should give the strongest reflection, owing to a difference in density produced by stamping," and to the brassworker's solution, not only are the mirrors not stamped, but cast; but it is the thicker parts, those which stand out on the back in highest relief, which reflect the most light. I have one on the back of which there are two large characters as it were laid upon a background of trees. These letters have been carefully ground flat and polished like the front. Their figures not only appear more distinctly than those of other less highly raised adornments, but actually, in the sun, throw off a brilliant white light, which contrasts very markedly with the comparatively subdued spectrum from the rest of the plate.

Is it possible that there may be some difference in molecular arrangement during the consolidation of the melted metal in the thicker (relieved) and other parts of the plate? And yet, the thick rim of the mirror does not reflect a rim of light.

One of my specimens has suffered a little oxidisation, and I observe that this appears on the face to follow certain of the larger masses of relief on the back. This mirror does not larger masses of relief on the back. This mirror does not "show the pattern through," but there is a curious bright rim reflected from the edge of each scar of injured surface.

R. D. DARBISHIRE Manchester

Colour-Sense in Birds

As the fact of the preference of sparrows for yellow crocuses still excites interest and requires explanation, perhaps you will allow me to call attention to the following remarks of Gilbert White in his "Observations on Nature":—
"Birds are much influenced in their choice of food by colour,

for though white currants are a much sweeter fruit than red, yet they seldom touch the former till they have devoured every bunch of the latter.

The obvious criticism that the craving for sweets which distinguishes the human biped is not equally predominant among his feathered friends, and consequently, that their selection of the less sweet but more highly coloured fruit may be due to some taste other than the æsthetic, does not detract from the importance of White's generalisation that birds are much influenced in their choice of food by colour-a generalisation which, there is no reason to doubt, was based upon his own keen and repeated PAUL HENRY STOKOE observation.

Beddington Park

OUR ASTRONOMICAL COLUMN

VARIABLE STARS.—The following are Greenwich mean times of visible geocentric minima of Algol, for July, August, and September, according to the elements adopted by Prof. Schönfeld:—

h. m. July 11 11 51 ... Aug. 20 15 11 ... Sept. 12 13 39 ... , 31 13 31 ... ,, 23 11 59 ... ,, 15 10 28 Aug. 3 10 20 ... Sept. 9 16 51 ... ,, 18 7 16 h. m. Minima of S Cancri occur on September 8 at 15h. 1m.,

and September 27 at 14h. 14m:

A minimum of Mira Ceti will fall on July 23, according to Argelander's formula of sines, the same perturbations being applied as in the case of the maximum of the year,

which is computed to occur November 97.

Mr. John Tebbutt, writing from Windsor, N.S. Wales, on April 13, states that in consequence of remarks on the probable variability of μ Doradûs, in NATURE, vol. xv. pp. 14 and 281, he examined the star on February 26, and March 14, and found it of the 8th magnitude. There is a star, estimated 9th magnitude, about thirty seconds of time west, and twelve seconds north of it. With such an instrument as was employed by Lacaille at the Cape of Good Hope in 1751, μ Doradûs, with its present brightness, would hardly have been visible. Lacaille calls it a fifth magnitude.

MINOR PLANETS AND COMETS OF SHORT PERIOD .-Dr. von Asten, in the course of his recent researches on the motion of Encke's comet, found that, although in the interval 1819-68 the comet had experienced in each period of revolution an almost exactly equal amount of acceleration, and that this might be attributed to the existence of a resisting medium, yet in order to connect the last two appearances in 1871 and 1875 with the previous ones, it I

is necessary to have recourse to the hypothesis of an extraordinary perturbation which, in the period 1868-71, counteracted the influence of a resisting medium. For certain reasons Dr. von Asten is led to conjecture that about the middle of the year 1869, when the comet was in the region occupied by the numerous group of small planets (the radius vector being about 3.2), it made so close an approach to one of these bodies, as yet undiscovered, that a sensible effect on the comet's mean motion was the result.

In connection with this hypothesis it may be interesting to note that the late Prof. Hubbard, whose masterly investigations on the motion of Biela's comet appeared in Gould's Astronomical Journal, came to the conclusion that the separation of the comet into two distinct bodies, by whatever cause effected, took place in all probability in a heliocentric position corresponding to about longitude 318°6, latitude + 12°0, with radius-vector 4'36, which position the comet occupied in November, 1844 (Ast. Fourn., No. 140). It is stated in some works that the comet in 1846 separated under the very eyes of astronomers; nevertheless it is upon record that the companion was first recognised on December 29 by Herrick and Bradley at New Haven, but was not again seen until Maury refound it on January 13; and its not having been remarked when the comet was first glimpsed in the Northumberland and other powerful telescopes may well have been owing to distance and faintness.

A radius vector of 4.36 would, until quite recently, have been considered as placing the comet rather outside the probable superior limit of distance of the minor-planet group, but the discovery of Hilda by M Palisa in November, 1875, considerably extended the limit, this body in aphelion being distant from the sun 46. Although the separation of Biela's comet, if it really took place at the epoch assigned by Prof. Hubbard, could not have been owing to an encounter with this particular planet, yet the position indicated for the occurrence is clearly a possible one for a meeting with an unknown member of the group. In saying this much we are of course aware that the separation may have been owing to a very different cause, indeed it might be supposed that such a rencontre would have left a more sensible effect upon the mean

motion of the comet.

METEORIC FIRE-BALLS IN AMERICA.—Prof. Daniel Kirkwood in a communication to the American Philosophical Society, on March 16, gives some particulars of meteoric fire-balls which appeared in unusual number in the United States in the latter part of 1876 and beginning The circumstances attending the of the present year. appearance of eight conspicuous meteors are included: the dates were 1876, July 8 (two fire-balls), December 16 and 21, January 3, 20, and 23, and February 8. The train of the larger meteor of July 8 was visible at least forty minutes, the mass having been apparently dissolved or dissipated in the latter part of its track; the motion about the sun was retrograde, but sufficient materials were not forthcoming for determining the orbital velocity or the nature of the orbit. The fire-ball of December 16 had been visible but a few seconds near San Francisco when it apparently plunged into the Pacific at no great distance from the shore, the fall being followed by a loud detonation. The meteor of December 21 was remarkable for the length of its track, between 1,000 and 1,100 miles, one of the longest upon record, and, moreover, the track would appear to have been somewhat curved. When crossing Indiana the principal fire-ball was followed by a train of smaller meteors, many of which exceeded Venus and Jupiter in apparent magnitude; the breadth of the cluster, as seen from Bloomington, was 3°, and the length at least 20°, from which Prof. Kirkwood concludes that the true diameter was five miles; and the length about forty miles; several explosions occurred during the passage of the meteorite over Indiana and