"the coolness of the wind and that of the atmosphere after the storm is over is hardly to be accounted for otherwise than by supposing that rain is always formed in the cloud overhead, but is re-evaporated before it reaches the earth."

There is nothing inconsistent in the existence of an excessive pressure at the ground surface beneath a thunder-storm and a diminished pressure in the vortex of the storm-cloud, but in ordinary thunder and hail storms this latter is restricted to the cloud-region. As the barograph traces of these storms show, the oscillations of pressure beneath them are very great, and there may and indeed must be still greater differences between the tornado vortex and the neighbouring region of precipitation. Indeed, the great velocity of the air-movement implies as much.

A part of Ferrel's theory which especially stands in need of confirmation is the assumption that, immediately prior to the formation of the vortex, the vertical distribution of temperature is such as to bring the atmosphere into a state of unstable equilibrium, and that a slight casual local disturbance of this equilibrium starts the vortical uprush. This is also his explanation of cyclone generation, and indeed it is that hitherto held by the majority of writers on the subject. On the other hand, it is generally considered that anticyclones are determined by the greater local density of the atmosphere, due to a low mean temperature of the air-column. The last of these assumptions, even in the case of winter anticyclones accompanied by very low temperatures at the ground surface, has now been conclusively disproved by Prof. Hann, of Vienna; and he has also shown very strong reasons for believing that the temperature conditions of extra-tropical cyclones are also incompatible with the prevailing view. It does not, of course, follow that those of tornadoes and hail-storms are equally so, but at least the assumed conditions require verification. This may, perhaps, be some day effected by our mountain observatories.

H. F. B.

OUR BOOK SHELF.

Inorganic Chemistry: the Chemistry of the Non-Metals. By J. Oakley Beuttler, M.A. (London: Relfe Brothers.)

Now that there can be obtained a considerable variety of really good text-books of elementary chemistry suitable for all the usual needs of the present day, one is entitled to look for special features in any new manual. We fail to find any reason for the existence of the volume before us: wherein it differs from others that enjoy general recogni-tion, it is incomplete and erroneous. It has neither index nor contents table, but this is quite a trivial matter when compared with the imperfections of the body of the work. On pp. 19 and 20 there are nine attempts at equations, none of which are correct, while many represent impossible or at least unknown reactions; and in the following paragraphs, on graphic notation, bonds, and radicles, there is a collection of statements that read like the imperfect recollections of a student who never understood the subject. A single atom of oxygen is shown with curiously shaped projections as an example of an element with an even number of bonds existing as a single "atom-molecule." It is stated emphatically that "the element having the greatest number of bonds is always printed in thick type," but we search in vain for thick type in any formula in the book. The statements that are intended to convey the facts of chemistry are vague, often misleading, and very rarely of a practical character. For an illustration of the style there is no need to go further than the chapter that treats of the first element, hydrogen. It states that "on throwing a piece of sodium into water the sodium combines with part of the hydrogen of the water to form caustic soda, liberating the other part of the hydrogen." The volume closes, as one would expect, with the questions set by various examining bodies during the last three or four years.

Anatomy, Descriptive and Surgical. By Henry Gray, F.R.S. Twelfth Edition. Edited by T. Pickering Pick. (London: Longmans, Green, and Co., 1890).

OF a solid text-book so well known as the present work it is hardly necessary to say more than that a new edition has appeared. The book has been carefully revised, and the editor has added considerably to its value by introducing sections on topographical anatomy, and amplifying those on surgical anatomy. Both of these classes of sections have been printed in smaller type, so that they may be disregarded by students who wish to confine their attention exclusively to the descriptive part of the subject. There are many new illustrations, some of which are original.

The Story of the Heavens. By Sir Robert Stawell Ball, LL.D. Fifteenth Thousand. (London: Cassell and Co., 1890.)

IT is, for many reasons, satisfactory that there should be a popular demand for a clear, brightly-written work on astronomy. Sir Robert Ball, however, ought hardly to be content with the issue of mere reprints of his book. It may be somewhat misleading to send forth in its original form, in 1890, an astronomical work first published in 1886.

LETTERS TO THE EDITOR.

[The Editor does not hold himself responsible for opinions expressed by his correspondents. Neither can he undertake to return, or to correspond with the writers of, rejected manuscripts intended for this or any other part of NATURE. No notice is taken of anonymous communications.]

The Passage of Electricity through Gases.

In my letter in Nature of July 24 (p. 295) I objected to Prof. Schuster's statement that the fact that free atoms must turn a gas into a conductor of electricity was fatal to the theory of the electric discharge given by me in the Philosophical Magazine in 1883, and I maintained that the presence of free atoms in a gas free from electric strain was in no way essential to the theory given in that paper. I see no reason, after reading Prof. Schuster's letter in this week's NATURE, to change that opinion. Prof. Schuster bases his statement, not on my description of the theory itself, but on the explanation by it of the weakening of the electric strength produced by a diminution in the density of A reference to this explanation will show, however, that it really rests solely on the well-known fact that dissociation is assisted by diminution of pressure, and that the passage which Prof. Schuster quotes is merely an explanation of this property of dissociation from the point of view of the kinetic theory of gases; if this explanation is held to be inconsistent with the absence of free atoms from gas in a normal state, then any alteration in the explanation which might be made to meet this difficulty, though of primary importance in the kinetic theory of gases, is only of secondary importance for the theory of the electric discharge given in my paper, which I still maintain is not all bound up with the existence or non-existence of free atoms in gases not in the electric field. J. J. THOMSON. Cambridge, October 18.

Changing the Apparent Direction of Rotation.

IN NATURE of October 16 (p. 585), a curious optical effect is incidentally mentioned. Standing near a windmill, and nearly