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Abstract
Ataxia-telangiectasia (A-T) is a progressive genetic disorder 
affecting the central nervous and immune systems, and in
volving chromosomal instability, cancer predisposition, radia
tion sensitivity and cell cycle abnormalities. Studies of the cel
lular phenotype of A-T have pointed to a defect in a putative 
system that processes a specific type of DNA damage and ini
tiates a signal transduction pathway controlling replication 
and repair. A-T is genetically heterogeneous, with 4 comple
mentation groups. While functional cloning of the A-T gene(s) 
using gene transfer has proven problematic, positional cloning 
attempts are zeroing in on a defined interval on chromosome 
1 lq22-23 that probably harbors the mutations for all 4 com
plementation groups.

tions responsible for A-T seem to affect an 
unidentified physiological junction linking 
the differentiation of various tissues, essential 
functions in the central nervous and immune 
systems, genome stability, DNA replication, 
recombination and repair, cell cycle control, 
cellular aging and neoplastic transformation 
[3-8]. Hence, identifying the sites of these 
mutations is expected to have far-ranging ef
fects in several areas of biomedical research.

A-T is inherited in an autosomal recessive 
manner and has been found worldwide, with

Ataxia-Telangiectasia: A Pleiotropic 
Defect in an Essential Junction of 
Cellular Physiology

Dr. Elena Boder’s review [1] on the genetic 
disorder ataxia-telangiectasia (A-T) 10 years 
ago began with the words: ‘Ataxia-telangiecta
sia has been mysterious from the start.’ Since 
its establishment as a clinical entity in 1957 
[2], this enigmatic, insidious disorder has pre
sented a biological, medical and human chal
lenge to clinicians and researchers. The muta-
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phocytic leukemia constitute over 85% of all 
cancers in A-T and appear primarily in youn
ger patients. Other cancers, mainly epithelial, 
rise steadily with age [10]. Early attempts to 
treat these malignancies by radiotherapy re
sulted in acute radiation reactions, revealing 
another feature of A-T - a profound sensitivi
ty to the cytotoxic effect of ionizing radiation 
[19-24]. The course of A-T is progressive and 
relentless, and patients usually die with respi
ratory failure or malignancy during the sec
ond or beginning of the third decade of life. 
There is no effective way to retard the pro
gression of this disease.

The primary diagnostic laboratory finding 
in A-T is chromosomal instability, evident as 
high rates of chromosomal breaks, usually ob
served in peripheral lymphocytes or fibro
blasts [25-27]. Lymphocyte cultures show cell 
clones containing specific chromosomal 
translocations involving particularly the chro
mosomal regions 7pl4, 7q35, 14ql2 and 
14q32 which harbor the T-cell receptor and 
immunoglobulin heavy-chain genes. Such 
clones often precede the onset of lymphore- 
ticular malignancies and subsequently under
go clonal expansion as malignancy progresses 
[27-36]. Molecular analysis of several translo
cation breakpoints showed that the immune 
system genes residing in these regions were 
indeed involved in these aberrations [30, 32, 
33, 35,36],

The cellular phenotype of A-T further re
flects the complexity of this disorder. Besides 
chromosomal instability, A-T cells show a 
reduced life span in culture, higher require
ments for unspecified serum growth factors, 
abnormalities in the shape and arrangement 
of cytoskeletal actin fibers and abnormal con
tent of a variety of extracellular surface pro
teins [37, 38]. A major cellular characteristic 
of A-T, which has become diagnostic, is the 
profound sensitivity of the cells to the cyto
toxic and clastogenic effects of ionizing radia

patient frequencies of about 1:100,000 in the 
United States and Britain [9-12], There are 
notable concentrations of A-T patients also in 
Turkey [13], Italy [14] and among Moroccan 
Jews in Israel [15].

A-T makes its appearance initially as a 
neurological disorder [1, 4, 5]. Cerebellar 
ataxia begins in infancy and progresses steadi
ly, confining the patient to a wheelchair by the 
beginning of the second decade of life. Other 
main neurological signs are involuntary 
movements, diminished or absent deep re
flexes, apraxia of eye movements and slurred 
speech. The neuropathological hallmark of A- 
T is cerebellar degeneration involving pri
marily the Purkinje and granular cells; degen
erative changes have also been noted in the 
spinal cord and ganglia, brainstem and pe
ripheral nerves. The second clinical hallmark 
of A-T, which typically appears between the 
ages of 3 and 6 years, is telangiectases (dila
tion of blood vessels making them more 
prominent) in the eyeballs and conjunctiva, 
sometimes spreading over sun-exposed areas 
of the skin. Some 50-80% of patients show 
the third clinical hallmark of A-T, recurrent 
sinopulmonary infections signifying marked 
immunodeficiency. Serum levels of IgA, IgG2 
and/or IgE are reduced, the number of circu
lating lymphocytes is diminished and mitogen 
response is poor. The thymus is degenerated 
and sometimes absent. The serum levels of 
two oncofetal proteins - a-fetoprotein and 
carcinoembryonic antigen - are consistently 
higher in A-T patients. Somatic growth and 
sexual maturation are usually retarded, with 
female hypogonadism being almost uniform. 
Progerie changes typically appear in the hair 
and skin, marking premature senescence. In
telligence is usually normal.

Another cardinal feature of A-T is pro
found cancer predisposition, which becomes 
evident in about 10% of patients during child
hood [16-18], Lymphomas and acute lym
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tion and radiomimetic chemicals. A-T cells 
are hypersensitive to both high- and low-ener
gy transfer ionizing irradiation, as well as to a 
host of chemicals that mimic the effect of ion
izing radiation on DNA by their capacity to 
produce radicals capable of inducing strand 
scissions [3, 39-51]. However, the overall ki
netics of single- and double-strand break re
pair in A-T cells has been found normal in 
most studies [3, 39, 44, 49, 52, 53], Unex
pectedly, semiconservative DNA synthesis in 
A-T cells was found to be more resistant to the 
inhibitory effect of the DNA damaging agents 
to which A-T cells are sensitive, most notably 
ionizing radiation [54-56]. This phenome
non, called ‘radioresistant DNA synthesis’ 
(RDS), was the first evidence of a defect in 
cell cycle control in A-T cells (see below).

The clinical and cellular characteristics of 
A-T have been used to delineate phenotypic 
variants among patients. Patients with some
what milder clinical signs, later age of onset 
and slower progression of the disease were 
found in several countries, and in some of 
them this phenotype was correlated with 
milder radiosensitivity and sometimes re
duced or absent RDS. These parameters do 
not always coexist, however, demonstrating 
the complexity of the molecular and physio
logical basis of A-T [6, 8, 13, 57-65].

Another dimension is added to this com
plexity by other disorders with certain charac
teristics shared with A-T, such as immunode
ficiency coupled with chromosomal instabili
ty [66-68]. The combination of microcephaly, 
growth retardation, immunodeficiency, chro
mosomal instability, radiosensitivity and 
RDS but no telangiectases has been particu
larly related to A-T. Patients with this syn
drome, sometimes associated with mental re
tardation, were reported in several ethnic 
groups, and some were classified as Nijmegen 
breakage syndrome [69-77], Patients with 
Nijmegen breakage syndrome tend to develop

lymphoreticular malignancies at a higher rate 
than classical A-T patients [77], One case of 
A-T with microcephaly and mental retarda
tion was designated ‘ATpresno’ [78],

Attempts to delineate the possible genetic 
heterogeneity of A-T and its relationship with 
related syndromes have been done by fusing 
cells from different patients and measuring 
RDS [79-81] or radiation-induced chromo
somal aberrations [82, 83] in heterokaryons. 
These studies revealed 4 complementation 
groups in classical A-T, designated A, C, D 
and E, and 2 complementation groups, VI 
and V2, among patients with Nijmegen break
age syndrome and related syndromes [77, 81]. 
Groups A and C accounted for 83% of cases 
in a sample of 50 A-T patients [81], but the 
size of this series precludes making generali
zations to A-T worldwide. In general, no cor
relation was found between complementation 
group assignment and clinical variation in A- 
T. It is unclear at present whether these com
plementation groups represent different genes 
or different mutations within 1 gene. A-T 
researchers cautiously refer to 4 genes in
volved in classical A-T: AT A, ATC, ATD and 
ATE.

A-T heterozygotes have always received 
special attention. In a sense A-T is not entirely 
recessive since carriers mildly manifest two of 
the disease characteristics, cancer predisposi
tion and radiosensitivity. Epidemiological 
studies consistently show that A-T heterozy
gotes exhibit a higher rate of certain cancers, 
especially breast cancer in women [9, 11, 16, 
84-88], Swift et al. [86] estimated the cancer 
tendency among male A-T heterozygotes to be 
3.8-fold higher than that of the general popu
lation, while that of female carriers was esti
mated to be 3.5 higher. However, the relative 
risk for breast cancer in women alone was esti
mated to be 5.1 higher than that of a control 
population. Swift et al. [84] further suggested 
that up to 8.8% of the American white female
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attributed to a defect in DNA repair or in a 
mechanism controlling replication of damaged 
DNA [3, 5, 6, 39, 49], It is noteworthy in this 
respect that the RDS phenomenon could be 
clearly dissociated from radiosensitivity in 
several reports [46, 59, 109-112]. Early obser
vations that A-T cells are deficient in ‘poten
tially lethal damage repair’ acting in quiescent 
cells [113-115] seemed to support the DNA 
repair hypothesis. The natural candidate for 
the critical DNA lesion unrepaired in A-T cells 
was DNA breaks. Most studies based on bio
physical methods have failed to reveal a defect 
in the overall kinetics of DNA strand break 
repair in A-T cells [3, 39, 44, 49, 52, 53, 116- 
118]. However, several investigators did no
tice an elevation in the residual amount of 
unrepaired strand breaks in irradiated A-T 
cells and suggested that these cells might han
dle the DNA strand break differently from oth
er cells [119-122], Cytogenetic studies also 
pointed to a residual amount of double-strand 
breaks unrepaired in A-T [112], or a higher 
fraction of double-strand breaks converted to 
chromosomal breaks [123-125]. A defect in 
chromatin structure was suggested to be re
sponsible for this phenomenon [126]. Several 
studies pointed specifically to possible misre- 
joining of DNA breaks in damaged molecules 
introduced into A-T cells [120, 127-132] or 
treated with A-T cellular extracts [51, 133— 
135], A recombination-based mechanism re
sponsible for double-strand break repair and 
defective in A-T was suggested [51, 132] and 
related to in vivo observations of an increased 
rate of uncommon transrearrangements be
tween T-cell receptor genes in A-T lympho
cytes [136-138]. As expected, general V(D)J 
rejoining in A-T patients was found normal 
[139, 140], Abnormal recombination in A-T 
was also noticed by Meyn [141], who observed 
an extremely high rate of intrachromosomal 
recombination in A-T cells, while interchro
mosomal recombination remained normal.

patients with breast cancer may be A-T car
riers. Easton [88] found in British and Norwe
gian populations a 3.9-fold risk for breast can
cer in female A-T heterozygotes, while no ten
dency to develop other cancers was found 
among A-T carriers in general. These findings 
were accompanied by repeated reports of 
moderate sensitivity of cells from A-T carriers 
to ionizing radiation, as measured by survival 
and cytogenetic assays [89-108]. These re
sults imply that A-T heterozygotes might face 
special hazards from routine diagnostic or 
therapeutic procedures involving radiation. 
These findings also stimulated attempts to 
develop laboratory assays for the detection of 
A-T carriers in the general population. While 
obligatory A-T heterozygotes could be clearly 
delineated from controls in some studies [89, 
91,94-98], groups of controls and A-T hetero
zygotes overlapped in other samples [92, 93, 
101, 107], The wide range of radiation re
sponses among control groups makes the reli
ability of this parameter as an assay for carrier 
detection doubtful. It should also be noted 
that most of these methods are labor intensive 
and results vary between laboratories.

A-T: A Defect in Processing of a Specific 
DNA Lesion Affecting a Downstream 
Signal Transduction System

The function presumed defective in A-T is 
associated with the processing of a specific 
type of a DNA lesion. Examination of the 
mode of action of chemical agents to which 
A-T cells are hypersensitive pointed to a spe
cific type of strand scission induced by these 
agents via a free radical attack on the deoxyri- 
bose moiety [40]. This high specificity should 
be borne in mind when attempting to make 
deductions about the A-T defect from the cel
lular phenotype. The high sensitivity of A-T 
cells to agents inducing this lesion has been
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While the mechanism that directly handles 
the critical DNA lesion in A-T is still unclear, 
additional effects of the abnormality in this 
mechanism on downstream systems induced 
by DNA damage have been observed. The 
main observation consistently made in A-T 
cells is that several cell-cycle checkpoints acti
vated by radiation damage do not function 
optimally. The postirradiation inhibition of 
the cell cycle that normally occurs at the Gi 
and S phases was found to be less pronounced 
in A-T cells, while the G2 phase in A-T cells 
irradiated at Gi or S was more prolonged than 
in normal cells. But, when A-T cells were irra
diated at G2, the delay in traversing this stage 
into mitosis was shorter than in normal cells

diation, while disruption of p53 function in
creases their radioresistance. It was proposed 
that A-T cells have an unusually low threshold 
for triggering p53-mediated apoptosis and 
that their radiosensitivity stems from induc
tion of apoptosis by usually nonlethal doses.

The DNA repair hypothesis and the DNA 
replication/cell cycle hypothesis could be 
merged by assuming that A-T cells may har
bor a defect in a protein or a protein complex 
involved in both the initial processing of a 
specific DNA strand break and in triggering 
the signal transduction system leading to Gi 
arrest and enhancement of DNA repair. A 
defect in this system might result in unre
paired breaks leading to chromosome damage 
and possibly to the dominance of an error- 
prone repair system of lower fidelity which is 
usually overshadowed by the regular repair 
mechanism. The function of the downstream 
systems activated by that protein is reduced, 
with consequent cell cycle abnormalities. 
Another obvious possibility that cannot be 
ruled out at this point is a defect in a tran
scription factor responsible for the normal 
action of several genes controlling these sys
tems.

[102, 142-153], Radiation-induced Gi arrest 
is mediated by a newly revealed signal trans
duction system involving a rise in the cellular 
level of the p53 protein, probably via a post- 
translational control mechanism [153-156]. 
p53, in turn, induces the expression of several 
genes including Gadd45, p21WAF1/CIP1 and 
Mdm2 [155, 157-163]. The products of 
Gadd45 and p21WAFI/CIP1 inhibit DNA repli
cation, while the Gadd45 protein also stimu
lates DNA repair [157, 159, 160, 164], This 
system is perturbed in A-T cells of all comple
mentation groups when stimulated by ioniz
ing radiation or radiomimetic chemicals but 
functions normally after treatment with UY 
irradiation and other agents to which A-T 
cells are not sensitive [151, 152, 155, 164—
166] , It has been proposed, therefore, that sev
eral signal transduction pathways activating 
p53 may be induced by specific types of DNA 
damage, with the one activated by strand 
breaks being defective in A-T cells [165,
167] ,

Complementation Cloning Attempts: 
Too Many Genes Volunteering for the 
Same Job

The common approach to the identifica
tion of disease genes with yet unrecognized 
protein products is positional cloning [172, 
173], The localization of the A-T locus to 
chromosome 1 lq22-23 [174] opened the way 
to application of this approach to A-T (see 
below). But the cellular phenotype of A-T 
lends itself to another strategy for gene identi
fication - functional cloning by complemen
tation of the cellular phenotype.

The p53 gene product mediates another 
radiation-induced pathway leading to pro
grammed cell death (apoptosis) [168-170]. 
Meyn et al. [171] noticed that A-T cells sus
tain higher rates of apoptosis following irra
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Hypersensitivity to DNA-damaging 
agents, a prominent feature of A-T cells, calls 
for attempts to complement this phenotype 
by gene transfer. In this approach, exogenous 
DNA is introduced into the cells and selection 
applied to identify cell clones in which this 
sensitivity has been ‘corrected’. An attempt is 
then made to identify the piece of DNA sup
posedly responsible for this effect, which is 
expected to represent a normal allele of the 
disease gene. Functional cloning by this strat
egy is appealing since it circumvents the more 
labor-intensive positional cloning. Functional 
cloning proved particularly useful when ro
dent cell mutants sensitive to specific radia
tions or chemicals were transfected with hu
man genomic DNA or cDNA; these experi
ments led to isolation of a host of human 
genes involved in transcription and DNA re
pair, some of which are involved in specific 
complementation groups of the UV-sensitive 
disorders xeroderma pigmentosum, Cock
ayne’s syndrome and trichothiodystrophy 
[175]. Application of this strategy to human 
cells is experimentally more difficult but has 
been successful in isolating the genes for com
plementation groups A and C of xeroderma 
pigmentosum [176, 177] and Fanconi’s ane
mia group C [178].

Several laboratories have invested consid
erable effort during the last decade in ap
plying this approach to A-T. Early trials to 
complement the radiosensitivity of A-T cells 
were based on transfection with genomic 
DNA. In this system, pieces of the exogenous 
DNA are expected to integrate into the cellu
lar genome and be stably expressed. Lehmann 
et al. [179] and Green et al. [180] transfected 
the immortalized A-T(D) cell line AT5BIYA 
with human or mouse genomic DNA together 
with the selective marker gpt. One radioresis
tant cell clone was obtained out of 400,000 
gpt+ transfectants and showed a normal level 
of radiation resistance but only partial correc

tion of RDS. Attempts to rescue the responsi
ble DNA fragment were unsuccessful. Lohrer 
et al. [181], using the same cell line in similar 
experiments, obtained no stably radioresis
tant transfectants. It was concluded that limit
ing factors, in particular the size of genomic 
DNA stably integrated into the genome of A- 
T cells, may prevent the success of experi
ments based on the use of such DNA.

Despite this discouraging conclusion, 
Kapp and Painter [182] transfected 
AT5BIVA cells with a genomic library in a 
cosmid vector and were able to identify a 
transfectant clone in which cellular and chro
mosomal radiosensitivities were corrected to 
an intermediate level, but RDS was retained. 
Subsequent isolation of the integrated DNA 
[183] revealed genomic sequences that 
mapped to the chromosomal band 1 lq23, to 
which the A-T locus had previously been 
linked [174], A 3.0-kb cDNA clone corre
sponding to these DNA fragments was iso
lated and found to map near the THY-1 gene, 
now known to be located some 25 cM distal to 
the A-T locus (see below). This gene, termed 
ATDC (AT-D complementing), codes for 9 
alternatively spliced transcripts with variable 
patterns of expression in different tissues 
[183, 184; Kapp, pers. commun.] and is not 
induced by ionizing radiation [184]. The 
ATDC protein contains several zinc finger 
motifs and a leucine zipper domain, indicat
ing possible formation of a homo- or hetero
dimer involved in nucleic acid binding, typi
cal of regulatory proteins [185]. Mumane et 
al. [186] used the two-hybrid system in yeast 
to demonstrate that this protein indeed forms 
homodimers. No mutations in this gene have 
been identified to date in A-T(D) cells [Kapp, 
pers. commun.].

In order to avoid the use of genomic DNA, 
Ziv et al. [187] chose to introduce a cDNA 
library cloned in the expression vector pCD 
[188] into the A-T(A) cell line AT22IJE-T
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DNA against the background of the recipi
ent’s DNA. Both problems are largely elimi
nated when human DNA is introduced into 
rodent mutant cells that simulate the appro
priate human mutations. In fact, most of the 
human genes involved in UV response identi
fied using gene transfer were rescued from 
UY-sensitive rodent cells transfected with 
normal human DNA [175], An extensive col
lection of X-ray-sensitive hamster mutants 
has been obtained in several laboratories 
[196]. Thacker and Ganesh [197] identified 
the mutant irs-2 obtained from V70 hamster 
cells, showing the same sensitivity profile and 
RDS like A-T cells, with no apparent defect in 
strand breakage repair [198], Zdzienicka et al. 
[199] identified 3 V79 mutants with sponta
neous chromosomal breakage, cellular and 
chromosomal radiosensitivity, RDS and nor
mal strand break repair. Their sensitivity pro
file with regard to other DNA-damaging 
agents was remarkably similar to that of A-T 
cells [200]. Interestingly, all 3 mutants belong 
to the same complementation group as the irs- 
2 mutant [201]. Fusion of these cells with 
human HeLa cells resulted in full comple
mentation of RDS [202], However, introduc
tion of human chromosome 11 containing an 
intact 1 lq22-23 region did not result in cor
rection of the mutant phenotype, while the 
same chromosome complemented the pheno
type of the A-T cell line AT5BIVA cells [203], 
It was concluded that this phenotype, which 
so remarkably resembled the human A-T de
fect, was caused in the hamster cells by a gene 
unrelated to the human A-T gene [203], 
Transfection of these mutants with HeLa ge
nomic DNA or a human genomic cosmid 
library yielded transfectants that gained some 
radioresistance but retained RDS [204], Mi
crocell-mediated chromosome transfer of 
additional human chromosomes into these 
mutants showed that intermediate X-ray sen
sitivity could be conferred by human chromo

[189], expecting the small size of the cDNA 
inserts to contribute to their stable integration 
and maintenance in the cellular genome. Out 
of 200,000 transfectants, 2 cell clones showed 
partial correction of radiomimetic sensitivity 
and RDS. Attempts to rescue the integrated 
cDNAs failed, however, probably due to dis
sociation between the inserts and the vector 
sequences used to identify the integrated 
DNA pieces.

While these results were not encouraging, 
the notion that phenotypic complementation 
can be obtained in A-T cells by gene transfer 
did gain support from experiments with 
another technique - the microcell-mediated 
chromosome transfer. In this system, whole 
chromosomes tagged with a selective marker 
are introduced into the cells, and the intro
duced genes residing in their ‘natural’ envi
ronment are expected to remain intact. The 
assignment of the A-T locus to chromosome 
1 lq22-23 by Gatti et al. [174] spurred experi
ments with this approach. Ejima et al. [190] 
and Komatsu et al. [191] showed that intro
duction of chromosome 11 indeed restored 
cellular radioresistance in different A-T cell 
lines and that the responsible gene was distal 
to 1 lql4 [192]. Chromosomal radiosensitivi
ty was complemented in other experiments 
[193], and aberrant derivatives of chromo
some 11 enabled localization of the responsi
ble gene to llq23 [194]. Lambert et al. [195] 
used a chromosome 18 derivative containing 
translocated material from 1 lq22-23 to show 
that this chromosomal region indeed con
tained a gene that complements three pheno
typic features of A-T(D) cells: radiomimetic 
sensitivity, RDS and the abnormal postirra
diation cell cycle kinetics.

Functional cloning by transfer of human 
DNA into human cells has always suffered 
from two drawbacks: the low uptake of exoge
nous DNA by human cells and the difficulty 
of direct identification of the introduced
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somes 4 and 15, together with a mouse chro
mosome. The combination containing human 
chromosome 4 also fully complemented RDS 
[204], These studies underscored again the 
dissociation between radiosensitivity and ra
dioresistant DNA synthesis, and the genetic 
complexity underlying these two biological 
end points.

Chromosome-mediated gene transfer is 
advantageous as it facilitates separation be
tween the recipient’s genome and the intro
duced genes. It has the drawback, however, of 
focussing on a chromosomal region rather 
than on a discrete gene. A system based on 
episomal expression vectors that replicate in 
the cells as extrachromosomal elements al
lows the introduction and expression of indi
vidual cDNAs without their chromosomal in
tegration. These vectors are easy to rescue and 
are attractive for use with A-T cells because 
they are presumed less vulnerable to the in
herent genomic instability of these cells. Com
monly used episomal vectors contain the ori
gin of replication and EBNA-1 antigen gene of 
the Epstein-Barr virus. The binding of EBNA- 
1 protein to the origin of replication sequence 
enables episomal replication of the plasmid 
[205-208].

Three laboratories have recently used epi
somal cloning systems to identify cDNAs 
complementing the sensitivity phenotype of 
A-T cells of group D [209], group A [210] and 
group E [211], with remarkably similar re
sults. In all cases, stable transfectants which 
had acquired various degrees of radiomimetic 
resistance were obtained, and episomal 
cDNAs were rescued and identified. A total of 
26 cDNA clones were obtained in these 3 
studies and found to confer different degrees 
of resistance to ionizing radiation or radiomi
metic drugs upon repeated transfection. How
ever, in the study of Ziv et al. [210], only 1 of 
13 cDNA fragments that complemented the 
radiomimetic sensitivity of A-T(A) cells also

partly corrected RDS. These results and pre
vious observations point to the possibility of 
separating between these two features of the 
A-T phenotype [59, 109, 110, 182, 212],

An intriguing finding of these studies was 
that many of the complementing cDNAs were 
not full length and some represented only the 
3' untranslated regions of the corresponding 
cDNAs [211], Chen et al. [211] suggested that 
y untranslated regions of certain cDNAs may 
be able to modify the cellular response to 
radiomimetic agents by unknown regulatory 
mechanisms. This assumption implies that 
the phenotypic complementation system as a 
tool for studying the molecular basis of certain 
diseases may be highly prone to background 
noise, at least in the case of A-T. Indeed, all 
the cDNAs identified in these studies repre
sented a large variety of genes: many were pre
viously known, and none mapped to the A-T 
locus at llq22-23. Several of the previously 
known genes, like phospholipase A2 (ob
tained independently by Ziv et al. [210] and 
Chen et al. [211 ]), and heat shock cognate pro
tein 70 [210] are involved in various stress 
responses. The role of others, such as ferritin 
H chain, cytochrome C and ribosomal pro
teins [210], in cellular responses to radiomi
metic sensitivity is unclear.

These studies led to the conclusion that the 
biological end points that define the two A-T 
phenotypic hallmarks - radiosensitivity and 
RDS - can be modulated by high expression 
of a number of sequences, not necessarily full- 
length transcripts. In such a situation comple
mentation cloning may suffer from a low sig- 
nal-to-noise ratio, since some of these cDNAs 
may even mask the effect of a clone derived 
from the disease gene itself. In view of these 
results, attempts to identify the elusive A-T 
genes shifted recently to positional cloning. 
Phenotypic complementation may still be 
helpful in testing the authenticity of a candi
date gene obtained by that approach.
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Positional Cloning:
Zeroing in on the Culprit Genes

gene resided at llq22-23 but proximal to 
THY-1. These studies utilized increasing 
numbers of restriction fragment length poly
morphism markers and refined genetic and 
physical maps of this region [222, 226-230] 
and did not indicate locus heterogeneity, thus 
pointing to a possible single A-T locus at 
llq22-23. This assumption gained signifi
cant support from a linkage study conducted 
by Ziv et al. [231] with a single Moroccan 
Jewish A-T family assigned to group C. Signif
icant lod scores obtained with 1 lq22—23 
markers indicated the close proximity of the 
A-T(A) and A-T(C) mutations. A consortium- 
based analysis of 111 families from the 
United States, Turkey, England, Italy and Is
rael narrowed the disease locus to an 8-cM 
sex-averaged interval between the markers 
STMY and D11S132/NCAM [232] (fig. lb). 
McConville et al. [233] later suggested that 
the group E locus may also be located in this 
interval, which probably spans the llq22.3- 
23.1 boundary.

In the absence of a chromosomal aberra
tion flagging the physical location of the dis
ease gene, repeated genetic analysis was re
quired to narrow the A-T search interval. 
McConville et al. [233] and Ambrose et al.

The well-established positional cloning 
paradigm [172, 173] has recently had impres
sive success with scores of disease genes, in
cluding some high-profile ones [173, 213-
218] . The basic steps in this strategy include: 
the localization of a disease locus to a specific 
chromosomal region by linkage analysis; ex
tensive generation of highly polymorphic 
markers in the region and narrowing the locus 
by genetic analysis; long-range cloning and 
physical mapping of the disease locus; identi
fication of transcribed sequences (‘gene hunt
ing’), and, finally, a search of the candidate 
genes for mutations in patients. Attempts at 
positional cloning of the A-T genes have re
cently culminated in the construction of ex
tensive transcript maps of the A-T locus and a 
search for mutations in a fair number of can
didate genes.

The genetic heterogeneity of A-T presents 
a potential obstacle to linkage analysis should 
several A-T genes reside in different locations. 
This has proved to be the case in xeroderma 
pigmentosum and Fanconi’s anemia [175,
219] . Gatti et al. [174] conveniently skirted 
this problem by conducting initial linkage 
analysis on a 61-member Amish A-T kinship 
assigned to complementation group A. The 
first marker that gave a lod score suggestive of 
linkage with A-T was THY-1 localized on 
chromosome 11, region llq22-23 (fig. la). 
Further analysis with additional markers at 
this region and additional group A families 
substantiated this finding, and other unas
signed A-T families appeared to make the 
1 lq22-23 localization conclusive. This mile
stone in A-T research opened the way to posi
tional cloning efforts. Additional studies on 
American, Turkish, British, Israeli and 
French families [220-225] clearly showed 
that a major A-T locus containing the group A

Fig. 1. Positional cloning of the A-T genes. Assign
ment of the A-T locus to chromosome 1 lq22-23 [174] 
(a) has led to a primary linkage map of the A-T region 
and confinement of the A-T locus within an 8-cM 
interval [232] (b). Subsequent construction of a high- 
density microsatellite map of the region [242] and 
repeated-linkage analysis [245, 246] determined an 
interval between D11S1818 and D11S1819 probably 
containing the mutations for all 4 complementation 
groups of A-T (c). According to Yanagaite et al. [242] 
this interval spans about 1.5 Mb of DNA. Long-range 
cloning in yeast artificial chromosomes [254] (d) and 
cosmids (e) now enables systematic gene hunting in 
this region.
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[234] used a rapid method to generate biallelic 
markers to identify single-strand conforma
tion polymorphisms in DNA fragments iso
lated from yeast artificial chromosome clones 
at the A-T region. With these markers they 
were able to narrow the A-T locus, first to 4 
cM between D11S611 and D11S1897 [233] 
and later to 3 cM between GRIA4 and 
D11S1897 [234] (fig. 1 c). (D11S1897 is a new 
locus number assigned to a marker formerly 
included in the locus D11S535.) A physical 
framework for the A-T region was emerging in 
parallel from extensive radiation hybrid maps 
of 1 lq with particular emphasis on 1 lq22-23 
[235-238] and detailed pulsed-field maps of 
the A-T region [231, 239]. Integration of the 
genetic and physical maps [234, 240] nar
rowed the A-T locus to 3 Mb of DNA. It 
should be noted that A-T has never recom
bined with two markers within this interval, 
Dl 1S384 and Dl 1S535 (fig. lc).

Genetic analysis of the A-T region has been 
based up to this point on restriction fragment 
length polymorphisms and single-strand con
formation polymorphism markers. Such 
markers, usually biallelic, have a limited poly
morphic information content and may poten
tially miss genetic information in noninfor
mative families. Thus, the derivation and 
mapping of microsatellite markers at the A-T 
region was considered essential for further 
narrowing the A-T locus. A high-density mi
crosatellite map of the A-T region was con
structed by Vanagaite et al. [241, 242] and 
Rotman et al. [243,244] in two stages: micro
satellite markers generated at random by sev
eral mapping centers and generally mapped to 
the distal part of 1 lq were physically mapped 
within the A-T region [241, 242], and novel 
markers based on polymorphic CA repeats 
were generated [243, 244], A map containing 
24 microsatellite markers was constructed 
across 6 Mb containing and flanking the A-T 
interval [242] (fig. lc).

Most of these markers were used in a con
sortium-based study of 176 A-T families in 
laboratories in the United States, England 
and Israel [245, 246], Lange et al. [246] drew 
up a comprehensive 20-point linkage map 
based on the A-T families and 59 CEPH fami
lies. Using a Monte Carlo linkage algorithm 
[247, 248], Lange et al. [246] showed that the 
peak of the A-T location score was under the 
marker Dl 1S535, with a 2-lod support inter
val for A-T between D111819 and D11S1294 
(fig. le). Haplotype analysis [245, 246] dis
closed 4 recombinants which placed A-T dis
tal to D11S1819, and 1 loss of homozygosity 
in patients from an inbred family, which 
pointed to an A-T gene proximal to 
Dl 1 SI818. No recombinants were found be
tween A-T and markers in the region 
D11S384-D11S1294 (fig. lc). These studies 
reinforced the notion that the 4 complementa
tion groups in classical A-T are probably de
termined by mutations at the llq22-23 A-T 
locus and may converge to the D11S1818- 
D11S1819 interval. According to Vanagaite 
et al. [242] this interval spans about 1.5 Mb 
(fig. lc).

Although the evidence for a major A-T 
locus at D11S1818-D11S1819 is compelling, 
being based on a significant number of fami
lies from various ethnic groups and comple
mentation groups, A-T families have been 
found that do not link to this region. In the 
study of Lange et al. [246], 7 out of 176 fami
lies did not show linkage to this region: 6 of 
them had single affected subjects that could 
represent new mutations, and 1 family had 2 
affected individuals who shared the same 
haplotypes with a normal sibling. In a British 
A-T family, haplotype analysis in 2 affected 
cousins and their siblings showed no linkage 
to 1 lq22-23 [62], The patients in this family 
represented a clinical variant with slower pro
gression of the disease but otherwise had the 
typical clinical and cellular phenotype of A-T.
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Such families may represent still another lo
cus involved in the disease in very rare cases.

Linkage analysis typically reaches its limit 
of resolution when the disease locus is re
duced to 1-2 cM and a final number of 
recombinants defines its boundaries with no 
additional recombinants found betwen them. 
The locus can be further refined by determin
ing the extent of linkage disequilibrium be
tween the disease and various markers at the 
locus. A significant degree of allelic associa
tion between the disease and a particular 
marker is usually indicative of physical prox
imity. The degree of disequilibrium reflects 
the extent of recombination that has occurred 
between certain mutations and neighboring 
markers since these mutations first appeared. 
This analysis is especially powerful in isolated 
ethnic communities with a limited number of 
mutations. A clearly defined core haplotype 
retained around a particular mutation over 
the years may help reduce the disease locus 
[for examples, see 249-251].

Oskato et al. [252] noticed in Moroccan 
Jewish patients a significant degree of linkage 
disequilibrium between A-T and a series of 
markers extending over a wide region, be
tween D11S384 and D11S424 (the latter is 
distal to Dl 1S1647, fig. lc). This finding was 
compatible with a strong founder effect in this 
community, which has been isolated from the 
rest of the Jewish people and the surrounding 
population for many generations. Vanagaite 
et al. [in preparation] used the microsatellite 
markers recently added to the map [242] 
(fig. lc) and obtained a disequilibrium peak 
extending between D11S384 and D11S2105 
in 16 Moroccan Jewish families. Since several 
Moroccan Jewish patients have been assigned 
to complementation group C [81; unpubl. ob
servations], this may indicate that the ATC 
gene is located at the distal half of the A-T 
interval. A similar study by Uhrhammer et al. 
[253] on 27 Costa Rican A-T families showed

moderate linkage disequilibrium with several 
markers in the D11S1816-D11S1300 inter
val, which did not enable reduction of the dis
ease locus. No significant allelic association 
between A-T and specific markers was found 
by Vanagaite et al. [in preparation] in Turkish 
and Italian families, probably indicating a rel
atively large number of mutations in these 
populations. An intriguing allelic association 
was noticed by Taylor et al. [65] in 10 of 60 
British A-T families in which the patients 
have a clinical variant of A-T, with later onset 
and lower chromosomal radiosensitivity than 
most of A-T patients. One of the chromo
somes in each of these patients has a specific 
haplotype at the Dl 1S1819-D11 SI817 re
gion, extending proximal to the A-T locus 
defined by linkage analysis (fig. lc). It is not 
clear yet whether this finding flags a gene 
involved in the disease in a subset of patients 
who might harbor a mutation with a milder 
phenotypic effect.

In the course of these studies, as the bound
aries of the A-T locus moved closer together, 
systematic cloning of the region in genomic 
contigs became essential. Rotman et al. [254, 
255] constructed a yeast artificial chromo
some contig encompassing the current A-T 
locus (fig. Id), and similar contigs have been 
constructed in other laboratories involved in 
positional cloning of the A-T gene(s) [James, 
MR; McConville, CM; Gatti, RA; Concan- 
non, P, pers. commun.]. Cosmid contigs en
compassing various portions of the current 
A-T interval have been constructed in several 
laboratories (see fig. le for example) and used 
in the next step in the positional cloning 
scheme, gene hunting.

Gene hunting typically relies on two com
monly used methods to identify transcribed 
sequences in genomic DNA: direct selection 
based on hybridization of genomic DNA with 
cDNA collections of various sources [256,257] 
and exon trapping which identifies and clones
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exon sequences by virtue of their splicing 
capacity [258]. Transcription maps of the A-T 
locus indicate that this genomic region is gene 
rich and contains a high density of transcribed 
sequences, most of which are new [259; Bar- 
Shira et al., in preparation]. This wealth of 
genes within the A-T locus makes the search 
for mutations in patients an experimental 
challenge.
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Conclusion

Decades of intensive research have pro
vided numerous clues to the nature of the 
defect in A-T, but this defect might not be 
delineated at the molecular level before the 
culprit gene(s) are cloned. Until then, the dis
ease remains largely a mystery, as it has been 
‘from the start’ [1], Localization of the A-T 
locus to chromosome llq22-23 and subse
quent application of positional cloning have, 
however, brought A-T researchers closer than 
ever to unraveling this mystery.
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