Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

You are viewing this page in draft mode.

Ultrafast electronic readout of diamond nitrogen–vacancy centres coupled to graphene

Abstract

Non-radiative transfer processes are often regarded as loss channels for an optical emitter1 because they are inherently difficult to access experimentally. Recently, it has been shown that emitters, such as fluorophores and nitrogen-vacancy centres in diamond, can exhibit a strong non-radiative energy transfer to graphene2,3,4,5,6. So far, the energy of the transferred electronic excitations has been considered to be lost within the electron bath of the graphene. Here we demonstrate that the transferred excitations can be read out by detecting corresponding currents with a picosecond time resolution7,8. We detect electronically the spin of nitrogen-vacancy centres in diamond and control the non-radiative transfer to graphene by electron spin resonance. Our results open the avenue for incorporating nitrogen-vacancy centres into ultrafast electronic circuits and for harvesting non-radiative transfer processes electronically.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Non-radiative readout scheme.
Figure 2: Ultrafast electronic readout of NV centres.
Figure 3: Electronically and optically detected ESR.
Figure 4: Timescales of the non-radiative readout of NV centres.

References

  1. 1

    Ford, G. W. & Weber, W. H. Electromagnetic interactions of molecules with metal surfaces. Phys. Rep. 113, 195–287 (1984).

    CAS  Article  Google Scholar 

  2. 2

    Gómez-Santos, G. & Stauber, T. Fluorescence quenching in graphene: a fundamental ruler and evidence for transverse plasmons. Phys. Rev. B 84, 165438 (2011).

    Article  Google Scholar 

  3. 3

    Gaudreau, L. et al. Universal distance-scaling of nonradiative energy transfer to graphene. Nano Lett. 13, 2030–2035 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Swathi, R. S. & Sebastian, K. L. Long range resonance energy transfer from a dye molecule to graphene has (distance)−4 dependence. J. Chem. Phys. 130, 86101 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Velizhanin, K. A. & Shahbazyan, T. V. Long-range plasmon-assisted energy transfer over doped graphene. Phys. Rev. B 86, 245432 (2012).

    Article  Google Scholar 

  6. 6

    Koppens, F. H. L., Chang, D. E. & García de Abajo, J. F. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Auston, D. H. Impulse response of photoconductors in transmission lines. IEEE J. Quant. Electron. 19, 639–648 (1983).

    Article  Google Scholar 

  8. 8

    Prechtel, L. et al. Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Nature Commun. 3, 646 (2012).

    Article  Google Scholar 

  9. 9

    Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    CAS  Google Scholar 

  10. 10

    Xia, F., Mueller, T., Lin, Y-M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Xu, X. et al. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Sundaram, R. S. et al. The graphene–gold interface and its implications for nanoelectronics. Nano Lett. 11, 3833–3837 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Sun, D. et al. Ultrafast hot-carrier-dominated photocurrent in graphene. Nature Nanotech. 7, 114–118 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Chen, Z., Berciaud, S., Nuckolls, C., Heinz, T. F. & Brus, L. E. Energy transfer from individual semiconductor nanocrystals to graphene. ACS Nano 4, 2964–2968 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Tisler, J. et al. Single defect center scanning near-field optical microscopy on graphene. Nano Lett. 13, 3152–3156 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Liu, X. et al. Energy transfer from a single nitrogen-vacancy center in nanodiamond to a graphene monolayer. Appl. Phys. Lett. 101, 233112 (2012).

    Article  Google Scholar 

  19. 19

    Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 76401 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  21. 21

    Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008).

    CAS  Article  Google Scholar 

  22. 22

    Fuchs, G. D., Burkard, G., Klimov, P. V. & Awschalom, D. D. A quantum memory intrinsic to single nitrogen-vacancy centres in diamond. Nature Phys. 7, 789–793 (2011).

    Article  Google Scholar 

  23. 23

    Pfaff, W. et al. Demonstration of entanglement-by-measurement of solid-state qubits. Nature Phys. 9, 29–33 (2012).

    Article  Google Scholar 

  24. 24

    Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    CAS  Article  Google Scholar 

  26. 26

    Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Acosta, V. M. et al. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104, 70801 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Plakhotnik, T. & Gruber, D. Luminescence of nitrogen-vacancy centers in nanodiamonds at temperatures between 300 and 700 K: perspectives on nanothermometry. Phys. Chem. Chem. Phys. 12, 9751–9756 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Toyli, D. M., de las Casas, C. F., Christle, D. J., Dobrovitski, V. V. & Awschalom, D. D. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl Acad. Sci. USA 110, 8417–8421 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Gruber, A. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997).

    CAS  Article  Google Scholar 

  33. 33

    Freitag, M., Low, T., Xia, F. & Avouris, P. Photoconductivity of biased graphene. Nature Photon. 7, 53–59 (2012).

    Article  Google Scholar 

  34. 34

    Lemme, M. C. et al. Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11, 4134–4137 (2011).

    CAS  Article  Google Scholar 

  35. 35

    Auston, D. H., Johnson, A. M., Smith, P. R. & Bean, J. C. Picosecond optoelectronic detection, sampling, and correlation measurements in amorphous semiconductors. Appl. Phys. Lett. 37, 371 (1980).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Reserbat-Plantey for technical support. This work was supported by a European Research Council (ERC) Grant NanoREAL (No. 306754), the ‘Center of NanoScience’ in Munich and the DFG via SFB 631. L.G. acknowledges financial support from the Marie-Curie International Fellowship COFUND and ICFOnest program. F.H.L.K. acknowledges support from the Fundacio Cellex Barcelona, the ERC Career integration grant 294056 (GRANOP) and the ERC starting grant 307806 (CarbonLight).

Author information

Affiliations

Authors

Contributions

A.B. and L.G. performed the experiments and analysed the data together with A.W.H., F.H.L.K., M.S., J.A.G., M.S.B., H.H., and H.K., and F.H.L.K. and A.W.H. conceived the study. All authors co-wrote the paper.

Corresponding authors

Correspondence to Frank H. L. Koppens or Alexander W. Holleitner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1290 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brenneis, A., Gaudreau, L., Seifert, M. et al. Ultrafast electronic readout of diamond nitrogen–vacancy centres coupled to graphene. Nature Nanotech 10, 135–139 (2015). https://doi.org/10.1038/nnano.2014.276

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research