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Abstract
A gene cluster consisting of the four y-aminobutyric acidA (GABAa) receptor 
subunit genes GABRA1, GABRA6, GABRB2, and GABRG2 was assigned to 
a yeast artificial chromosome (YAC) contig of 5q33. Two of the 26 YACs of 
the contig are positive for all four subunit genes. The order of the GABR sub­
unit genes with respect to known anonymous gene loci is cen - D5S380 - 
D5S403 - D5S529 - GABRB2 - GABRA1/A6 - GABRG2 - D5S422 - tel. 
This novel YAC contig lies between known YAC contigs of 5q34/q35 and 
5q31-q33.
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coded by the genes GABRA1-6, GABRB1-4, GABRG1- 
4, GABRD and GABRR1-2 and can be alternatively 
spliced [3-7],

Most of the GABR subunit genes have been mapped to 
specific human chromosomes. The genes coding for the 
two subunits pi_2, GABRR1 and GABRR2, are on chro­
mosome 6ql4-q21 [8], GABRD is located in the short 
arm of chromosome 1 [9] and GABRA3 has been mapped 
to Xq28 [10, 11]. Several additional subunit genes appear 
to be parts of gene clusters. One cluster consisting of 
GABRA5, GABRB3, and GABRG3 has been assigned to 
15qll-ql3 [12—14], Evidence of another cluster compris­
ing GABRA2, GABRB1, GABRA4, and GABRG1 comes 
from both in situ hybridization and deletion mapping 
experiments [11, 15-18]. These experiments have located 
the four genes to 4pl4-q21.1. Four additional subunit

Introduction

y-Aminobutyric acid (GABA) is a major inhibitory 
neurotransmitter in the mammalian brain. GABA me­
diates its function via specific receptors, mainly of the 
type GABAa. GABAa receptors are ligand-gated ion 
channels and permeable to Cl-. Biochemical analyses sug­
gest that the receptors are pentameres of various subunit 
isoforms [for reviews see ref. 1,2], Presently, 17 different 
GABAa receptor subunit isoforms are known. Based on 
their degree of homology, the subunits are assigned to 
families and classes (a, ß, y, 5, and p). Homology within 
families is 60-80% at the amino acid level and 20-40% 
between classes. Family a comprises six members (ai_é), 
families ß and y four each (ßi_4, and yi-4), ô one, and p two 
(pi_2) members. The GABR receptor subunits are en-
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Fig. 1. YAC contig of 5q33. The newly 

isolated markers are shaded. GABR genes 
are typed in bold. The present YAC contig is 
located in the region of the doubly-linked 
contig WC-1432 of the Whitehead Institute 
for Biomedical Research.
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YAC end fragments and inter-Alu-sequences were isolated as pre­
viously decribed [23], PCR products were blunt-end-cloned into the 
EcoRV site of pBluescript II SK + and sequenced. Sequences were 
used to generate new primer pairs for chromosome 5 STSs. The STSs 
were tested for chromosome 5 specificity using human/hamster 
somatic cell hybrid GM10114 that contains chromosome 5 as the 
only human chromosome.

Published primer sequences were used for the identification of 
GABAa receptor subunit genes (GABRA1 [19], GABRA6 [22], 
GABRB2 [21], GABRG2 [20]). Anonymous D5S markers were 
obtained from the Genome Data Base (D5S380, GDB ID: GOO-186- 
594; D5S403, GDB ID: G00-188-048; D5S422, GDB ID: GOO-188- 
376; D5S529, GDB ID: G00-195-023).

FISH was done according to standard procedures. YAC DNA 
was either used directly after digoxigenin-11-dUTP or biotin labeling 
or after amplification using various Alu primers [24, 25].

genes, GABRAI, GABRA6, GABRB2, and GABRG2, 
have been mapped to the distal long arm of chromosome 
5 (5q31.1-q35) and GABRAI and GABRG2 have been 
assigned to a yeast artificial chromosome (YAC) of about 
450 kb [11, 17, 19-22], These findings suggest the exis­
tence of yet another cluster of GABR subunit genes.

Here we demonstrate by YAC mapping and fluores­
cence in situ hybridization (FISH) that subunits GA­
BRAI, GABRA6, GABRB2, and GABRG2 are indeed 
clustered in the long arm of chromosome 5 (5q33).

Materials and Methods
The CEPH Mega YAC library pools were screened by PCR fol­

lowing the instructions of CEPH (Centre d’Etude du Polymorphisme 
Humain). Pulsed-field gel electrophoresis (PFGE) was carried out 
using a CHEF system (Bio Rad). Electrophoresis was performed at 
14°C for 25 h (0.5 x TBE, 6 V/cm, 120°, ramp 50-100 s). Sizes of 
YACs were determined by comparison with the known size of chro­
mosomes of Saccharomyces cerevisiae strain YPH49.

Results

YACs from the distal long arm of chromosome 5 were 
screened to localize GABAa receptor subunit genes GA­
BRAI, GABRA6, GABRB2 and GABRG2 that had pre­
viously been assigned to 5q31.1-q35. The genes were
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Table 1. Newly developed markers in 5q33

D number Accession Primer sequence
number

Product 
size, bp

Annealing
temp.,°C

Marker
name

CAACACATCACAAATAGAAT 
T AATT GATTT GTC AG AGTT G 
GAAAACATAACATCATCGCC 
AATT GG AG AAAT AAT G AAAC AT G 
T GCCC ATCCTT AC AGAAT C A 
GCTT CTTCCCTTTCTT ATTT CA 
AGGG AAT AGAAT G AC ACTCT GT 
T AT AC AT GT GATT GGCCT G A 
TTTT CCGATT CT GGTT ACT G 
AAAG AAAAT ATTC AAT GCCT GT 
CT GAT G AC AAT AT ACCT GGGT G 
TTCGAGGGAATAATTGAGGA 
CT GGGC A AAT G AC AAGT AGG 
GCT AT C AAAAAC AGGT GGC A

135 52D5S2513 X94235812E11R

X94236 154 60D5S2514825B12R

X94237 151 62910B3R D5S2515

149 59D5S2516 X94238825B12AR

X94239 126 60D5S2517827E4ARL

X94240 128 62860A12AL D5S2518

105 62D5S2519 X94241910B3AR

Table 2. YAC sizes and FISH resultsexcluded from known YAC contigsof 5q34-q35 [23, 26] 
and of 5q31-q33 [27] (not shown). YACs located between 
these contigs [28] were positive for GABAa receptor sub­
unit genes. Primers for GABRB2 amplified DNA of 
YAC 910B3 that contains locus D5S403. Seven addi­
tional D5S403 positive YACs (720A11, 727C9, 736G12, 
775G11, 786F3, 795F8, 944E2) were negative for all 
GABA receptor subunit genes. Six additional YACs 
(744F3, 812E11, 843G6, 860A12, 860B11, 865F5) all of 
which include D5S422 types positive for GABRG2. Four 
D5S422-positive YACs (764D6, 781A8, 827E4, 910G4) 
did not contain any GABR subunit gene. Since GABRA1 
and GABRA6 could not be localized on any known YAC 
from the region, we screened the CEPH library. A total of 
8 YACs was isolated. One, 982C12, was positive for both 
GABRA1 and GABRA6, 5 YACs (793A6, 817B12, 
924H9, 926D8, 940G7) included GABRG2 in addition 
to GABRA1 and GABRA6 and all four GABRa subunit 
genes (GABRA 1, GABRA6, GABRB2, and GABRG2) 
were detected in two YACs (806D6 and 825B12). In order 
to refine the resulting YAC contig, several known markers 
(D5S380, D5S403, D5S422, D5S529) were assigned map 
positions. In addition, three YAC insert endpieces 
(812E11R, 825B12R, 910B3R) and four inter-Alu se­
quences (825B12AR, 827E4ARL, 860A12AL, 910B3AR) 
were located on the contig (fig. 1). Sequences of newly 
developed STSs are given in table 1.

The sizes of the 26 YACs of the contig were deter­
mined by PFGE and are listed in table 2. All YACs were

YAC Size, kb Chimerism

720Al 1
727C9
736G12
744F3
764D6
775G11
781A8
786F3
793A6
795F8
806D6
812E11
817B2
825B12
827E4
843G6
860A12
860B11
865F5
910B3
910G4
924H9
926D8
940G7
944E2
982C12

400; 1,300 
700; 945

+
+

360 +
850 +
615; >1,500 
>1,500

+
+

500
400
850
945; 1,125; 1,500
960
1,050
870
1,500
1,300
1,050
1,050
1,050
1,300
1,500
>1,500

n.d.

+
820
1,300; 1,600 +
800 n.d.
630
730 +

Different sizes of the same YACs are 
probably due to in vivo truncation of an 
ancestral YAC.
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V* À VFig. 2. A GTG-banded metaphase. 
B Same metaphase exhibiting the FISH sig­
nal of YAC 806D6 in 5q33. Relevant regions 
are indicated by arrow heads.

tested for chimerism by FISH. Fourteen YACs appeared 
to be nonchimeric, and 10 YACs were chimeric (table 2). 
No conclusive results were obtained for YACs 944E2 and 
865F5. The YACs containing the GABR subunit genes 
were assigned to 5q33 (fig. 2).

be determined, however, whether these genes are indeed 
clustered or whether they are dispersed over a relatively 
large region of chromosome 4.

The origin of the GABR gene clusters is presently 
unknown. One cluster may have arisen by duplication 
and subsequent mutation events on one chromosome and 
then was transposed to other regions of the genome. 
Accordingly, the original cluster consisted of one a-, one 
ß-and one y-subunit as on chromosome 15. This unit was 
dispersed by transposition and underwent further muta­
tions including a duplication of the a-subunit gene.

It is not known whether clustering of GABR genes has 
any functional implications. One could speculate that 
clustering facilitates coordination of gene expression. 
Support for this notion comes from head-to-head arrange­
ment of GABRB3 and GABRA5 on chromosome 15 
within less than lOOkb [14] that would allow for simple 
coordination of expression of these two genes. In contrast, 
GABRA6 of the cluster on chromosome 5 is expressed 
almost exclusively in the cerebellum [31, 32] while the 
remaining subunit genes are more widely expressed [33], 
This finding argues against simultaneous expression of 
genes within a GABR cluster.

A potential function of GABA and its receptors in the 
origin of human disease has not been proven. A gene locus 
possibly involved in manic depression has been assigned 
to distal 5q [34] and one may speculate that GABR genes 
are involved in this disorder. However, there is presently 
no direct supporting evidence of this hypothesis. Another 
study speculates that GABAa receptors might be involved 
in the pathogenesis of spinal myoclonus [35]. Again, there 
is no convincing data in favour of this assumption. Final-

Discussion

We have demonstrated that genes coding for GABAa 
receptor subunit isoforms cq, a6, ß2, and y2 are clustered 
within 5q33. All four subunits are contained within a 
YAC (806D6) of less than 1 Mb. The chromosomal order 
of the subunit genes is cen - GABRB2 - GABRA1/ 
GABRA6 - GABRG2 - tel. The two GABRA subunit 
genes cannot be separated on this YAC contig indicating 
close proximity of both genes. Clearly, a high-resolution 
map is required for their eventual separation. This order 
of GABR subunit genes is in contrast to that of Warring­
ton and Bengtsson [29], Their method combining radia­
tion hybrid mapping, interphase FISH and PFGE indi­
cated the order cen - GABRG2 - GABRA 1 - tel.

Another cluster of GABR genes, GABRB3, GABRA5, 
and GABRG3, was demonstrated on a YAC contig of 
900 kb of proximal 15q [30], The order of the GABR gene 
cluster in 5ql 1-ql 3 is comparable to that of the cluster 
described here. In both cases, genes coding for subunits ß 
and y flank the a-subunit gene(s) and the GABRB genes 
are most centromeric. A third cluster of GABR genes may 
be located on chromosome 4 and four subunit genes, 
GABRA2, GABRA4, GABRB 1, and GABRG1, have 
been assigned to 4p 14-q21.1 [6,11, 15, 17,18]. It needs to
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ly, GABRB3 has been implicated in normal facial devel­
opment. The cleft palate of mice carrying a deletion in the 
cpl (cleft palate) locus is rescued by the introduction of 
transgenic Gabrb3 [36],
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