which can still be seen going on around the coast and harbour. At Mokullo, at a depth of 20 feet, I observed masses of coral (Aperosa) almost perfect in shape, covered up with alluvium. It is probable that the whole coast from the mountains has been reclaimed by the action of coral builders, and that eventually the group of islands outside will be joined to the mainland."

I noticed a similar formation of the coral reefs in Suakim Harbour ; while at Key West, Florida, there was no lessening of the depth of the water on the edge of the reefs.

David Wilson-Barker.
The following table, showing some of the results of work done in connection with the solubility of carbonate of lime in sea-water will be of interest. The difference in solubility between heavy dense corals and the lighter porous varieties is very mårked.

Table I.-Showing Solubility of Carbonate of Lime, under different forms, in Sea-water, in grammes per litre.

Table II.

Weathered oyster-shells ... $\quad . \ddot{.} \quad . . . \quad . .$. Mussels allowed to rot in sea-water seven days... Crystalized carbonate of lime

a Amorphous carbonate of lime (freshly prepared) Melobesia, Kilbrennan Sound, Scotland ditto | 10 | 12 |
| :--- | ---: |
| 27 | 168 |
| 10 | 12 |
| 10 | - |
| -10 | - |

$|$| 0.33 I | 3 |
| :--- | :--- |
| 0384 | 2 |
| 0.123 | 2 |
| 0.649 | 2 |
| 0.610 | 2 |
| 0089 | 3 | a and b. The carbonate of lime was added as long as it dissolved.

The figures in Table II. will give Mr. T. Mellard Reade facts (so far as laboratory experiments may) upon which to found reasonable views. Mr. George Young, who has made all the determinations under my direction, is one of the chemical staff attached to the Marine Station here.

Robert Irvine.

Royston, Granton, near Edinburgh, April 16

Note on a Problem in Maxima and Minima.

I SUPPOSE most lovers of elementary geometry who read the communication on the above subject from Mr. Chartres in Nature of February 2 (p. 320) admired the simple investigation he gave of the problem.
I should like, however, to point out-
(I) That it might be made still more elementary by proving $\mathrm{EB}+\mathrm{EC}=\mathrm{ED}$ without the aid of Book VI.

Let E be any point on the arc of the circumcircle of an equilateral triangle BDC on which the angle D stands, and on ED as diameter describe a circle cutting EB, EC in $\mathrm{B}^{\prime}, \mathrm{C}^{\prime}$.

$$
\text { Then } \angle \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}=\angle \mathrm{BED}=\angle \mathrm{BCD} \text {. }
$$

$$
\begin{array}{r}
\text { Similarly } \angle \mathrm{C}^{\prime} \mathrm{B}^{\prime} \mathrm{D}=\angle \mathrm{CBD} ; \\
\therefore \angle \mathrm{B}^{\prime} \mathrm{D} \mathrm{C}^{\prime}=\angle \mathrm{BDC} ;
\end{array}
$$

$\therefore B^{\prime} C^{\prime} D$ is equilateral.
Hence $\mathrm{B}^{\prime} \mathrm{E}, \mathrm{EC}^{\prime}$ are sides of a regular hexagon inscribed in the circle $\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}$.

$$
\begin{aligned}
\therefore \mathrm{B}^{\prime} \mathrm{E}+\mathrm{EC}^{\prime} & =\mathrm{ED} . \\
\text { Again, } \mathrm{BD}, \mathrm{DB}^{\prime} & =\mathrm{CD}, \mathrm{DC}^{\prime} \\
\text { and } \angle \mathrm{BDB}^{\prime} & =\angle \mathrm{CDC} \\
\therefore \mathrm{BB}^{\prime} & =\mathrm{CC}^{\prime} ; \\
\therefore \mathrm{BE}+\mathrm{EC} & =\mathrm{B}^{\prime} \mathrm{E}+\mathrm{EC}^{\prime} \\
& =\mathrm{ED} .
\end{aligned}
$$

(2) If we assume Ptolemy's theorem (conventionally quoted as Euclid, VI. D) we may as well assume the known extension
of it to acyclic quadrilaterals given in Todhunter's "Euclid," p. 3I8, and at the same time generalize the problem thus-

To find a point E within a triangle such that $l . A E+m . B E$ $+n$. CE may be a minimum ; l, m, n being such that any two are together greater than the third.

On BC describe a triangle BCD such that $\mathrm{BC}: \mathrm{CD}: \mathrm{DB}::$ $l: m: n$; the point required will be the intersection E of AD with the circumcircle of $B C D$ if E is within the triangle $A B C$.

$$
\begin{aligned}
\text { For } \mathrm{BE} \cdot \mathrm{CD}+\mathrm{CE} \cdot \mathrm{BD} & =\mathrm{ED} \cdot \mathrm{BC}, \\
\therefore m \cdot \mathrm{BE}+n \cdot \mathrm{CE} & =l \cdot \mathrm{ED} ;
\end{aligned}
$$

$$
\therefore l \cdot \mathrm{AE}+m \cdot \mathrm{BE}+n \cdot \mathrm{CE}=l \cdot \mathrm{AD} .
$$

But if G is any other point on the $\operatorname{arc} \mathrm{BEC}$,

$$
\begin{aligned}
& \quad m \cdot \mathrm{BG}+n \cdot \mathrm{CG}=l \cdot \mathrm{GD} ; \\
& \therefore l \cdot \mathrm{AG}+m \cdot \mathrm{BG}+n \cdot \mathrm{CG}=l \cdot \mathrm{AG}+l \cdot \mathrm{GD} ; \\
& \therefore l \cdot \mathrm{AG}+m \cdot \mathrm{BG}+n \cdot \mathrm{CG}>l \cdot \mathrm{AD} .
\end{aligned}
$$

And if P be any point within the triangle $A B C$, but not on the circumference-

$$
\begin{aligned}
& \mathrm{BP} \cdot \mathrm{CD}+\mathrm{CP} \cdot \mathrm{BD}>\mathrm{PD} \cdot \mathrm{BC}(\text { Todhunter's "Euclid," } \\
& \therefore m \cdot \mathrm{BP}+n \cdot \mathrm{CP}>l \cdot \mathrm{PD} ;
\end{aligned}
$$ $\therefore l . \mathrm{AP}+m \cdot \mathrm{BP}+n \cdot \mathrm{CP}>l . \mathrm{AP}+l . \mathrm{PD} ;$ $\therefore l . \mathrm{AP}+m . \mathrm{BP}+n . \mathrm{CP}>l . \mathrm{AD}$.

If l, m, n are proportional to $a, b, \dot{c}, \mathrm{E}$ is the orthocentre of ABC .

If l, m, n are proportional to c, a, b, or b, c, a, E is one of the Brocard points of ABC , and the construction for E is equivalent to that of Mr. R. F. Davis for the Brocard points ("Reprint of Mathematics from the Educational Times," vol, xlvii. App. II.).

It will, of course, be seen that the triangle formed by drawing perpendiculars to $\mathrm{AE}, \mathrm{BE}, \mathrm{CE}$ through $\mathrm{A}, \mathrm{B}, \mathrm{C}$, is the maximum triangle with its sides proportional to l, m, n and passing through A, B, C. Prof. Genese has kindly supplied me with an elementary investigation of the problem, depending on the construction of that triangle.

It may also be seen that the question has an intimate connection with one proposed by Mr . Morgan Jenkins in the Educational Times for August $\mathbf{1}$, 1884 :-

If on the three sides of a triangle, ABC , there be described any three triangles, $\mathrm{BDC}, \mathrm{CEA}, \mathrm{AFB}$, either all externally or all internally having their angles in the same order of rotation, and the angles which are contiguous to the same corner of ABC equal to each other, prove that AD, BE, and CF meet in a point O, which is also the common point of intersection of the circumcircles of BDC, CEA, AFB ("Reprint," vol. xliii. pp. 88-91).

Edward M. Langley.
Bedford, April 14.

Self-Induction.

I FIND I am being quoted as having said that an iron conductor has less self-induction than a copper one. You will perhaps spare me a line to disclaim any such statement. It is one which seems to me on the face of it absurd.

Oliver J. Lodge.

