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to the Zdinderkunde,  Although fuily recognizing the difficulty
of having lectures in all the above-named subiects especially
appropriated to the needs of geography, the Council suggest
that privat-docents might supply the new want. But if this
is found to be impossible, they advise that the students who
wish to take either geography or anthropology as their specialty
should be left to select in the above-named group of sciences
those subjects which would best suit them. Students might
thus take any one of the three chief directions opened to the
geograpber—namely, that of the geologist-geographer, the
biologist-geographer, or the anthropologist-geographer.

THE MULTIPLICATION AND DIVISION OF
CONCRETE QUANTITIES!

I HAVE recently been laying stress on the fact that the funda-

mental equations of mechanics and physics express relations
among guantities, and are independent of the mode of measure-
ment of such quantities; much as one may say that two
lengths are equal without inquiring whether they are going to be
measured in feet or metres ; and indeed, even though one may
be measured in feet and the other in metres, Such a case is, of
course, very simple, but in following out the idea, and applying
it to other equations, we are led to the consideration of products
and quotients of concrete quantities, and it is evident that there
should be some general method of interpreting such products
and quotients in a reasonable and simple manner. To indicate
such a method is the object of the present paper.

For example, T want to justify the following definition, and its
consequences : Average velocity is proportional to the distance
travelled and inversely proportional to the time taken, and is
measured by the distance divided by the time, or, in symbols,
v =15 -t Asaconsequence of this, the distance travelled is
equal to the average velocity multinlied by the time, or s = 2.
The following examples will serve to illustrate what I mean :—

(i.) 1fa man walks 16 miles in 4 hours, his average speed is

16 miles I mil . I mile
D mres ® = 4 miles an hour, the symbol -
4 hours I hour 1 hour

denoting a speed of a mile an hour, in accordance with the
definition.

Similarly, X foot , or shortly, fr. , denotes a velocity of

1 second sec

a foot per second. The convenience of this notation is that it
enables us to represent velocities algebraically, and to change
from one mcde of measurement to another without destroying
the equation.

Thus 1_6..‘“”(” = 4 miles = 4 1760 x 3 feet =359 .
4 hours 1 hour 60 x 60 seconds. sec.

= 59 feet per second.
(ii.) The distance travelled in 40 minutes by a person walking
4% miles

at the rate of 41 miles an hour = X 40 minutes =
. 1 hour
4M‘S X 2 = 3 miles.

3

Such concrete equations are used by a considerable number
of people, I believe, but I have not seen any attempt at a
general method of interpreting the concrete products and
quotients involved.

Now, I think I cannot do better by way of clearing the
ground before us than quote what Prof. Chrystal says in his
¢ Algebra” aboat multiplication and division. He hegins by
saying that multiplication originally signified mere abbreviation
of addition ; and then (on p. 12) he says :—

“Even in arithmetic the operation of multiplicadon is
extended to cases which cannot by any stretch of language be
brought under the original definition, and it becomes important
to inquire what is common to the different operations thus com-
prehended under one symbol. The answer to this question,
which has at different times greatly perplexed inquirers into the
first principles of algebra, is simply that what is common is the
formal laws of operation [the associative, commutative, and dis-
tributive laws]. These alone define the fundamental operations
of addition, multiplication, and division, and anything further

* Paper read at the General Meeting «f the Association for the Improve-
ment of Geometrical Teaching, on January 14, 1888, by A. Lodge, Cuoper's
Hill, Staines.

that appears in any particular case is merely a matter of some
interpretation, arithmetical or other, that is given toa symbolical
result, demonstrably in accordance with the laws of symbolical
operation.”

¢ Division, for the purposes of algebra, is best defined as the
inverse operation to multiplication.”

I will begin by considering instances, and then go on to the
general case.

A product of a number and a concrete quantity presents no
difficulty.  All that is necessary is to define that the order of
stating the product shall not alter its meaning—that is, that the
commutative law shall hold—that,

e.g., 2 x I foot = I foot x 2 = 2 feet.

The distributive law is satisfied ; thus,

2 feet + 3 feet == (2 + 3) feet
= g5 feet.

In interpreting the meaning of the product of two concrete
quantities, we have to be careful that in the interpretation
nothing shall violate the laws of naumerical multiplication ; 7Z.e.
if any numerical factors occur, they must be able to be multiplied
in the ordinary way, and placed before the final concrete pro-
duct, which must, of course, represent something which varies
directly with both quantities.

Thus 4 feet x 2 yards must be cqual to 8 x 1 foot x I yard.

Now a rectangle, whose sides are 4 feet and 2 yards, is cight
times the rectangle whose sides are 1 foot and 1 yard, so that,
if we define the product of two lengths as representing a rect-
angle whose sides are these lengths respectively, we are not
violating any multiplication law as regards the numerical multi-
pliers ; and we can compare one such rectangle with any other
whose sides are of different lengths, by ordinary multiplication
and division among such numbers as arise, and by interpretation
of the concrete products in accordance with the definition.

Thus, 4 feet x 2 yards = 8 x 1foot x I yard,
= 24 x I foot x 1 foot,
= 24 square feet,
= 24 x 12 inches x 12 inches,
= 3456 square inches,
&e.

Here we have applied the commutative law s0 as to bring
the numerical factors together for multiplication, and have in-
terpreted the 1emaining concrete products in accordance with
the definition.

The general resultisthatal = aB.a't, il @ = ad, and & = BY,
Z.e. arectangle whose sides are «, 4 is af times a rectangle with
sides @', ¢, if @ = aa’, and 6 = B/,

From this example I think we can see that a concrete product
may properly be used to represent any quantity that varies
directly as the several concrete factors, and that, being so repre-
sented, it may, by use of the ordinary rules of multiplication,
be compared with any other concrete product of the same kind ;
that is to say, that, generally, ab = aB.a't, if a = aa’, and
b = BV, where a, B are numerical factors, and «, @’ are different
amounts of one kind of quantity, and ¢, 6" of another kind.

Similarly, a concrete quotient may be used to represent a
quantity which varies directly as the concrete numerator and
inversely as the concrete denominator, and may, by the ordinary
rules of multiplication and division, be compared with any other
quantity of the same kind.

Indeed, I may go further ana assert that a concrete product
or quotient (the latter including the former) must, if it is to
have any meaning at all, represent a quantity varying directly as
the concrete factors in the numerator and inversely as those in
the denominator, and that the general use of such representation
is for comparison of the complex quantity with a standard
of the same kind.  Or, generally, we may say it should be
used, whenever we wish, in our work, to give as full and explicit
a representation to the complex quantity as possible.

The operation of multiplying [and dividing] concretes may be
separated into two parts : the formation of the products, and the
simplificalion of them ; and this latter process may be again
considered in two parts: the simplification of the numerical
factors, Z.e. ordinary multiplication and division, and the simpli-
fication of the concrete factors, 7.e. cancelling where possible,
and, finally, interpretation.
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The first part of the multiplication is the s¢presentation of a
complex guantity which is proportional to the several factors in
the numerator, and inversely proportional to those in the deno-
minator ; the second part is the comparison between the particu-
lar complex quantity and a standard of the same kind. The
representation may be temporary, Z.e. adopted for the solution
of a particular problem ; or it may be permanent, ¢.¢. adopted
throughout a whole subject.

Thus, if a, & are two lengths, the product @? is always used to
represent a rectangle whose sides are @, & respectively ; though
we might have agreed to use it as a representation of a parallelo-
gram with sides «, & containing an angle of (say) 60°; and of
course we might find a number of things which in some par-
ticular problem might be represented by aé, but all such quan-
tities must agree in this property, viz. that in the problem in
question they shall vary jointly as @ and 4.

Our right to cancel among concretes may be established once
{fr all in some such way as the following :—

Let a = «d’, & = BV, and therefore ab = aB. a'é’, as before.
Now, if we proceed to deduce a f()}‘ma]ly from the equation
ab = aB .a'l/, we shall get a = .‘»1»5—'&(7—{}- , which reduces down to
its known value aa’ if we allow ¢ in the denominator to cancel
against its equivalent 84" in the numerator. (This cancelling is
really an application of the law of association to the quotients.)

By such methods as this we can establish once for all our right
to apply the formal laws of multiplication and division to con-
crete products and quotients, when such concrete products and
quotients represent quantities varying directly as the concrete
numerator and inversely as the concrete denominator ; though,
indeed, for that matter a very little practice in the use of such
concrete representations renders one’s perception of that right
almost intuitive. In fact, in all cases a student would very soon
perceive that the standards involved in the various equations
might be treated exactly like numbers, and he would also learn
foot  foot
sec.” (sec.)?
ciate the meaning of the dimensions of quantities with a
thoroughness unattainable in any other way.

All questions dealing with mixed standards, or change of
standards, present no difficulty when this method is adopted.

Here is a good example of the concrete method. Two ton-
masses p'aced a yard apart attract each other with a force equal
to the weight of one-eighth of a grain. Calculate the mass of
the earth in tons.

from the resulting expressions (eg &e. > to appre-

earth » L grain _ 1 ton x I ton
(4000 miles)” (1 yard)*
.*. mass of earth = I_ton x (4990 miles)® tons
% grain 1 yard

= .

Solu'ion.

It is most important that the student should be taught to
notice that physical equations can only be among quantities of
the same kind, or that, if there are quantities of different kinds
in the equation, then the equation is really made up of two or
more independent equations which must be separately satisfied,
each of these being only among quantities of the same kind.
So we may consider generally that, in any equation, all the terms
must represent quantities of the same kind.

But T want to call a'tention to the fact that merely the dimen-
sions of a quantity do not always fix the kind of quan'ity. For
example, the moment of a force is of the dimensions of work,
and yet it is not work, and cannot exist as a term in an equation
involving work tevms. Again, the circular measure of an angle
is nota pure number, though it is of zero dimensions as a pure
number is ; and that it is not a pure number is evident physically,
for a moment of a force x an angle = work.

Now these are special cases of certain general laws as to
direction which hold among the terms of an equation involving
directed quantities, but in whick the symbols themselves do not
include the idea of direction (for I wish to confine myself strictly
to ordinary algebraical equations).

The laws are : firstly, 1f any term is independent of direction,
every term must be also independent of direction, or involve
ratios between parallel vectors, and so by cancelling direction
become independent of it.

L.g. if a body is projected with velocity V at angle a with
the horizon, it reaches its greatest height in the time © S %,

o

S

Here both numerator and denominator are vertical vectors,
and therefore the directions cancel as they ought.

Secondly, if any term involve only one vector, the other
terms must also, after such simplification of directions as possible,
involve Z/c same vector only.

2V?sin a cos a

£.g. Horizontal range of projectile = , where

o
V sin @ and g are vertical vectors, and V cos a g horizontal, so
that the whole expression is a horizontal vector, as it should be.

Again, if any term involve a product (or ratio) between two
vectors including any angle, every term must, after such can-
celling and siwmplification of directions as possible, also involve
a product (or ratio) between two vectors including the same
angle.

The most frequent cases are those wheve a term consists of a
product of parallel, or mutually perpendicular directed quanti-
ties, in which case every term must du the same.

It is not easy to see what law holds in cases where a greater
number of dirccted quantities occur in each term, except in the
simple case where one term consists of 8 product of a number of
parallel vectors, in which case every term must do the same.

The general law is, T believe, that if any term consists in its
simplest form of a product or quotient of certain vectors, which
will form a kind of solid angle, then cvery term must also
involve an exactly similar solid angle of vectors. However, 1
have not followed this out, as it do:s not seem likely to be a
useful test in its general form.

The following are simple examples of some of the above laws :

b

Gy

a’

a cos C +c¢ cosAY . .

0+ & — 20c cos A} in a triangle ;
Yy =mx + c;

sin (A + B) = sin A cos B + cos A sin B.

This last example should be considered in connection with the
ordinary geometrical proof, where it will be seen that each term
on the right is a ratio between lines inclined to each other at the
angle 90° — (A + B), just as the left-hand side is.

An angle is the ratio between the arc and radius of a circle,
and if it multiplies a radius, changes it into an arc. Thus, if by
applying a force P at the end of an arm &, a body is turned
through a small angle 6, the work done is Pa8 ; Z.c. the product
of P into the arc through which it has been acting, which is a
product of parallel vectors, as it must be besides having to be of
right dimensions if it is to represent work. This expression is
also the product of the moment of the force into the small angle
turned through, so that, if we wish to connect the moment of a
force with work, we must say : —

The moment = the work per radian which can be done,
work done
angle turned through

Now I do not wish to insist that in dealing practically with
mechanical problems it is necessary always to include the
standards as well as the numerical multipliers in the equations,
for it would be an intolerable nuisance to have todoso. In com-
plicated cases, however, I think the student should test the dimen-
sions of each term in his equation, so as to avoid gross mistakes.
But it is in trying to znderstand the fundamental equations in
any subject that it appears to me important to express particular
examples of them as fully as possible.

Tor practical purposes any numerical equations we may
desire may be deduced from the fundamental equations.

For example, the connection between the height (%) of an
observer above the sea with the distance () of his horizon, is
d* = 2RA, where R is the radius of the earth; and we can
deduce from this the numerical relation between the height in
fect, and the distance of vision in miles. For if / be the number
of feet in /2, and » the number of miles in @, so that 4 = ffeet,
and & = m miles, the equation becomes

(m miles)® = 2R x f feet,
= 8000 miles x ffeet;
(miles)? _ 5280
8coo miles x 1 foot  8ooo
= §m* approximately ;

i.c. the observer’s height in feet = § of the square of the distance
of his view in miles. )

This is a strictly numerical equation, deduced for practical
purposes from the concrete equation ¢* = 2R/%.

or simply, moment =

L f=mt
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It cannot, I think, be too clearly impressed on the student
that, when any quantity is expressed by a number, that number
is the 7atio of the quantity to some standard of the same kind.

To take the preceding example, fis the number of feet in the
height 2.

i.e

h = ffeet,

- = the ratio of 2 to 1 foot.

I

Similarly 7 = the ratio of / to 1 mile.

1 mile
So that the full expression for the relation f = §m* is :~—

3 of[‘lis‘i?ce]").
' 1 mile

My position, therefore, as regards numerical equations, is
this: That the numbers which appear are only short methods
of stating pure ratios, and that such short methods are eminently
useful in dealing with practical problems, but do not help a
student to grasp the fundamental principles of a subject.

There is another simple way in which numerical equations
can be deduced from the fundamental ones ; viz. by so choosing
the standards of measurement that every term may be expressed
in terms of the same standard, which may then be omitted,
leaving only a relation among the numerical coefficients of that
standard.

To enable this to be done, all the standards of subsidiary
quantities are so chosen that, when expressed in terms of certain
primary standards, their coefficients shall be unity. When this
is systematically done, all the standards are usually called azts,
apparently because if you arbitrarily put zuity for each primary
standard, the subsidiary ones will become equal to unity also.

For example, if a foot and a second are chosen units of length
and time, a foot per second is the unit of velocity. For, the full ex-

. . I foot :
pression for a foot per secondis ~ = ; and if you put 1 foot
I sec,

height _

1 foot

1 foot

= I, and I sec. = I, the fraction - becomes equal to I
L sec

also.

This plan certainly enables the working numerical equations
to be very easily deduced from the fundamental ones, with
which indeed they thus become identical in form, but there is
great danger lest this fact should make us lose sight of the
important fact that they are only special deductions from the
higher kind of equation—from the true fundamental equations
which exist among the quantities themselves.

DISCOVERY OF ELEPHAS PRIMIGENIUS
ASSOCIATED WITH FLINT IMPLEMENTS
AT SOUTHALL.

A PAPER with the above title was lately read by

Mr. J. Allen Brown before the Geologists’ Association.
It is of more than ordinary interest to geologists since an
attempt has lately been made to show that the mammoth
became suddenly extinct by the action of a vast flood seemingly
universal in its operation, due to some convulsion or cataclysm,
which also changed the climate of Northern LEurope.

During last year some important drainage works were carried
out at Southall, and sections were exposed in the Windmill Lane,
a road running from Greenford, through ITanwell, across the
Great Western Railway to Woodlake, skirting Osterley Park,
as well as in Norwood Lane, leading from Windmill Lane,
south-westward,

The remains of the mammoth were discovered in Norwood
Lane at the 88-foot contour, about 550 yards from its junction
with the Windmill Lane. They were embedded in sandy loam,
underlying evenly stratified sandy gravel, with a thin deposit of
biick earth, about 1 footin thickness, surmounting the gravel-—in
all, about 13 feet above the fossils. The tusks were found curving
across the shere or excavation, attached to the skull, parts of
whlch, with the leg-bones, teeth, &c., were exhumed, other hones
being seen embedded in. one side of the cutting.  Probably the
entire skeleton might have been removed if the excavation could
have been extended, and if there had been appliances at hand
for removing the fossils, which were in a soft pulpy condition.

The author obtained some of the bones in a fragmentary state,

|
|

including parts of the fore-limbs and jaw, with portions of the
tusks as well as two of the three teeth found, which were much
better preserved. The remains were quite unrolled, and the
joints and articulations of the leg-bones and the teeth were
unabraded. There can hardly be a doubt, from the report of
the workmen, that the bones of the fore-part of the elej hant, if
not of the entire skeleton, were in juxtaposition.

Several implements were found in Norwood ILane, in close
proximity to the remains, and a well-formed spear-head, nearly
5 inches in length, of exactly the same shape as the spear-heads
of obsidian until recently in use among the natives of the
Admiralty Islands, and other savages, was discovered in actual
contact with the bones; smaller spear-head flakes, less
symmetrically worked, were also found at this spot. They are
formed for easy insertion into the shafts by thinning out the butt
ends, similar to those found abundantly by the author at the
workshop floor, Acton, and descrited by him in his recently
published work, ‘¢ Paleeolithic Man in North-West Middiesex.”
Among the implements found at this spot are an unusually fine
specimen of the St. Acheul or pointed type, 8 inches long, of
rich ochreous colour and unabraded, and a well formed lustrous
thick oval implement pointed at one extremity, rounded at the
other, about 5 inckes in length, also unrolled.

From the adjacent excavations in the Windmill Road several
good specimens of Paleolithic work were also obtained, includ-
ing two dagger implements, with heavy unworked butts, and
incurved sides converging to a long point; these were
evidently intended to be used in the hand without hafting.
Also an instrument characteristic of the older river drift, convex
on one side, and slightly concave on the other near the point,
and partly worked at the butt. With these were two rude
choppers or axes, two points of implements with old surfaces
of fracture, a shaft-smoother or spoke-shave, and several flakes.

It is remarkable that most of the principal types of flint
implements which characterize the oldest river-drift deposits are
represented in this collection from the vicinity of the remains of
the elephant.

Mr. J. Allen Brown accounts for the deposit of fossils and
associated human relics at this locality by the fact that the
underlying Eocene bed rises to within 2 or 3 feet of the surface a
few yards west of the spot where the bones and implements
were found, while towards the Uxbridge Road and upper part
of the Windmill Lane the drift. deposits thicken, until at no
great distance they have a thickness of 14 to 17 feet. Thus the
river drift rapidly thins out, and the upward slope of the London
Clay reaches nearly to the surface at about the go-foot contour.
As the level at which the fossils were found (13 feet from the
surface) would represent the extent of the erosion and in-filling
of the valley which had taken place, it is probable that
the higher ground formed by the up-slope of the London Clay
then formed the banks of the ancient river ; or if another thick
bed of drift should be found still further west in a depression of
the Tertiary bed such as often occurs, the intervening higher
ground would form an island in the stream. In either casea
habitable land surface would be formed with shallow tranquil
water near the banks, not impinged upon by the current, which
afterwards set in the direction of this spot as shown by the
coarser slatified gravel above the loamy bed and remains.

The author is thusled to the conclusion either that the carcass
of the elephant drifted into the shallow tranquil water near
the bank, or clse, as seems more probable from the presence of
£o many weapons near the spot, including the spear-head
found with the remains, that the animal was pursued into the
shallow water by the Palwolithic hunters and there became
bogged. Whatever hypothesis may be accepted, there is no
evidence of any greater flood or inundation than would often
occur, under the severe climatal conditions which prevailed
during the long period that intervened between the formation
of the higher brenches of river drift and that of the mid
terrace, only 25 to 30 feet above the present river, in which the
remains of the mammoth and the extinct Quaternary Mammalia
are more frequently met with under similar conditions. Nor
does there appear to be any more reason for ascribing the
extinction of the great Quaternary Pachyderms to a sudden
caiastrephe or cataclysm than there is for the extinction of some
other Pleistocene animals, such as the great Irish elk, which
lived on into, or nearly into, hitoric times. The difficulty
involved in this hypothesis is still further increased by the fact
that other animals, such as the reindeer and others of northern
habit, as well as southern forms like the hippopotamus, were not
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