Boston

Society of Natural History, November 3, 1869. $\mathrm{M} \mathbf{M r}$. W. H. Dall made a few remarks upon the distribution of marine animals, asserting that their range was influenced more by the temperature of the water than by the depth or other conditions. He showed that the floating-ice line of Behring Siea (which passes betwreen the Pribyloff and St. Matthew groups of islands, tonching the continent near Kushoquim Bay) governed the distribution of the fish and molluscs of those waters. It is the northern limit of all the more southern forms, some of which range as far south as Monterey. It is the southern limit of almost all the truly arctic species. The fur seal is never found to the north of it, though often erroneously spoken of as coming from Behring Strait ; the polar bear never passes to the south of this line ; the cod invariably keep to the south, and the mullet to the north, of it. It is also the limit of distribution of many fuci and seaside plants. Where the water is cooled by northern currents, or by glaciers, deep-water species of molluscs, especially brachiopods, are found at or even above low-water mark. Where the surfacewater is warm, these molluscs, which in the north are found near the shore, are only obtained at a depth of many fathoms.

Section of Microscopy, November 10.-Mr. R. C. Greenleaf in the chair. Dr. H. Hagen called the attention of the section to the statements of Professor Listing, of Göttingen, who had recently (Nachr. d. kgl. Gesell. der Wissench., I869, No. I, and Poggendorff's Annalen, 1869, T. xvi. p. 467) given some suggestions concerning the further improvement of the microscope. In all microscopes the dioptric arrangement is now analogous to the astronomic spy-glass; they have but one real image, from which the virtual image is formed and brought to the eye of the observer. Professor Listing proposes to have two real images, and in this way to form three successive augmentations instead of two, as before. It is well known that by a prolongation of the draw tube, or by increasing the distance between the objective and the eye-piece, the image becomes successively greater, but the definition and penetration is by no means better. Prolessor Listing has made some experiments, and states that with an eye-piece of his construction (a double eye-piece with four lenses, similar to those of terrestrial telescopes) the magnifying power of the instrument, and also to nearly the same degree the penetration, is raised, by a tube of 420 millimetres, $20,28,55,97$, and 137 per cent. (the latter, of course, with diminution of the field), more than the same objective (Hartnack s, No. 7) and eye-piece (No.3) with a tube 200 millimetres in length. The object was Pletrosignta angulatum, and Professor Listing assures us that the latent power of the objective is developed by this means in an astonishing manner. He also remarked that the so-called Erectors have long been used, but always with a low power and ri short tube. The most advantageous form for the eye-piece would be, for the two superior glasses, achromatic lenses from $x 5$ to 20 millimetres in diameter, and with a diaphragm between, having an aperture of from 8 to 9 millimetres. For the two inferior lenses, a common Huyghen's eye-piece would be the best. Such a combined eye-piece, with a tube 420 millimetres long, would raise the power of the instrument 97 per cent. The use of an achromatic condenser adapted for oblique illumination is neces sary for high powers. The experiment was only successfully made with the best objectives of English artists, or with the excellent new Hartnack objectives. According to his calculation, an objective of one millimetre distance will give the first real image at a distance of 200 millimetres from the second chief point of the objective, and combined with an eye-piece in Listing's manner, having a power of 25 diameters by itself, and a tube 405 millimetres long, the magnifying power of the whole instrument would be 5,000 diameters. In the common arrangement of the microscope, the dioptric cardinal points are in the same order as in a concave lens, and the focal distance of the whole microscope (not of the objective) would be equal to -. 5 millimetres, with a magnifying power of 400 diameters for a visual distance of 200 millimetres. In the Listing instrument the order of the cardinal points would be inverted and analogous to a convex lens, with a focal distance of the whole microscope equal to $\times \cdot 04$ millimetres, with a magnifying power of 5,000 diameters. In the first case the objective would have a focal distance of 3 millimetres, in the last of 1 millimetre. The difference between the two chief points of the whole microscope is in both cases nearly equal to the whole length of the tube. In the last arrangement the whole microscope is analogous to a convex lens with very short focal distance.

DIARY

THURSDAY, Janvary 27.
Royal Institurrion, at 3 -On the Chemistry of Vegetable Products: Prof. Odling.
Roval Society, at 8.30-Temperature of Strata in Sinking of Rosebridge Colliery: E. Hull.-Action of Rays of High Refrangibility upon Gaseous Matter: Prof. Tyndall, F. R.S.-Eclipse of Sun as observed in United States : J. N. Lockyer, F.R.S. - Theory of Continunus Beams: Mr_{r}. Heppel.-Remarks on Heppel's Continuous Leams: Professor Rankine.
Zoological. Society, 8. 30.-On Conking Pits and Kitchen Middens. containing Remains of Dinornis, New Zealand: Professor Owen, F.R.S Antiquaries, at 8.30 .
London Institution, al 7.30.
FRIDAY, January 28.
Roval Institution, at 8.-Graham's Scientific work: Prof. Odling. Quekett Microscopical Club, at 8.

SATURDAY, January 29.
Royal Instittition, at 3.-On Meteorology: Mr. Scote,
MONDAY, JANUARY 3 r.
Royal Institute of Rritish Architects, at 8.
institute of Actuaries, at 7.
London Institution, at 4
Medical. Society, at 8 .
TUESDAY, February x.
Roval Institution, at 3.-On the Architecture of the Human Body: Prof. Humphrey.
Institution of Civil Engineers, at 8.-Statistics of Income, Expenditure, and Railway management, and their bearing upon future Railway policy: J. T. Harrison, C.E.
Pathological Society, at δ.
Anthropological. Society, at 8.-Negro Slaves in Turkey: Major F. Mitlengen.
Syro-Egyptian Society, at 7.30 .
wednesday, Ferruary 2.
Socrety of Arts, at 8.~On Recent Improvements in Small Arms. Pharmaceutical Society, at 8. Obstetrical Society, at 8 .

THURSDAY, February 3.
Linnfan Society, at 8.-Revision of the genera and species of capsular gamophyllous Liliacee: J. G. Baker, Esq., F.L.S.-On a new form gamophyllous Lephatiacere : Dr. Collingwood, F.L.S.

BOOKS RECEIVED

English-Lichenes Britannici: Crombie (Reeve and Co.)-Elementary Introduction to Physiological Science (Jarrold and Son).-The American Naturalist, No. 11.-The Spherical form of the Earth, a Reply to Parallax J. Dyer (Trübner and Co).-On the Geographical Distribution and Physical Characteristics of the Coal Fields of the North Pacific Coast: Robert Brown.-Fresenius' Analysis, Quantitative, fifth edition (Arthur Vacher).Fresenius' Analysis, Qualitative, seventh edition (Arthur Vacher).
Foreign.- Ueber die Gährung und die Quelle der Muskelkraft: J. Von Liebig.-Bulletins de la Société d'Anthropologie de Paris.-Pflugger's Archiv fiir Physiologie - Centralblatt für die medicinischen Wissenschaften, January, $\times 870$.

CONTENTS

Page
Dust and Disease
327
Vegetable Monstrosities. (With Illustrations.) Bv Alfred ${ }^{\circ}$. Bennett, F.L.S.

328
AtTfield's Chemistivy 328
Aur book Shelf or the Neble Star-svstems? ($\dot{\text { Aliti }}$ illustration.) By
Richard A. Proctor, F R.A.S. . A ilustrations. $33{ }^{1}$
The Crossness Well-boring. (W゙ith Illustrations.) 333
Utilisation of Sewage
333
TERS TO THE EDITOR:-
ant's View of Space-Georgr Henry Lewes; G. Croom Robertson, W. H. S:anley Monck 334
Use of the word Correlation-W. R. Grove, F.R.S., Q.C.
Rainbow Colours.-R. S. Newalle.
Cuckows' Eggs.-W. J. Sterland
Dr. Livingstone's Discoveries.-Kelth Johnston, jun. . . . 336
Physical Meteorology.-Dr. B. Stewarir NSTON, jun. 336
Veined Structure in lce.-Rev. T. G. Bonney 337
Fersonal Equation of Astronomical Observers. - H. Von de Stadt, Ph. D.
Anatomical Lectures to Female Medical Students. 337

Scientific Serials 337
337
-••• • 339 Botany . Societies and Actioemies .

Errata.-Page 26g, first column, last line : for "plan" read "position." -Page 269, second column, second line : for "supplemented" read "supple "mented as soon as possible."-Page 269 , second column, fourth line: for "should" read " should not"

Printed by R. Clay, Sons, \& Taylor, at 7 and 8, Bread Street Hill, in the City of London, and published by Macmillan \& Co., at the Office 16, Bedford Street, Covent Garden.-Thursday, January 27, 1870.

