In order to render the instrument perfectly reliable, all that is necessary is that the current of water should be always perfectly uniform, and this is easily attained by fixing the size of the outlet once for all, and also the level of water in the tank. So arranged, the pyrometer works with great regularity, indicating the least variations of temperature, requiring no sort of attention, and never suffering injury under the most intense heat; in fact the tube, when withdrawn from the furnace, is found to be merely warm. If there is any risk of the instrument getting broken from fall of materials or other causes, it may be fitted with an ingenious self-acting apparatus shutting off the supply. For this purpose the water which has passed the thermometer is made to fall into a funnel hung on the longer arm of a balanced lever. With an ordinary flow the water stands at a certain height in the funnel, and, while this is so, the lever remains balanced; but if from any accident the flow is diminished, the level of the water in the funnel descends, the other arm of the lever falls, and in doing so releases two springs, one of which in flying up rings a bell, and the other by detaching a counterweight closes a cock and stops the supply of water altogether.

It will be seen that these instruments are not adapted for shifting about from place to place in order to observe different temperatures, but rather for following the variations of temperature at one and the same place. For many purposes this is of great importance. They have been used with great success in porcelain furnaces, both at the famous manufactories at Sèvres and at another porcelain works in Limoges. From both these establishments very favourable reports as to their working have been received.

W. R. BROWNE

THE AGRICULTURAL INSTITUTE OF BEAUVAIS

WE have already referred to the interesting collection exhibited in the Technical School at the Health Exhibition by the Brothers of the Christian Schools. One of the most instructive of their specimen museums is that from their Agricultural Institute at Beauvais.

This Institute was founded in 1855, the late Prince Consort being one of its first patrons. Recently the Agronomical Society of France have extended to it an

encouraging hand.

Candidates for admission to the school must be at least sixteen years of age, and must give evidence, either by certificates obtained or by a preliminary examination, of their having successfully studied the recognised branches of a good modern education. The course of instruction extends over a period of three years, and is intended to prepare young men to manage and develop estates and direct all farming operations. Special provision is made, in the third year, for those who wish to qualify themselves for agricultural professorships. The syllabus of subjects is framed by a Board appointed by the prefect of the departement, and consists of the Director and Professors of the Institute, of the Professor of Agriculture, and the Veterinary Surgeon of the departement, as also of three other members.

The subjects for the first year are: French language, book-keeping and commercial subjects, elementary algebra and geometry, the fundamental principles of agriculture, rural law and engineering, general zoology, arboriculture, horticulture, physics, chemistry, and linear drawing.

In the second year the students follow more advanced courses of agriculture, zoology, botany, entomology, geology, surveying, levelling, physics, general and analytical chemistry, rural law and engineering, linear drawing, arboriculture, and horticulture.

The instruction for the last year comprises agriculture, arboriculture, horticulture, analytical chemistry, botany,

geology, entomology, applied mathematics and mechanics, and architectural drawing.

Science teaching, to be of any use, must be practical; the authorities of the Agricultural Institute, fully convinced of this, attach great importance to laboratory and field work. In the physical laboratory, the work is exclusively of a demonstrational kind, the students not being required to test the accuracy of their knowledge or their familiarity with instruments by the actual and precise measurement of physical constants. Nor do such measurements appear necessary for the object in view. It is, of course, quite different with chemistry, where skill in quantitative analysis is of the highest value to any one who intends to direct the agricultural interests of a district. The students are consequently trained with much care in those branches of analytical chemistry which bear directly upon the science of agriculture. The study of botany, geology, and entomology is encouraged and stimulated by frequent excursions to the neighbouring country, the specimens brought back being compared, classified, and minutely described in appropriate language.

The school has also a model farm of 325 acres, in which the principal operations of farming are extensively carried on. The students visit this farm at stated hours every week; they are familiarised with the chief implements and agricultural appliances, and are required to take part in all the regular work that may be going on.

The Professors have set aside a number of acres for experimenting upon the conditions most favourable to the growth of the principal cereals. These comparative studies are carried out with the assistance of the students mainly for the purpose of showing them how to practically initiate a scientific investigation of an agricultural nature. The results of these studies are fully described in the *Annales de l'Institut agricole*, a yearly publication of considerable merit. A valuable synopsis of the results obtained by the Director of the School, Brother Eugene, will be found in the Educational Section of the International Health Exhibition, Room 5.

From a recent report, we find that there have been, this year, under cultivation no less than sixty-five kinds of wheat, twenty of oats, ten of barley, eight of rye, besides fields of potatoes, beetroot, cabbage, &c. There are also pasture lands for sheep and cows, and a well-stocked

poultry yard.

At the end of each year the students are put through a practical examination, when they are expected to give satisfactory evidence of their competency to deal with the general working of the farm. It is also required by the programme of the Institute that the students shall visit exhibitions of an agricultural character which may be held in the vicinity, and attend with their Professors certain markets and sales of live stock.

The attention of the students is maintained and quickened by requiring them to write, with considerable care, notes of all their courses, as well as detailed reports of what they may have seen in their visits or met with in their excursions. Several volumes of these reports, notes, and theses, together with typical herbaria, specimens of grain and seeds, may be seen in the Exhibition, Room 5.

Besides superintending the museum and giving instruction in the laboratories, the Brothers teach drawing, physics, chemistry, botany, geology, zoology, &c., leaving such subjects as rural jurisprudence and engineering, agriculture, and the like to other eminent professors.

IS SALPA AN EXAMPLE OF ALTERNATION OF GENERATIONS?

THE chances against the accidental discovery of a great natural law are so great that we cannot feel surprise that naturalists are slow to believe that Salpa,