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Diverse array-designed modes of combination 
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In line with the complexity of disease networks, diverse combination therapies have been demonstrated potential in the treatment 
of different patients with complex diseases in a personal combination profile.  However, the identification of rational, compatible and 
effective drug combinations remains an ongoing challenge.  Based on a holistic theory integrated with reductionism, Fangjiomics 
systematically develops multiple modes of array-designed combination therapies.  We define diverse “magic shotgun“ vertical, 
horizontal, focusing, siege and dynamic arrays according to different spatiotemporal distributions of hits on targets, pathways and 
networks.  Through these multiple adaptive modes for treating complex diseases, Fangjiomics may help to identify rational drug 
combinations with synergistic or additive efficacy but reduced adverse side effects that reverse complex diseases by reconstructing 
or rewiring multiple targets, pathways and networks.  Such a novel paradigm for combination therapies may allow us to achieve more 
precise treatments by developing phenotype-driven quantitative multi-scale modeling for rational drug combinations.
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Introduction
Growing evidence suggests that many human diseases cannot 
be attributed to the dysfunction of a single factor or genetic 
variation but instead arise due to complex interactions among 
a multitude of genetic mutations, polymorphisms, and envi-
ronmental factors[1].  Of the 25 000 genes in the human genome, 
approximately 1800 are known to be involved in the causes of 
various diseases, including cancer, hypertension, ulcer, etc[2, 3].  
In spite of great advances in the treatment of certain diseases 
over past decades, novel target therapies such as p53-, NF-κB-, 
and epidermal growth factor receptor (EGFR)-targeted treat-
ments for complex diseases have encountered with failure 
than success[3, 4].  Thus, changes are needed to overcome the 
challenges in the healthcare and pharmaceutical industries; 
for example, the high costs of healthcare, low effectiveness of 
drugs, and high incidence of adverse drug reactions (ADRs)[5].  
Some combination therapies have more proven effective than 
single drug therapies for complex diseases, including malig-
nant cancer[6, 7], vascular diseases[8], chronic obstructive pul-
monary disease[9], etc.  Nevertheless, “more is not always bet-
ter”[10].  For instance, long-term dual-antiplatelet therapy was 
reported to be linked with a higher risk for intracerebral hem-
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orrhage (ICH) than clopidogrel monotherapy in the ischemic 
stroke population but provided no increased benefit in overall 
recurrent stroke risk reduction[11]; the combination of two but 
not more than three current targeted drugs was demonstrated 
to improve therapy of chronic myeloid leukemia[12].  Therefore, 
the optimization of combination therapies plays a key role in 
the improvement of the effectiveness and safety of treatments 
for complex diseases.

The traditional strategy to design combination therapy in 
clinical practice is to empirically combine agents with vali-
dated clinical efficacy[13].  The combination effects of these 
multiple agents are usually evaluated using mathematical 
models such as the Bliss independence model[14], the Loewe 
additivism model[15] , and the Combination Index theorem[16].  
However, this strategy can only achieve success in a case-by-
case approach.  Combination drugs manifest their therapeu-
tic activities by modulating multi-targets, but these multi-
target interactions are either largely unknown or insufficiently 
understood in most cases[17–19].  Furthermore, uncovering effec-
tive drug combinations by direct screening may be an impos-
sible mission due to the exceedingly high number of potential 
combinations.  In contrast, with the wealth of data available 
from molecular studies on complex diseases, especially the 
large-scale generation and integration of “omics” profile data, 
including genomic, proteomic, signaling, metabolomic, phe-
nomics data, etc, we can now rationalize novel combinations 
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using computational methods.  Recently, the computational 
methods of evaluating the effects of combination therapies 
have mainly focused on two approaches[20].  The first is to 
identify and optimize multiple target interventions to solve 
small-scale problems by modeling signaling pathways or spe-
cific processes[21, 22], and the second is to evaluate the efficacy of 
multi-target drugs by using network biology approaches[3, 23].  
Nevertheless, the association between drug activity and net-
work properties is not precisely understood.  Thus, novel sys-
tematic approaches are urgently required for the feasible and 
efficient identification of rational combinations.

Fangjiomics is an emerging science for the design, produc-
tion, and evaluation of combination therapy rationally selected 
from diverse agents in the holistic treatment of complex dis-
eases[24].  In contrast to traditional “omics” techniques focusing 
on a certain level of cell, tissue, or organ, this holistic thera-
peutic strategy uses rational drug combinations with higher 
efficacy but fewer adverse effects in a controlled array design 
by integrating diverse scale omics data on gene, protein, and 
metabolic interactions.  This minireview focuses on the key 
issues concerning this novel holistic array-designed paradigm 
for rational drug combinations based on the philosophy of 
Fangjiomics, which can be applied in clinical practice beyond 
network medicine.  

Array design based on the philosophy of Fangjiomics 
In the millennia-old history of Chinese medicine, a certain 
type of combination therapy with an array-designed mode, 
which was termed “Fangji”, was the essential therapeutic 
method for diverse diseases.  Thus far, more than tens of 
thousands of Fangjis have been recorded in different books[24].  
Fangjiomics is the large-scale study of combination therapies, 
including their combination modes, the drug-drug interactions 
involved in the combinations, the mechanism of the pharma-
cological actions of the combinations, etc.  As discussed in our 
previous paper, the philosophy of Fangjiomics is distinct from 
conventional approaches in the aspects of theory, hypothesis, 
objective, and subject pharmacology, as well as in the pro-
cess[24].  This therapeutic strategy targets multi-scale biological 
network levels[25], including the molecular, cellular, tissue, and 
organ levels, which are related to clinical outcomes as profiled 
effects based on a holistic theory integrated with reduction-
ism.  This strategy supports patient-centered care based on 
the integration of experimental and clinical pharmacological 
mechanisms, which would treat patients with abnormal condi-
tions more precisely and more effectively.  

Based on the holistic theory integrated with reduction-
ism, Fangjiomics systematically develops multiple modes of 
array-designed combination therapies.  Array design is the 
application of multiple agents that regulate multiple targets, 
pathways, or networks in a certain sequence according to their 
pharmacodynamic effects on certain physiological or patho-
physiological states.  Each array should consist of multiple 
compatible ingredients with polypharmacologically profiled 
effects.  Different contributing agents play diverse pharma-
cological roles in the combination therapy.  For example, 

Realgar-Indigo naturalis formula has been identified to be very 
effective in treating acute promyelocytic leukemia (APL) in 
clinical practice[26].  This formula contains multiple ingredients, 
and the main ingredients include tetraarsenic tetrasulfide (A), 
indirubin (I), and tanshinone IIA (T).  These three ingredients, 
by playing different pharmacological roles in array design 
(mainly as a vertical array, which is discussed below), together 
exert a synergistic effect for the treatment of APL.  The pro-
myelocytic leukemia (PML)-retinoic acid receptor-α (RAR-α) 
oncoprotein is the causative oncoprotein of APL.  Compound 
A, which is considered to be the principal component in this 
formula, directly affects this oncoprotein and induces APL 
cell differentiation, thus playing the primary pharmacological 
effect of the combination.  Compound I and T synergistically 
enhance A-triggered relocalization and the ubiquitination of 
the oncoprotein, thus vertically affecting and leading to the 
degradation of PML-RAR-α.  Compound I and T can also 
significantly up-regulate the expression level of the transmem-
brane protein AQP9, the key transporter for uptaking arsenic 
and determining cellular arsenic sensitivity, to facilitate the 
delivery of the compound A to APL cells, thus enhancing the 
formula’s treatment effect.  Therefore, compound I and T func-
tion as adjuvant ingredients in this combination.  
 
Diverse array-designed modes of combination therapies 
in Fangjiomics
Combination therapy is a promising strategy for combating 
complex disorders due to its improved efficacy and reduced 
side effects.  However, the exhaustive screening of rational 
drug combinations is impractical given all of the possible com-
binations between drugs.  Based on an array-designed mode, 
Fangjiomics-based combination therapy could effectively 
use rational drug combinations to treat complex diseases at 
diverse scales of biological organization.  We will discuss 6 
common array-designed modes of combination therapies in 
Fangjiomics below.

Hitting on multi-targets in a “magic shotgun” array 
In Fangjiomics-based combination therapy, a "magic shotgun" 
array aims to sift through the known universe of chemicals 
to find the few special molecules that can broadly disrupt an 
entire disease process[27].  Drug combinations in a “magic shot-
gun” array will selectively hit multiple targets to effectively 
treat malaria[28], schizophrenia[29], cancer[30], epilepsy[31], and 
central nervous system disorders[32], rather than previous seek-
ing to find the “magic bullet”, chemicals which specifically 
attack one gene or protein involved in one particular part of a 
disease process[27].  Combining kinase focused chemistry, kin-
ome-wide profiling and Drosophila genetics, a “magic shot-
gun” array identified the on-targets RET, RAF, SRC, S6K, and 
anti-target mTOR for the treatment of cancer, and this combi-
nation provided high efficacy and few adverse reactions, with 
a maximal therapeutic index[30] (Figure 1A).  A comparative 
analysis of stroke-related gene expression profiles among jas-
minoidin monotherapy, ursodeoxycholic acid monotherapy, 
and their combination demonstrated that the combination 
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Figure 1.  Diverse array-designed modes of hitting on multiple targets or pathways in Fangjiomics.  Fangjiomics-based combination therapy arranges the 
contributing agents in “magic shotguns” array (A) to hit on the multi-targets level.  Vertical array (B) is usually applied to hit on different sites or stages of 
the same pathway.   Besides, several combination therapies act on different targets in related pathways (C) or parallel pathways (D) in horizontal array 
to improve efficacy and reduce side effects.
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treatment exerted a synergistic effect in the “magic shotgun” 
array by up-regulating the expression of the genes Hspa1a, 
Fgf12, Rara, Map3k4, and down-regulating the PXN gene[33].  
Moreover, some computational algorithms have been used to 
identify effective drug targets and potential optimal combina-
tions of interventions that can best reverse a disease state to 
a normal state, including a robust computational algorithm 
for finding multiple target optimal intervention (MTOI) solu-
tions[34] and a quantitative composition-activity relationship 
(QCAR) model for multi-component drug design[35].  

Hitting the same pathway in a vertical array
Drug combinations in a vertical array are defined as combina-
tions that simultaneously or sequentially act on different sites 
or stages of the same pathway to induce synergistic and addi-
tive interactions[24].  The point mutations (Val600Glu) in the 
serine/threonine-protein kinase BRAF [BRAF(V600E)] activate 
RAF-MEK-ERK signaling for tumor cell growth in malignant 
melanomas[36].  The vertical pathway combination of BRAF 
(GSK2118436) and MEK (GSK1120212) inhibitors, which has 
a sound rational basis in seeking to overcome several of the 
identified mechanisms of resistance to BRAF inhibitors, as well 
as blocking the undesirable paradoxical activation of CRAF 
in healthy cells (through RAF dimer formation) following 
treatment with BRAF inhibitors[37, 38], has resulted in additive 
activity against melanoma with surprisingly manageable skin 
toxicity and encouraging efficacy[39] (Figure 1B).  

Hitting different targets of related pathways or parallel pathways 
in a horizontal array
Horizontal array combination therapies refer to combinations 
that hit different targets in related pathways or parallel path-
ways to improve efficacy and reduce side effects[24].  

Hitting different targets of related pathways: one example of 
the rational, horizontal, combinatorial hitting different targets 
of related pathways that regulate the same process is the com-
bination of aplidin and cytarabine with a synergic effect.  Both 
drugs complement each other’s activity by inducing apoptosis 
via two major apoptotic cascades.  Aplidin activates and clus-
ters death receptors through the Fas ligand[40], which subse-
quently activates the receptor-mediated extrinsic cascade[41], 
while cytarabine increases cellular stress and reduces survival 
protein MCl1, which subsequently activates CAsPs and apop-
tosis[42] and triggers the mitochondrial intrinsic cascade[41] 
(Figure 1C).

Hitting parallel pathways
A synergy screen with 14 targeted drugs in a cell line derived 
from a DDLS patient with the 12q13–15 amplicon was per-
formed to identify effective, synergistic drug combinations 
for DDLS through a hybrid experimental and computational 
approach for deriving context-specific signaling models.  The 
synergistic effect of the combination of CDK4 and IGF1R 
inhibitors was identified by inhibiting two seemingly parallel 
and non-overlapping pathways that control cell viability (the 
AKT/mTOR pathway by IGF1R, and the retinoblastoma (RB) 

pathway by CDK4)[43] (Figure 1D).  By optimizing the fusion of 
more pathways through compounds with a greater contribu-
tion to the combination therapy, the combination of jasminoi-
din and ursodeoxycholic acid was found to exert a synergistic 
effect in the horizontal array[44].  Moreover, some mathematical 
models have been introduced into the analysis of the mecha-
nism of drug combinations in the horizontal array, including 
an outcome-dependent global similarity analysis (GSI)[45], 
additive index[46], and multi-objective evolutionary algo-
rithm[47].

Hitting network hubs in a focusing array
Combination therapy in a focusing array, also termed a “central 
hit” strategy, aims to damage network integrity by hitting net-
work hubs in a selective manner.  It is useful to target diseases 
characterized as flexible networks (eg, cancer, infectious dis-
ease)[48].  Towards this end, it would be helpful to obtain the 
detailed information of the topological structural differences 
between the host and parasite or the healthy and malignant 
networks.  The identification of the hubs or central nodes/
edges of various networks is an essential procedure in this 
strategy (Figure 2A).  For instance, essential enzymes of meta-
bolic networks are usually considered as drug targets in infec-
tious diseases[49, 50] and in cancer[51].  When we design drug 
combinations against a network in an infectious organism or 
against cancer cells, many parameters such as the network 
topology, metabolic fluxes, conditions of the afflicted organ-
isms, external environment interactions, stressor effects, etc 
should be taken into consideration.  In the directed, hierarchi-
cal networks, the central hit strategy should attack the nodes 
at the top of the hierarchy.  The high position nodes in hier-
archical networks can be identified by the random upstream 
regions[52].  Recent studies on the connections of essential reac-
tions and on super-essential reactions indicate that essential 
reactions form a core of metabolic networks and that super-
essential reactions are needed in all organisms[53, 54].  The 
cancer-specific targeting of signaling networks is mostly used 
in current anticancer strategies.  The key aims of anti-cancer 
strategies include the identification of targets and the efficient 
combination of drugs to overcome the robustness of cancer-
specific cellular networks with the least toxicity and potential 
resistance development[55–57].  Cytostatic drug targets have also 
been identified through the analysis of cancer-specific human 
metabolic networks[58].  A large-scale RNAi screen identified 
feedback activation of EGFR as a cause of colon cancer cell 
resistance to BRAF inhibition, suggesting the use of a syner-
gistic combination of BRAF and EGFR inhibitors in BRAF-
mutant, EGFR-expressing colon tumors[59].

Rewiring networks from a diseased state to healthy state in a 
siege array 
In contrast to a focusing array, the combination in a “siege 
array” aims to shift a dysfunctional network to its normal 
state, which is also termed a “network influence” approach[48].  
This mode is often applied in rewiring more rigid systems (eg, 
type 2 diabetes mellitus).  Rigid systems are “well-defined” 
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Figure 2.  Network array-based modes in Fangjiomics.  The arranged profiles of the contributing combination agents are focusing array (A) or siege array 
(B) in targeted network.  Network array-based modes in Fangjiomics.  The arranged profiles of the contributing combination agents are focusing array (A) 
or siege array (B) in targeted network.  Dynamic array (C) represents hitting targets that alter with time at the network level.
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and transmit (but not dissipate) perturbations well.  Thus, 
the optimal modification of rigid systems may be achieved 
by an indirect, “under-defined” attack of the neighbors of 
their central nodes or rigid clusters (Figure 2B).  To this end, 
an understanding of the network dynamics both in healthy 
and diseased states is required, as well as knowledge of the 
existing drug targets of the particular disease.  The network 
influence strategy is much less developed than the central 
hit strategy.  With the network influence strategy, breaking 
down the system’s robustness to push the system from one 
that favors the diseased state to one that favors a healthy state 
is a difficult task.  The preferred targets of the network influ-
ence strategy are considered as the connected nodes located in 
vulnerable points of disease-related networks such as in inter-
modular, bridging positions[60–65].  In signaling networks, the 
strategy of influencing preferred nodes in the network inhibits 
certain outputs of the signaling network, while leaving oth-
ers intact to redirect the signal flow in the network[66–68].  The 
treatment strategy in a “siege array” often targets network 
segments (eg, disease-modules[69]).  The targeting the central 
nodes/edges of systems with low plasticity may easily “over-
saturate” the system, leading to a change in the system that 
becomes too substantial to be selective and causes side effects 
and toxicity.  Therefore, the “siege array” often requires an 
indirect approach [eg, the neighbors of the real target are tar-
geted (allo-network drugs) or multiple targets are targeted 
‘mildly’ (multi-target drugs)], and their indirect and/or 
superposed effects result in the reconfiguration of a diseased 
network state back into a normal one.  A strong synergy was 
identified between danusertib and bosutinib that exclusively 
affected CML cells harboring BCR-ABLT315I.  Both compounds 
targeted MAPK pathways, downstream of BCR-ABL, resulting 
in the impaired activity of c-Myc.  Thus, this drug combination 
synergistically targeted the dependency of BCR-ABLT315I CML 
cells on c-Myc through nonobvious off-targets[70].

Adapting temporal and spatial variations of a disease network in 
a dynamic array
Growing evidence has indicated that a dynamic nature is a 
critical property of biological networks.  In line with this prop-
erty of disease networks, drug combinations in a dynamic 
array should be applied by dynamically altering the admin-
istration of ingredients in combinations to reverse a complex 
disease network (Figure 2C).  Two common approaches 
are Boolean dynamics[71, 72], in which each node can exist in 
two states (inactive or active), or using concentrations of the 
nodes with dynamic models based on ordinary differential 
equations[71, 73].  The latter strategy is most commonly used 
in pharmacokinetic-pharmacodynamic models.  Following 
network modeling, Yaffe and colleagues managed to decode 
the signaling network dynamics that drive resistance to DNA-
damaging chemotherapy.  This information was used to sen-
sitize otherwise resistant triple-negative breast cancer cells to 
conventional DNA-damaging chemotherapy by administering 
doxorubicin (Adriamycin, Doxil) and erlotinib (Tarceva) in an 
order- and time-dependent fashion[74].  Moreover, the appli-

cation of evolutionary models in drug-resistant non-small 
cell lung cancer (NSCLC), along with cell-based studies, has 
revealed that sequential therapy using cytotoxic agents with 
either erlotinib (Tarceva) or gefitinib (Iressa) was more effec-
tive than monotherapy or concurrent combinatorial dosing[75].

Conclusions and perspectives
Through array-designed multi-scale level interventions, 
Fangjiomics-based combination therapy appears to be a prom-
ising treatment strategy for complex diseases.  However, 
much work remains to be undertaken, and we must overcome 
certain obstacles.  
 
Developing a phenotype-driven strategy “from bench to bedside”
A major challenge in optimizing combination therapy is to 
translate experimental and computational modeling into 
clinical practice.  Although Fangjiomics-based combination 
therapy is based on the integration of clinical knowledge 
with multi-scale omics data, the translational approaches are 
still far from mature.  One recommendation is to develop a 
phenotype-driven strategy based on the clinical outcomes 
treated by combination therapy.  This strategy should eluci-
date the relationship between the clinical phenome (symptoms 
and signs) and integrate information from multi-scale omics 
data such as metabolomics, proteomics, transcriptomics, and 
genomics, which would yield more information on a biologi-
cal process than the analysis of a single type of data[76].  How-
ever, the gathering of clinical phenotype data likely presents a 
greater challenge than high-throughput sequencing projects, 
due to the range of phenotype measurements and the com-
plexity of the data[77].  The use of ontologies was proposed as 
an approach to semantic standardization[78] for semantically 
categorizing phenodeviance[79] such as Semantic Web tech-
nologies[80], Systems Biology Markup Language[81], and Web 
Ontology Language (OWL)[82, 83].  Moreover, in pharmacologi-
cal research, PhenomeDrug[84] is another approach for predict-
ing novel associations between drugs and diseases based on 
the PhenomeNET[85] method for comparing phenotypes across 
species.  

Quantitative multi-scale pharmacodynamic modeling techniques 
to predict the efficacy of combination therapies
Another challenge is the development of a mechanistic under-
standing of how multi-scale omics networks control variability 
in combination therapy responses at the organismal level.  An 
enhanced pharmacodynamic model coupling detailed models 
of cellular regulatory networks with measurable pharmaco-
kinetic and pharmacodynamic parameters has been used to 
to quantitatively predict the response of anti-EGFR therapy 
in decreasing tumor size[86].  The characterization of the topol-
ogy of cellular regulatory networks and an understanding of 
the dynamic capability of the network topology can help to 
explain both the therapeutic and adverse effects of combina-
tion therapy[87].  For the calcium-sensing receptor and PTH, the 
identification of the molecular components that participate in 
the negative feedback loop and the means through which they 



686

www.nature.com/aps
Liu J et al

Acta Pharmacologica Sinica

npg

can be modulated can help us to design better antagonists of 
the calcium-sensing receptor or develop polypharmacology 
for the treatment of osteoporosis[88].  In Fangjiomics-based 
therapy, we require better quantitative models of pharmaco-
logical mechanism at all scales, which should use available 
omics and pharmacodynamics data to correctly predict the 
effects of known omics changes on the response rates to com-
bination therapy.  Thus, Quantitative and Systems Pharmacol-
ogy (QSP) will be introduced to identify and validate target 
(and druggable) networks, uncover drug-response biomark-
ers, design improved drug combinations, select appropriate 
doses and dosage regimens, and identify those patients most 
likely to respond to novel therapeutic combinations[89].

Modularizing networks to deconstruct the relationship between 
complex diseases and combination therapy
Organized modularity is ubiquitous in various network sys-
tems[90] such as metabolic[91], transcriptional regulation[92], and 
protein-protein interaction (PPI)[93] networks.  The application 
of computational and mathematical modeling approaches to 
achieving combinatorial selectivity through the use of drug 
combinations requires drugs with adequately modular struc-
tures.  Hence, the identification of functional modules from 
multi-scale omics networks is becoming extremely important 
and necessary.  The term "module" here refers to the mini-
mal functional unit in a biological or pharmacological profile 
to reveal the features of organisms or drugs, as well as their 
mutual interactions[90, 94].  Using a module map, different 
tumors could be differentiated through the activation of mod-
ules specific to particular types of tumors[95].  Because highly 
connected substrates may represent the critical connections 
between modules that control distinct metabolic functions[96], 
a modular approach may provide insights into possible novel 
mechanisms of action for a wide range of drugs and may also 
identify potential new targets for combination therapy[97].

Ultimately, based on the integration of multi-scale omics 
and quantitative modularized modeling of the relation-
ship between complex diseases and combination therapy, 
Fangjiomics-based combination therapies are likely to pave 
the way to achieving precision medicine, which would ensure 
that patients receive the right treatment at the right dose at the 
right time, with minimum ill consequences and maximum effi-
cacy.  
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