intelligence. In the first place, what the writer calls primary instincts, including those of many low animals and certain instincts of higher animals, e.g. incubation, arise by the action of the first cause. This is proved by the fact that purposeless habits, tricks of manner, e.g. the trick of barking round a carriage showing itself in certain varieties of dogs, occur and are inherited. In the second place, secondary instincts, including many of those of the higher animals, e.g. dread and shunning of man, or other enemies, were originally intelligent actions, and illustrate the principle of habit or lapsed intelligence. This proposition, again, is established by showing first, that " intelligent adjustments when frequently performed become automatic in the individual, and next that they are inherited till they become automatic habits in the race," eg. in the tendency of certain breeds of dogs to

In combining both these principles in his theory of instinct, Mr. Romanes follows his master, Mr. Darwin, and he has derived much assistance from the valuable essay on instinct by that writer, which was written for the "Origin of Species," but, having been withheld from that publication for want of space, now appears for the first time as an appendix to Mr. Romanes' volume. But the author has elaborated the theory sketched out by Mr. Darwin. More particularly he has illustrated at great length how the two causes may combine. He shows how on the one hand, primary instincts may come to be put to better uses by intelligence, and, on the other hand, secondary instincts may be modified and put to better uses by natural selection. The effects of domestication illustrate most clearly this conjoint action of the two principles. With respect to the comparative importance of the two causes, Mr. Romanes seems inclined to look at natural selection as the chief agency, intelligent adjustment being regarded as an auxiliary agency, the chief function of which is to supply to the controlling principle of natural selection an additional class of variations which are from the first adaptive. Mr. Romanes supports his theory by a cumulative chain of argument of very great strength, and he orders the successive steps of it in such a way as to make the reader feel its full force. His main positions seem to us unassailable. The only point we feel inclined to criticise is the limitation of the action of intelligence in the instincts of animals low down in the scale. The author appears to argue on general grounds that these must to a large extent be due to the working of natural But the facts of intelligent modification of instinctive actions cited by him, eg. in the case of the constructive actions of bees, &c., appear to show that the animals concerned possess a considerable measure of genuine sagacity. And while it is no doubt difficult, as the author remarks (p. 191), to attribute to an animal so low down in the scale as the larva of the caddice fly a power of consciously reasoning, it seems, on the other hand, hard to understand how, by the mere play of natural selection unaided by any rudiment of conscious discrimination and adaptation of means to ends, this little creature could have acquired the habit of either lightening its floating case by attaching a leaf to it or weighting it by attaching a small stone according as it becomes too heavy or too light. But the author shows himself so completely the master of his subject, that the reader feels

disposed to accept his conclusions in the very few instances in which his individual judgment leans the other JAMES SULLY

OUR BOOK SHELF

An Introduction to the Study of Heat. By J. Hamblin Smith, M.A. (London: Rivingtons, 1883.)

THOUGH the author states in the preface that "he has endeavoured in this book to explain the elementary facts connected with the theory of heat so far as a knowledge of them is required by the University of Cambridge in the general examination for the ordinary B.A. degree,' it will be found that he has succeeded in producing a book which is not only admirably adapted to help a student who is preparing for this or any other elementary examination, but which, from the simple nature of the language and the clearness of the descriptions, may be read with advantage by those who have no examination to pass, but who may wish to understand something of the science of heat for its own sake.

The text is composed of short numbered paragraphs, in each of which the author deals with one new fact only, a plan eminently adapted to save the student confusion. These paragraphs may be taken as model answers to

imaginary examination questions.

Over two hundred questions are given on those parts of the subject, such as expansion, calorimetry, conductivity and hygrometry, which admit of being put in simple numerical form. Many of these are essentially exercises in arithmetic, and must irresistibly remind the reader of the unlikely questions which he used to have to answer at school. In the questions on thermometers, for instance, an observer seems to have noted the sums, differences, products, &c., of the readings of every kind of thermometer in his laboratory, without noticing what those readings were, and then, when too late, to have met with the necessity of finding from his observations the temperatures which the instruments actually indicated. However, though observations of such a kind are rarely made, the exercises which they furnish will of necessity make those who work them out absolutely familiar with the fundamental principles of the subject. C. V. B.

LETTERS TO THE EDITOR

[The Editor does not hold himself responsible for opinions expressea by his correspondents. Neither can he undertake to return, or to correspond with the writers of, rejected manuscripts. No notice is taken of anonymous communications.

[The Editor urgently requests correspondents to keep their letters as short as possible. The pressure on his space is so great that it is impossible otherwise to insure the appearance even of communications containing interesting and novel facts.]

The Ear a Barometer

AT a time when I frequently went between Peterborough and London by the Great Northern Railway express trains, I found that the sudden compression of the air produced on entering a tunnel was not only perceptible by the ear, but even unpleasant, and that this unpleasant sensation remained till the open air was reached, when it suddenly ceased. Of course it was natural to suppose that the noise was the primary cause, but I satisfied myself that this had nothing to do with the effect, for on swallowing after entering the tunnel the sensation ceased, but recurred in the opposite sense on leaving the tunnel, when a second operation of swallowing removed it. This showed clearly that what was observed was real.

As far as I remember there was, as measured by the sensation, an increase of pressure, at first sudden, and then gradually rising for a second or two on entering, and a corresponding gradual

and sudden decrease on leaving a tunnel.

I did not at the time have the opportunity of taking an aneroid with me to measure the amount of the compression, but intended to try an air thermometer which I thought would be more