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are recorded, and only claims to have shown this continuity as a 
consequence of known laws. 

Prof. Vander Waals has been unfortunate in that the English 
dress in which his thesis appears is a translation from a transla· 
tion. A literal rendering would have shown that he took his 
descriptions and diagrams from Maxwell's " Theory of Heat" 
because this is a "little book which is certainly in the hands of 
every physicist": it would have prevented the insertion of that 
footnote on p. 416 alluded to by Mr. Bottomley, since the text 
rum, "That Maxwell joins the points c and G by a straight 
line I do not think happy. It is apt to lead off the track and 
not on to it." The first of Mr. Bottomley's quotations-and 
with this, I might add, the scientific part ol the preface of the 
original concludes-should read: " These considerations have 
led me to perceive continuity between the gaseous and liquid 
states, the existence of which, as I saw later, had been already 
surmised by others." Vermoed (surmised) certainly seems a 
weak word in the light of Dr. Andrews' experiments, but it may 
possibly point to an earlier date for Prof. Van der Waals's 
theoretical conclusion than that of his thesis. 

Christ Church, Oxford. ROBERT E. BAYNES, 

The Flying to Pieces of a Whirling Ring. 

DR. LODGE having set the ball of paradox rolling, perhaps I 
may be allowed to point out some of the paradoxes of his critics 
on the subject of revolving disks, of the well-known "grind
stone problem." Prof. Ewing refers to two treatments of this 
problem, which, however, stand upon quite different footings. 
Prof. Grossmann's discussion reduces the problem to one in 
two-dimensions, and leaves an unequilibrated surface stress 
over both faces of the disk. Even if the disk be moderately thin, 
the solution cannot be considered satisfactory till the degree of 
approximation has been measured by comparison with the 
accurate solution of the problem. But Grossmann's method is 
precisely that of Hopkinson (Messenger of Mathematics, vol. ii., 
187 3, p. 53), except that the latter has dropped by mischance an 
r in his equation (1) [or Grossmann's (6)]. This slip I pointed out 
in 1886 ; and Grossmann's results, such as they are, flow at once 
from Hopkinson's corrected equations. Between Hopkinson 
and Grossmann this theory has several times been reproduced in 
technical books and newspapers without comment on its want of 
correctness. Such first·class technical authorities as Ritter and 
Winkler have also given quite erroneous solutions of the 
"grindstone problem." 

l'rof. Boys refers to Clerk Maxwell's solution. Unfortunately 
the editor of his scientific papers has given no word of warning 
about tll.e difficulties of that solution. It involves the paradox of 
an equilibrated shearing sire's on the faces of the disk, and this 
stress is comparable with the stress which Maxwell supposes to 
burst the stone (see "History of Elasticity," vol. i. p. 827). Thus 
both the solutions suggested by Profs. Ewing and Boys suffer 
from the same defect of unequilibrated stress on the faces. Their 
difference leads to the fact that Maxwell's causes a hollow disk to 
burst first at the outer rim, and Grossmann's at the hole. 

The solution by Mr. Chree, to which Prof. Ewing refers, seems 
to me to lie on a higher plane than the othtr two, and to have 
been better worth reproducing than Grossmann's, although it 
cannot be considered as final. Mr. Chree recognizes that for his 
form of solution normal stresses over the faces of the disk would be 
necessary, and he proceeds to find their values. Grossmann failed 
to notice this paradox of his supposed solution, and therefore 
gives no measure of tlte amount of its errur. Some years ago 
Mr. Chree kindly provided me for lecture purposes with a solu
tion of the disk problem in which the stress on the disk face was 
zero over a circle of given radius. This was a closer approxima
tion to the facts of the case, but as the stress was still unequili
brated at other points of the face the solution was not of course 
final. 

If all these solutions are therefore paradoxical, where is the 
correct one to be sought ? I fear it has yet to be worked out. 
Some progress can easily be made with it. It involves four 
series of Bessel's functions, two of either type, but the surface 
conditions lead to equations so complex that they will, I think, 
puzzle the ingenuity of our best Cambridge analysts. When 
solved, the work to be of practical value must be reduced to 
numerical tables and not left in the form of infinite series-a type 
of solution of elastic problem which is so common and yet so 
technically useless. An Italian has recently solved, by a finite 
number of definite integral5, the problem of the elastic spherical 
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shell under given surface forces : possibly something might be 
done for the grindstone problem in the same direction. At any 
rate, my object in writing to NATURE is to point out that the 
solutions referred to by Profs. Ewing and Boys are incorrect, and 
to express a hope that no competent analytical elastician will, 
owing to these paradoxical solutions, hesitate to try his hand at a 
very important problem. I am quite certain that no real solu
tion (the paradoxical are myriad) exists prior to 186o, and pretty 
nearly certain that none has been achieved since, although my 
bibliography of papers on the strength of materials for the last 
twenty years is not so complete as I could wish. 

University College, March 20. KARL PEARSON, 

Deductions from the Gaseous Theory of Solution. 

FROM the gaseous theory of solution, Prof. Orme Masson 
has concluded (see NATURE of February 12, p. 345) that there 
must be some temperature above which two mutually soluble 
bodies will be infinitely soluble in each other. This, no doubt, 
is a fact, and it may be interesting to show that precisely the 
same conclusion can be drawn from the hydrate theory of 
solution. 

Take first the case of a solution from which a solid separates 
on cooling. The body which separates, say solid water, 
does so owing to the tendency of its molecules to coalesce 
and form solid aggregates ; and their tendency to do so is, we 
know, increased by lowering the temperature: on intro
ducing any substance which possesses an attraction for the 
water molecules, the attraction of these for their fellows will be 
in part counterbalanced, and to get them to coalesce a lower 
temperature will be necessary, and the lower will this tempera
ture be, the more foreign substance there is present; thus the 
freezing-point of the water will fall as the amount of, say, any 
salt present in it is increased, as in ADC, Fig. I. Similarly, if 

we start with the pure salt at B, its freezing-point will be lowered 
by the addition of water, giving us a curve such as BFEC, which 
meets or cuts the first curve at some point c-the miscalled 
cryohydric point. This is precisely what does occur ; the wood
cut in fact represents the crystallization of water and the 
hexhydrate of calcium chloride from solutions of this salt, and 
may be taken as a typical example of the figures obtained in all 
cases. A solution of the composition D will be the one con
taining the most water of any which can exist at the temperature 
t, while E is the one containing the most salt at this temperature, 
all solutions of intermediate composition being capable of stable 
existence at t. At t 1 any solution weaker than F will be able to 
exist, since there is no inferior (i.e. for weak solutions) limit of 
stability, while above B there is neither superior nor inferior 
limit, and the two substances will be infinitely soluble in each 
other. 

The same general results will obtain when the substances 
separate on cooling in the liquid instead of the solid condition, 
but they may be expressed in anotherform. From Fig. I we see 
that the maximum amount of B which the liquid A can hold at 
different temperatures is represented by CB, and that this maxi
mum increases with the temperature; it may be represented by 
AC, Fig. 2 ; similarly, the maximum amount of A which B can 
contain is represented by CA, Fig. r, or BC, Fig. 2, and we thus 
get in Fig. 2 a double curve which shows that at any tempera-
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