Practical instruction is everywhere coming into use, while the old-fashioned cut-and-dry lesson-book is giving way to the laboratory, the field-excursion, and the school-museum.

It is mainly through the eyes that we gain our knowledge and appreciation of the world in which we live. But we are not all equally endowed with the gift of intelligent vision. On the contrary, in no respect, perhaps, do we differ more from each other than in our powers of observation. Obviously, a man who has a quick eye to note what passes around him must, in the ordinary affairs of life, stand at a considerable advantage over another man who moves unobservantly on his course. We cannot create an observing faculty any more than we can create a memory, but we may do much to develop both. This is a feature in education of much more practical and national im-portance than might be supposed. I suspect that it lies closer than might be imagined to the success of our commercial relations abroad. Our prevalent system of instruction has for generations past done nothing to cultivate the habit of observation, and has thus undoubtedly left us at a disadvantage in comparison with nations that have adopted methods of tuition wherein the observing faculty is regularly trained. With our world-wide commerce we have gone on supplying to foreign countries the same manufactured goods for which our fathers found markets in all quarters of the globe. Our traders, how-ever, now find themselves in competition with traders from other nations who have been trained to better use of their powers of observation, and who, taking careful note of the gradually changing tastes and requirements of the races which they visit, have been quick to report these changes and to take means for meeting them. Thus, in our own centres of trade, we find ourselves in danger of being displaced by rivals with sharper eyes and greater powers of adaptation.

It is the special function of science to cultivate this faculty of oservation. Here in Mason College, from the very beginning observation. of your scientific studies you have been taught to use your eyes, to watch the phenomena that appear and disappear around you, to note the sequence and relation of these phenomena, and thus, as it were, to enter beneath the surface into the very soul of You cannot, however, have failed to remark among things. your fellow-students great inequalities in their powers of observation, and great differences in the development of these powers under the very same system of instruction. And you may have noticed that, speaking generally, those class-mates who have shown the best observing faculty have taken foremost places among their fellows. It is not a question of mere brain power. A man may possess a colossal intellect, while his faculty of observation may be of the feeblest kind. One of the greatest mathematicians of this century who, full of honours, recently passed away from us, had so little cognisance of his surroundings, that many ludicrous stories are told of his child-like mistakes as to place and time.

The continued development of the faculty of prompt and accurate observation is a task on which you cannot bestow too much attention. Your education here must already have taught

you its value. In your future career the use you make of this faculty may determine your success or your failure. But not only have your studies in this College trained your observing powers, they have at the same time greatly widened the range of your mental vision by the variety of objects which you have been compelled to look at and examine. The same methods which have been so full of benefit to you here can be continued by you in after life. And be assured that in maintaining them in active use you will take effective means for securing success in the careers you may choose to follow.

But above and beyond the prospect of any material success there is a higher motive which will doubtless impel you. The education of your observing faculty has been carried on during your introduction to new realms of knowledge. The whole domain of nature has been spread out before you. You have been taught to observe thousands of objects and processes of which, common though they may be, you had previously taken no note. Henceforth, wherever you may go, you cannot wander with ignorant or unobservant eyes. Land and sea and sky, bird and beast and flower now awaken in you a new interest, for you have learned lessons from them that have profoundly impressed you, and you have discovered meanings in them of which you had never dreamed. You have been permitted to pass within the veil of nature, and to perceive some of the inner mechanism of this world.

Thus, your training in science has not only taught you to use your eyes, but to use them intelligently, and in such a way as to see much more in the world around you than is visible to the uninstructed man. This widened perception might be illustrated from any department of natural science. Let me take, by way of example, the relation of the student of science towards the features and charms of landscape. It may be said that no training is needed to comprehend these beauties; that the man in the street, the holiday maker from town, is just as competent as the man of science to appreciate them, and may get quite as much pleasure out of them. We need not stop to discuss the relative amounts of enjoyment which different orders of spectators may derive from scenery; but obviously the student of science has one great advantage in this matter. Not only can he enjoy to the full all the outward charms which appeal to the ordinary eye, but he sees in the features of the landscape new charms and interests which the ordinary untrained eye cannot see. Your accomplished Professor of Geology has taught you the significance of the outer lineaments of the land. While under his guidance you have traced with delight the varied features of the lovely landscapes of the Midlands, your eyes have been trained to mark their connection with each other, and their respective places in the ordered symmetry of the whole scene. You perceive why there is here a height and there a hollow; you note what has given the ridges and vales their dominant forms and directions; you detect the causes that have spread out a meadow in one place and raised up a hill in another.

Above and beyond all questions as to the connection and origin of its several parts, the landscape appeals vividly to your imagination. You know that it has not always worn the aspect which it presents to-day. You have observed in these ridges proofs that the sea once covered their site. You have seen the remains of long extinct shells, fishes, and reptiles that have been disinterred from the mud and silt left behind by the vanished waters. You have found evidence that not once only, but again and again, after vast lapses of time and many successive revolutions, the land has sunk beneath the ocean and has once more emerged. You have been shown traces of underground commotion, and you can point to places where, over central England, volcanoes were once active. You have learnt that the various elements of the landscape have thus been gradually put together during successive ages, and that the slow processes, whereby the characteristic forms of the ground have been carved out, are still in progress under your eye.

While, therefore, you are keenly alive to the present beauty of the scene, it speaks to you, at every turn, of the past. Each feature recalls some incident in the strange primeval history that has been transacted here. The succession of contrasts between what is now and what has been fills you with wonder and delight. You feel as if a new sense had been given to you, and that with its aid your appreciation of scenery has been enlarged and deepened to a marvellous degree.

And so too is it with your relation to all the other departments of nature. The movements of the clouds, the fall of rain, the flow of brook and river, the changes of the seasons, the succession of calm and storm, do not pass before your eyes now as they once did. While they minister to the joy of life, they speak to you of that all-embracing system of process and law that governs the world. The wayside flower is no longer to your eyes merely a thing of beauty. You have found it to be that and far more—an exquisite organism in which the several parts are admirably designed to promote the growth of the plant and to perpetuate the life of the species. Every insect and bird is now to you an embodiment of the mystery of life. The forces of nature, once so dark and so dreaded, are now seen by you to be intelligible, orderly and capable of adaptation to the purposes of man. In the physical and chemical laboratories you have been brought into personal contact with these forces, and have learnt to direct their operations, as you have watched the manifold effects of energy on the infinite varieties of matter.

When you have completed your course of study and leave this College, crowned, I hope, with academic distinction, there will be your future career in life to choose and follow. A small number among you may, perhaps, be so circumstanced as to be able to devote yourselves entirely to original scientific research, selecting such branches of inquiry as may have specially interested you here, and giving up your whole time and energy to investigation. A much larger number will, no doubt, enter professions where a scientific training can be turned to practical account, and you may become engineers, chemists, or medical men. But in the struggle for existence, which every year grows keener amongst us, these professions are more and more crowded, so that a large proportion of your ranks may not succeed in finding places there, and may in the end be pushed into walks in life where there may be little or no opportunity for making much practical use of the knowledge in science which you have gained here. To those who may ultimately be thus situated it will always be of advantage to have had the mental training given in this Institution, and it will probably be your own fault if, even under unfavourable conditions, you do not find, from time to time, chances of turning your scientific acquire-ments to account. Your indebtedness to your professors demands that you shall make the effort, and, for the credit of the College, you are bound to do your best.

Among the mental habits which your education in science has helped to foster, there are a few which I would specially commend to your attention as worthy of your most sedulous care all through life.

In the first place, I would put Accuracy. You have learnt in the laboratory how absolutely essential this condition is for scientific investigation. We are all supposed to make the ascertainment of the truth our chief aim, but we do not all take the same trouble to attain it. Accuracy involves labour, and every man is not gifted with an infinite capacity for taking pains. Inexactness of observation is sure sooner or later to be detected, and to be visited on the head of the man who commits it. If his observations are incorrect, the conclusions he has drawn from them may be vitiated. Thus all the toil he has endured in a research may be rendered of no avail, and the reputation he might have gained is not only lost but replaced by discredit. It is quite true that absolute accuracy is often unattainable ; you can only approach it. But the greater the exertion you make to reach it, the greater will be the success of your investigations. The effort after accuracy will be transferred from your scientific work to your every-day life and become a habit of mind, advantageous both to yourselves and to society at large.

In the next place, I would set Thoroughness, which is closely akin to accuracy. Again, your training here has shown you how needful it is in scientific research to adopt thorough and exhaustive methods of procedure. The conditions to be taken into account are so numerous and complex, the possible combinations so manifold, before a satisfactory conclusion can be reached. A laborious collection of facts must be made. Each supposed fact must be sifted out and weighed. The evidence must be gone over again and yet again, each link in its chain Leing scrupulously tested. The deduction to which the evidence may seem to point must be closely and impartially scrutinised, every other conceivable explanation of the facts being frankly and fully considered. Obviously the man whose education has inured him to the cultivation of a mental habit of this kind is admirably equipped for success in any walk in life which he may be called upon to enter. The accuracy and thoroughness which you have learnt to appreciate and practise at College must never be dropped in later years. Carry them

NO. 1518, VOL. 59]

In the third place, we may take Breadth. At the outset of your scientific education you were doubtless profoundly im-pressed by the multiplicity of detail which met your eye in every department of natural knowledge. When you entered upon the study of one of these departments, you felt, perhaps, almost overpowered and bewildered by the vast mass of facts with which you had to make acquaintance. And yet as your training advanced, you gradually came to see that the infinite variety of phenomena could all be marshalled, according to definite laws, into groups and series. You were led to look beyond the details to the great principles that underlie them and bind them into a harmonious and organic whole. With the help of a guiding system of classification, you were able to see the connection between the separate facts, to arrange them according to their mutual relations, and thus to ascend to the great general laws under which the material world has been constructed. With all attainable thoroughness in the mastery of detail, you have been taught to combine a breadth of treatment which enables you to find and keep a leading clue even through the midst of what might seem a tangled web of confusion. There are some men who cannot see the wood for the trees, and who consequently can never attain great success in scientific investigation. Let it be your aim to master fully the details of the tree, and yet to maintain such a breadth of vision as will enable you to embrace the whole forest within your ken. I need not enlarge on the practical value of this mental habit in every-day life, nor point out the excellent manner in which a scientific education tends to develop it.

In the fourth place, I would inculcate the habit of wide Reading in scientific literature. Although the progress of science is now too rapid for any man to keep pace with the advance of all its departments, you should try to hold yourselves in touch with at least the main results arrived at in other branches than your own; while, in that branch itself, it should be your constant aim to watch every onward step that is taken by others, and not to fall behind the van. This task you will find to be no light one. Even were it confined to a survey of the march of science in your own country, it would be arduous enough to engage much of your time. But science belongs to no country, and continues its onward advance all over the globe. If you would keep yourselves informed regarding this progress in other countries, as you are bound to do if you would not willingly be left behind, you will need to follow the scientific literature of those countries. You must be able to read at least French and German. You will find in these languages a vast amount of scientific work relating to your own department, and to this accumulated pile of published material the journals of every month continue to add. In many ways it is a misfortune that the literature of science increases so fast ; but we must take the evil with the good. Practice will eventually enable you to form a shrewd judgment as to which authors or papers you may skip without serious danger of losing any valuable fact or useful suggestion.

In the fifth place, let me plead for the virtue of Patience. In a scientific career we encounter two dangers, for the avoidance of which patience is our best support and guide. When life is young and enthusiasm is boundless; when from the details which we may have laboriously gathered together we seem to catch sight of some new fact or principle, some addition of more or less importance to the sum of human knowledge, there may come upon us the eager desire to make our discovery known. We may long to be allowed to add our own little stone to the growing temple of science. We may think of the pride with which we should see our names enrolled among those of the illustrious builders by whom this temple has been slowly reared since the infancy of mankind. So we commit our observations to writing, and send them for publication. Eventually we obtain the deep gratification of appearing in print among well-known authors in science. Far be it from me to condemn this natural desire for publicity. But, as your experience grows, you will probably come to agree with me that if the desire were more frequently and energetically curbed, scientific literature would gain much thereby. There is amongst us far too much hurry in We are so afraid lest our observations or deducpublication. tions should be forestalled-so anxious not to lose our claim to priority, that we rush before the world, often with a halffinished performance, which must be corrected, supplemented, or cancelled by some later communication. It is this feverish haste which is largely answerable for the mass of jejune, illdigested and erroneous matter that cumbers the pages of modern scientific journals. Here it is that you specially need patience. Before you venture to publish anything, take the utmost pains to satisfy yourselves that it is true, that it is new, and that it is worth putting into print. And be assured that this reticence, while it is a kindness to the literature of science, will most certainly bring with it its own reward to yourselves. It will increase your confidence, and make your ultimate contributions more exact in their facts as well as more accurate and convincing in their argument.

The other danger to which I referred as demanding patience is of an opposite kind. As we advance in our career, and the facts of our investigations accumulate around us, there will come times of depression when we seem lost in a labyrinth of detail out of which no path appears to be discoverable. We have, perhaps, groped our way through this maze, following now one clue, now another, that seemed to promise some outlet to the light. But the darkness has only closed around us the deeper, and we feel inclined to abandon the research as one in which success is, for us at least, unattainable. When this blankness of despair shall come upon you, take courage under it, by remembering that a patient study of any department of nature is never labour thrown away. Every accurate observation you have made, every new fact you have established, is a gain to science. You may not for a time see the meaning of these observations, nor the connection of these facts. But their meaning and connection are sure in the end to be made out. You have gone through the labour necessary for the ascertainment of truth, and if you patiently and watchfully bide your time, the discovery of the truth itself may reward your endurance and your toil.

It is by failures as well as by successes that the true ideal of the man of science is reached. The task allotted to him in life is one of the noblest that can be undertaken. It is his to penetrate into the secrets of nature, to push back the cir-cumference of darkness that surrounds us, to disclose ever more and more of the limitless beauty, harmonious order, and imperious law that extend throughout the universe. And while he thus enlarges our knowledge, he shows us also how nature may be made to minister in an ever augmenting multiplicity of ways to the service of humanity. It is to him and his conquests that the material progress of our race is mainly due. If he were content merely to look back over the realms which he has subdued, he might well indulge in jubilant feelings, for his peaceful victories have done more for the enlightenment and progress of mankind than were ever achieved by the triumphs of war. But his eye is turned rather to the future than to the past. In front of him rises the wall of darkness that shrouds from him the still unknown. What he has painfully accomplished seems to him but little in comparison with the infinite possibilities that lie beyond. And so he presses onward, not self-satisfied and exultant, but rather humbled and reverential, yet full of hope and courage for the work of further conquest that lies before him.

Such is the task in which you may be called to share. When you have entered upon it and have learnt something of its trials and responsibilities, as well as of its joys and rewards, you will look back with gratitude to the training you received within the walls of this College. You will feel even more keenly than you do now how much you owe to the patient kindness and educational skill of your teachers and to the healthy stimulus of contact and competition with your class-fellows. Most heartily do I wish you success in your several careers. Following up the paths which have been opened for you here, may it be yours to enlarge still further the circle of light which science has gained, and to wrest from nature new aids for the service of mankind.

THE BRITISH ASSOCIATION. BRISTOL MEETING. Section K (Botany). Opening Address by Prof. F. O. Bower, Sc.D., F.R.S., President of the Section.¹

III.

THE following considerations influence me in forming an opinion as to the real place of apospory and apogamy in the history of the alternating generations :--

I. The Bryophytes show remarkable uniformity of alternation :

¹ Continued from p. 91.

NO. 1518, VOL. 59]

irregularities are few; apogamy is not recorded; apospory appears rarely, as a physiological refuge for the destitute plant. This uniformity goes along with the protected and dependent condition of the sporophyte. All Pteridophytes have their embryos protected while young, and this seems to have been their primitive condition. The true lesson of the Bryophyta, which include the simplest living Archegoniates, seems thus to be that uniformity of alternation goes with a simple structure, and a protected or dependent condition of the sporophyte; and this we have reason to believe was the condition of the simpler Archegoniate fruits.

II. The distribution of apogamy and apospory among Archegoniates at large is very irregular; the Leptosporangiate Ferns are the headquarters; but they are a peculiarly specialised phylum, with free sporophyte, exposed when mature, though protected while young. They are adapted to special conditions and show a greater plasticity of development than any other Pteridophytes. The Ferns are subject to other abnormalities than apospory and apogamy. The root may develop directly into a shoot, or the apex of the leaf into a bud. I think it has been too readily held that the Ferns occupy a special place as a key to the morphological problem. We should bear in mind how really isolated they are; they are essentially an extreme, even an extravagant type; they show the largest sporophylls in the whole vegetable kingdom, with the largest numerical output of spores from each. Many are specialised in accordance with extreme conditions of shade and moisture. These considerations should temper our view of them, not only as material for normal comparison, but also as exponents of abnormality.

III. The fact that in cases of induced apogamy in Ferns archegonia are first produced, clearly shows that in these cases the first intention of the plant is towards a normal production of embryos, while apogamy takes its place as a substitutionary growth. It may remain an open question how far direct apogamy will bear a similar interpretation.

IV. The character of the aposporous and apogamous growths is very anomalous; their position is not definite; aposporous growths may arise from the sorus and sporangia, or from the most varied points on the margin or surface of the leaf. With regard to apogamy in Ferns, it appears, as the result of a large number of observations, that though there is an average normal of position, still any one part of the sporophyte-stem, leaf, ramentum, root, sporangium, or even tracheid-may arise, independently of others, from the prothallus. Single sporangia, or groups of them, may appear without vegetative organs of the sporophyte ; leaves without other parts ; in one case, I believe, as many as ten roots have been seen without any other members of the sporophyte! The close similarity of the parts thus irregularly placed to those formed in regular sequence in the normal plant should be a warning of their abnormality. I cannot see in them any suggestion of a primitive state. Dr. Lang tells me that these exceptional developments form only a small pro-portion of the individuals in any one culture; still they are there, and those who hold that apogamous developments are a suitable basis for morphological argument must not pick and choose those cases which suit their views, but must take even the most extravagant into careful estimation. My own view is that these anomalous growths are not a safe guide to past history. But looked upon as the result of a recently acquired transition from one generation already established to the other, following nuclear changes, in the one case of reduction after insufficient nutrition, in the other of doubling of the chromosomes following on plethora, apospory and apogamy are at least intelligible. We shall understand how the transition may take place at one point or at many, while the irregularity of the parts produced offers no morphological difficulty; it is rather what might have been anticipated if the transition were a ready consequence of the conditions we have noted.

Lastly, a word on Dr. Scott's utilitarian argument. He remarks, "a mode of growth which affords a perfectly efficient means of abundant propagation cannot, I think, be dismissed as merely teratological." We must be clear that utility is no certain evidence of antiquity. As refuges for the physiologically destitute, apogamy and apospory may play an important part *now*, and in so far are not to be dismissed as mere freaks of nature. But in my view they would rank, as regards utility pure and simple, with the formation of adventitious buds on the rootsystem of a Poplar that has been felled; or with the bulbils which replace the flowers in so many mountain species; neither