foreign teachers from various countries. They were conducted over Mr. Waterhouse's costly and beautiful building by the Clerk of the Works and by a member of the governing body, and evinced much interest in observing all the latest improvements in school construction and fittings, and in inspecting the library, laboratories, lecture-rooms, and the ample appliances for physical training.

It is understood that the results of the Conference, the text of the papers, and a summary of the discussions will

shortly appear in four or five volumes.

THE VOYAGE OF THE "VETTOR PISANI"

K NOWING how much NATURE is read by all the naturalists of the world, I send these few lines, which

I hope will be of some interest.

The Italian R.N. corvette *Vettor Pisani* left Italy in April 1882 for a voyage round the world with the ordinary commission of a man-of-war. The Minister of Marine, wishing to obtain scientific results, gave orders to form, when possible, a marine zoological collection, and to carry on surveying, deep-sea soundings, and abyssal thermometrical measurements. The officers of the ship received their different scientific charges, and Prof. Dohrn, director of the Zoological Station at Naples, gave to the writer the necessary instructions for collecting and preserving sea animals.

At the end of 1882 the *Vettor Pisani* visited the Straits of Magellan, the Patagonian Channels, and Chonos and Chiloe Islands; we surveyed the Darwin Channel, and following Dr. Cuningham's work (who visited these places on board H.M.S. *Nassau*), we made a numerous collection of sea animals by dredging and fishing along the

coasts.

While fishing for a big shark in the Gulf of Panama during the stay of our ship in Taboga Island one day in February, with a dead calm, we saw several great sharks some miles from our anchorage. In a short time several boats with natives went to sea, accompanied by two of the

Vettor Pisani's boats.

Having wounded one of these animals in the lateral part of the belly, we held him with lines fixed to the spears; he then began to describe a very narrow curve, and irritated by the cries of the people that were in the boats, ran off with a moderate velocity. To the first boat, which held the lines just mentioned, the other boats were fastened, and it was a rather strange emotion to feel ourselves towed by the monster for more than three hours with a velocity that proved to be two miles per hour. One of the boats was filled with water. At last the animal was tired by the great loss of blood, and the boats assembled to haul in the lines and tow the shark on shore.

With much difficulty the nine boats towed the animal alongside the *Vettor Pisani* to have him hoisted on board, but it was impossible on account of his colossal dimensions. But, as it was high water we went towards a sand beach with the animal, and we had him safely stranded

at night.

With much care were inspected the mouth, the nostrils, the ears, and all the body, but no parasite was found. The eyes were taken out and prepared for histological study. The set of teeth was all covered by a membrane that surrounded internally the lips; the teeth are very little and almost in a rudimental state. The mouth, instead of opening in the inferior part of the head, as in common sharks, was at the extremity of the head; the jaws having the same bend.

Cutting the animal on one side of the backbone we met (1) a compact layer of white fat 20 centimetres deep; (2) the cartilaginous ribs covered with blood vessels; (3) a stratum of flabby, stringy, white muscle, 60 centi-

metres high, apparently in adipose degeneracy; (4) the stomach.

By each side of the backbone he had three chamferings, or flutings, that were distinguished by inflected interstices. The colour of the back was brown with yellow spots that became close and small towards the head so as to be like marble spots. The length of the shark was 8 90 m. from the mouth to the *pinna caudalis* extremity, the greatest circumference 6 50 m., and 2 50 m. the main diameter (the outline of the two projections is made for giving other dimensions).

The natives call the species *Tintoreva*, and the most aged of the village had only once before fished such an animal, but smaller. While the animal was on board we saw several *Remora* about a foot long drop from his mouth; it was proved that these fish lived fixed to the palate, and one of them was pulled off and kept in the

zoological collection of the ship.

The Vettor Pisani has up to the present visited Gibraltar, Cape Verde Islands, Pernambuco, Rio Janeiro, Monte Video, Valparaiso, many ports of Peru, Guayaquil, Panama, Galapagos Islands, and all the collections were up to this sent to the Zoological Station at Naples to be studied by the naturalists. By this time the ship left Callao for Honolulu, Manila, Hong Kong, and, as the Challenger had not crossed the Pacific Ocean in these directions, we made several soundings and deep-sea thermometrical measurements from Callao to Honolulu. Soundings are made with a steel wire (Thomson system) and a sounding-rod invented by J. Palumbo, captain of the ship. The thermometer employed is a Negretti and Zambra deep-sea thermometer, improved by Captain Maguaghi (director of the Italian R.N. Hydrographic Office).

With the thermometer wire has always been sent down a tow-net which opens and closes automatically, also invented by Captain Palumbo. This tow-net has brought up some little animals that I think are unknown.

Honolulu, July 1 G. CHIERCHIA

The shark captured by the Vettor Pisani in the Gulf of Panama is Rhinodon typicus, probably the most gigantic fish in existence. Mr. Swinburne Ward, formerly Com-missioner of the Seychelles, has informed me that it attains to a length of 50 feet or more, which statement was afterwards confirmed by Prof. E. P. Wright. Originally described by Sir A. Smith from a single specimen which was killed in the neighbourhood of Cape Town, this species proved to be of not uncommon occurrence in the Seychelle Archipelago, where it is known by the name of "Chagrin." Quite recently Mr. Haly reported the capture of a specimen on the coast of Ceylon. Like other large sharks (Carcharodon rondeletii, Selache maxima, &c.), Rhinodon has a wide geographical range, and the fact of its occurrence on the Pacific Coast of America, previously indicated by two sources, appears now to be fully established. T. Gill in 1865 described a large shark known in the Gulf of California by the name of "Tiburon ballenas" or whale-shark, as a distinct genus-Micristodus punctatus—which, in my opinion, is the same fish. And finally, Prof. W. Nation examined in 1878 a specimen captured at Callao. Of this specimen we possess in the British Museum a portion of the dental plate. The teeth differ in no respect from those of a Seychelles Chagrin; they are conical, sharply pointed, recurved, with the base of attachment swollen. Making no more than due allow-ance for such variations in the descriptions by different observers, as are unavoidable in accounts of huge creatures examined by some in a fresh, by others in a preserved state, we find the principal characteristics identical in all these accounts, viz. the form of the body, head, and snout, relative measurements, position of mouth, nostrils and eyes, dentition, peculiar ridges on the side of the trunk and tail, coloration, &c. I have only to add that this shark is stated to be of mild disposition and quite harmless. Indeed, the minute size of its teeth has led to the belief in the Scychelles that it is a herbivorous fish, which, however, is not probable.

ALBERT GÜNTHER

Natural History Museum, July 30

PYROMETERS

THE accurate measurement of very high temperatures is a matter of great importance, especially with regard to metallurgical operations; but it is also one of great difficulty. Until recent years the only methods suggested were to measure the expansion of a given fluid or gas, as in the air pyrometer; or to measure the contraction of a cone of hard, burnt clay, as in the Wedgwood pyrometer. Neither of these systems were at all reliable or satisfactory. Lately, however, other principles have been introduced with considerable success, and the matter is of so much interest not only to the practical manufacturer but also to the physicist, that a sketch of the chief systems now in use will probably be acceptable. He will thus be enabled to select the instrument best suited for the particular purpose he may have in view.

The first real improvement in this direction, as in so many others, is due to the genius of Sir William Siemens. His first attempt was a calorimetric pyrometer, in which a mass of copper at the temperature required to be known is thrown into the water of a calorimeter, and the heat it has absorbed thus determined. This method, however, is not very reliable, and was superseded by his well-known electric pyrometer. This rests on the principle that the electric resistance of metal conductors increases with the temperature. In the case of platinum, the metal chosen for the purpose, this increase up to 1500° C. is very nearly in the exact proportion of the rise of temperature. The principle is applied in the following manner:--A cylinder of fireclay slides in a metal tube, and has two platinum wires 100th of an inch in diameter wound round it in separate grooves. Their ends are connected at the top to two conductors, which pass down inside the tube and end in a fireclay plug at the bottom. The other ends of the wires are connected with a small platinum coil, which is kept at a constant resistance. A third conductor starting from the top of the tube passes down through it and comes out at the face of the metal The tube is inserted in the medium whose temperature is to be found, and the electric resistance of the coil is measured by a differential voltameter. From this it is easy to deduce the temperature to which the platinum has been raised. This pyrometer is probably the most widely used at the present time.

Tremeschini's pyrometer is based on a different principle, viz. on the expansion of a thin plate of platinum, which is heated by a mass of metal previously raised to the temperature of the medium. The exact arrangements are difficult to describe without the aid of drawings, but the result is to measure the difference of temperature between the medium to be tested and the atmosphere at the position of the instrument. The whole apparatus is simple, compact, and easy to manage, and its indications

appear to be correct at least up to 800° C.

The Trampler pyrometer is based upon the difference in in the coefficients of dilatation for iron and graphite, that of the latter being about two-thirds that of the former. There is an iron tube containing a stick of hard graphite. This is placed in the medium to be examined, and both lengthen under the heat, but the iron the most of the two. At the top of the stick of graphite is a metal cap carrying a knife-edge, on which rests a bent lever pressed down upon it by a light spring. A fine chain attached to the long arm of this lever is wound upon a small pulley; a larger pulley on the same axis has wound upon it a

second chain, which actuates a third pulley on the axis of the indicating needle. In this way the relative dilatation of the graphite is sufficiently magnified to be easily visible.

A somewhat similar instrument is the Gauntlett pyrometer, which is largely used in the north of England. Here the instrument is partly of iron, partly of fireclay, and the difference in the expansion of the two materials is caused to act by a system of springs upon a needle

revolving upon a dial.

The Ducomet pyrometer is on a very different principle, and only applicable to rough determinations. It consists of a series of rings made of alloys which have slightly different melting-points. These are strung upon a rod, which is pushed into the medium to be measured, and are pressed together by a spiral spring. As soon as any one of the rings begins to soften under the heat, it is squeezed together by the pressure, and, as it melts, it is completely squeezed out and disappears. The rod is then made to rise by the thickness of the melted ring, and a simple apparatus shows at any moment the number of ring's which have melted, and therefore the temperature which has been attained. This instrument cannot be used to follow variations of temperature, but indicates clearly the moment when a particular temperature is attained. It is of course entirely dependent on the accuracy with which the melting-points of the various alloys have been fixed.

Yet another principle is involved in the instrument called the Thalpotasimeter, which may be used either with ether, water, or mercury. It is based on the principle that the pressure of any saturated vapour corresponds to its temperature. The instrument consists of a tube of metal partly filled with liquid, which is exposed to the medium which is to be measured. A metallic pressure gauge is connected with the tube, and indicates the pressure existing within it at any moment. By graduating the face of the gauge when the instrument is at known temperatures, the temperature can be read off directly from the position of the needle. From 100° to 220° F. ether is the liquid used, from thence to 680° it is water, and above the latter

temperature mercury is employed.

Another class of pyrometers having great promise in the future is based on what may be called the "watercurrent" principle. Here the temperature is determined by noting the amount of heat communicated to a known current of water circulating in the medium to be observed. The idea, which was due to M. de Saintignon, has been carried out in its most improved form by M. Boulier. Here the pyrometer itself consists of a set of tubes one inside the other, and all inclosed for safety in a large tube The central tube or pipe brings in the water from a tank above, where it is maintained at a constant level. The water descends to the bottom of the instrument and opens into the end of another small tube called the explorer (explorateur). This tube projects from the fireclay casing into the medium to be examined, and can be pushed in or out as required. After circulating through this tube the water rises again in the annular space between the central pipe and the second pipe. similar space between the second pipe and the third pipe is always filled by another and much larger current of water which keeps the interior cool. The result is that no loss of heat is possible in the instrument, and the water in the central tube merely takes up just so much heat as is conducted into it through the metal of the explorer. This heat it brings back through a short indiarubber pipe to a casing containing a thermometer. This thermometer is immersed in the returning current of water and records its temperature. It is graduated by immersing the instrument in known and constant temperatures, and thus the graduations on the thermometer give at once the temperature, not of the current of water, but of the medium from which it has received its heat.