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Ischemic insults on neurons trigger excessive, pathological glutamate release that causes Ca2+ overload resulting in neuronal cell 
death (excitotoxicity).  The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a major mediator of physiological excit-
atory glutamate signals underlying neuronal plasticity and learning.  Glutamate stimuli trigger autophosphorylation of CaMKII at 
T286, a process that makes the kinase “autonomous” (partially active independent from Ca2+ stimulation) and that is required for 
forms of synaptic plasticity.  Recent studies suggested autonomous CaMKII activity also as potential drug target for post-insult neu-
roprotection, both after glutamate insults in neuronal cultures and after focal cerebral ischemia in vivo.  However, CaMKII and other 
members of the CaM kinase family have been implicated in regulation of both neuronal death and survival.  Here, we discuss past 
findings and possible mechanisms of CaM kinase functions in excitotoxicity and cerebral ischemia, with a focus on CaMKII and its 
regulation.
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Introduction
Global cerebral ischemia is caused by a general loss of oxygen 
supply to the brain (during drowning, suffocation, or cardiac 
arrest).  While the increased availability of automated external 
defibrillators has dramatically increased the survival rate after 
cardiac arrest, survivors may suffer from neuronal damage 
caused by the oxygen deficit in the brain.  Despite increased 
demand for a neuroprotective treatment of global cerebral 
ischemia, no effective therapy has been developed to date.  
Focal cerebral ischemia (stroke) also involves decreased oxy-
gen supply to parts of the brain.  However, focal cerebral isch-
emia is caused by regional lack of blood supply after clotting 
or hemorrhage of blood vessels in the brain.  The focal core 
area of the stroke is generally considered to be beyond rescue, 
however, neurons in the surrounding penumbra (where sec-
ondary cell loss occurs) are potential targets for therapeutic 
intervention[1] (Figure 1).  Currently, the only available FDA 
approved pharmacological treatment is haemolytic therapy 
with tissue plasminogen activator (tPA).  However, tPA is 
contra-indicated in hemorrhagic stroke, and by the time most 

patients receive diagnostic evaluation, tPA is no longer effec-
tive (and may even do more harm than good)[2–4].  Thus, less 
than 2% of stroke patients actually receive tPA[5], leaving a 
significant void in therapies that are more universally appli-
cable for stroke treatment.  Two independent studies recently 
implicated CaMKII as a promising drug target for post-insult 
neuroprotection[6, 7].  Here, we discuss the CaM kinase family 
and its possible involvement in the regulation of neuronal cell 
death, with a focus on CaMKII and its regulation.  
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Figure 1.  Ischemic core and penumbra after stroke.  While neurons in the 
ischemic core are considered beyond rescue, neurons in the penumbra 
are potential targets for therapeutic intervention.
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Glutamate excitotoxicity causes neuronal cell death 
after cerebral ischemia
Glutamate is the major excitatory neurotransmitter in the 
mammalian brain.  However, excessive glutamate also leads 
to neuronal cell death via “glutamate excitotoxicity”, a process 
that involves Ca2+ overload[8] and that was first demonstrated 
in retinal neurons[9], and subsequently in the brain[10, 11].  Isch-
emic conditions trigger anoxic depolarization of neurons, 
which in turn triggers massive release of glutamate[1, 12, 13].  It 
is thought that the excitotoxic effect of such glutamate over-
stimulation causes much of the neuronal cell death seen 
following cerebral ischemia[13–16].  Additionally, excitotoxic 
glutamate signaling is thought to contribute to neuronal cell 
death after traumatic brain injury and in neurodegenerative 
diseases[16–18].  Excitotoxicity can cause neuronal death with 
apoptotic or necrotic appearance[19, 20], but both may involve 
similar signaling pathways despite a different morphological 
end state[14, 21, 22].  Overstimulation of most glutamate recep-
tors can cause neuronal cell death, but the Ca2+ conducting 
NMDA-type glutamate receptors appear to be the most sen-
sitive “death receptors”[23–26]: Even relatively brief (~5 min) 
application of glutamate or NMDA to cultured neurons can 
trigger signaling events that cause significant cell death within 
24 h.  Consequently, extensive efforts were made to develop 
NMDA-receptor inhibitors into stroke therapies, unfortunately 
without success[27, 28].  Alternative strategies include targeting 
signaling molecules downstream of the NMDA-receptor, such 
as CaMKII, which has been shown to mediate key effects of 
physiological NMDA-receptor stimulation in neuronal plastic-
ity and learning and memory[29–31].  

CaMKII and the CaM kinase family
CaM kinases (Figure 2) are a large family of Ser/Thr protein 
kinases that include kinases with broad substrate spectrum (ie 
multifunctional kinases such as CaMKI, CaMKII, and CaM-
KIV) and with high substrate selectivity [ie dedicated kinases 
such as myosin light chain kinases (MLCKs) and phosphory-
lase kinase (PhK)].  As the name implies, CaM kinases are gen-

erally activated by binding of Ca2+/CaM to their regulatory 
region.  However, several CaM kinases (including DAPK3 
and AMPKs) lack a CaM-binding regulatory region, but are 
included in the CaM kinase family based on high homology of 
their core kinase domain.  Regulation by Ca2+/CaM does not 
automatically classify a kinase in the CaM kinase family.  For 
instance, CaMKIII (now termed eEF2 kinase), which is also 
activated by Ca2+/CaM, is not closely related to the other CaM 
kinases[32] and is instead grouped with the family of atypical 
protein kinases[33].  Like many other kinases (including PKA, 
PKB/Akt, and PKC), several CaM kinase family members 
require phosphorylation within the activation loop of their 
core kinase domain for full activity (including CaMKI T177, 
CaMKIV T196, and AMPKs T172).  Interestingly, an upstream 
kinase that phosphorylates the activation loop of CaMKI, 
CaMKIV, and AMPK (as well as PKB/Akt, which is not a 
CaM kinase) is CaMKK, which is itself a Ca2+/CaM-stimulated 
kinase[34].  However, other CaM kinases (including CaMKII 
and DAPKs) do not even have a phosphorylatable residue at 
the homologous activation loop position, even though their 
activity can be regulated by other phosphorylation events 
outside of their core kinase domains (such as T286 of CaMKII, 
which makes the kinase partially Ca2+/CaM-independent[35–38], 
and S735 of DAPK1, which further enhances Ca2+/CaM stimu-
lated activity[39]).  

Functionally, DAPKs (death associated protein kinases) are 
associated with regulation of cell death[40], MLCKs (myosin 
light chain kinases) regulate smooth muscle contraction[41], 
and AMPKs (AMP activated kinases) are regulators of 
energy metabolism[42].  CaMKI, CaMKII, and CaMKIV have 
been implicated in various neuronal functions, including 
plasticity[30, 31, 43].  CaMKII comprises a family of closely related 
kinases, with four isoforms (α, β, γ, and δ) encoded by dif-
ferent genes, and alternative splicing gives rise to additional 
diversity[31].  At least one CaMKII isoform was found to be 
expressed in every cell type examined, with CaMKIIγ and 
CaMKIIδ being the most ubiquitous isoforms[44, 45].  CaMKIIα 
is almost exclusively expressed in brain, where it is also 
extremely abundant, making up more than 1% of total protein 
in some brain regions, such as the hippocampus[46].  Notably, 
the hippocampus, specifically its CA1 region, is also the brain 
area that is most sensitive to damage following global cerebral 
ischemia[47].  The hippocampus is important in memory forma-
tion, and the CaMKIIα knockout mice were the first knockout 
mice described to show impaired neuronal plasticity and 
learning[48, 49].

CaMKII structure and regulation
The relationship between CaMKII structure and regulation has 
been reviewed previously in detail[31].  However, there have 
since been several significant advances, especially regard-
ing CaMKII structure[50–53] (Figure 3).  CaMKII forms 12meric 
holoenzymes, with the C-terminal association domains form-
ing a central hub and the N-terminal kinase domains radiat-
ing outwards like spokes or petals (Figure 3A).  Between the 
core kinase domain and the association domain, the CaMKII 

Figure 2.  The CaM kinase family tree[33], with a limited number of example 
CaM kinases marked.
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subunits contain a Ca2+/CaM-binding autoregulatory region 
followed by a variable region that is subject to extensive 
alternative splicing.  The largest described splice variant is 
CaMKII βM (72 kDa)[54]; the dominant isoforms in brain are α 
(50 kDa) and β (60 kDa)[55, 56].  Holoenzymes can be homomeric 
or heteromeric (ie formed by subunits of the same or different 
isoforms)[54, 56–60], with a molecular weight of ~600–750 kDa and 
a diameter of ~20 nm[38, 50–52, 61, 62].  

The α-helical autoregulatory region is responsible for hold-
ing CaMKII in an inactive state under basal conditions (Figure 
3B).  Its N-terminal part surrounding T286 interacts with the 
core kinase domain at a region termed the T286-binding site 
(T-site)[51, 63, 64].  When the autoregulatory region is bound to 
the T-site, access to the adjacent substrate binding S-site is 
blocked, thus preventing CaMKII activity (Figure 3B).  Each 
kinase subunit within a holoenzyme is activated separately 
by direct binding of Ca2+/CaM to the autoregulatory region 
(“stimulated activity”).  This Ca2+/CaM-binding displaces 
the autoregulatory region from the T-site, allowing the kinase 
to make other protein-protein interactions via the T-site (see 
below).  Importantly, displacement of the autoregulatory 
region also allows access to the S-site, thereby activating the 
kinase.  Additionally, releasing T286 from the T-site makes 
T286 accessible for auto-phosphorylation by neighboring sub-
units within the holoenzyme, provided these neighboring sub-
units are also activated with an exposed S-site[65, 66].  This auto-
phosphorylation of T286 prevents complete re-association 
of the autoregulatory region with the T- and S-sites, leaving 
CaMKII partially active even after dissociation of Ca2+/CaM 
(“autonomous activity”)[35–37,67].  This autonomous activity 
has been described as a molecular memory mechanism and 

is indeed important for synaptic plasticity and learning[67, 68].  
More recently, autonomous CaMKII activity has also been 
identified as a drug target for post-insult neuroprotection[6, 7].  

An additional regulatory auto-phosphorylation at T305/306 
can occur as an intra-subunit reaction and prevents subse-
quent Ca2+/CaM binding[69–72] (Figure 3B).  Vice versa, Ca2+/
CaM binding prevents this inhibitory auto-phosphoryla-
tion.  Thus, efficient T305/306 auto-phosphorylation occurs 
only after generation of autonomous activity by T286 auto-
phosphorylation and subsequent Ca2+/CaM dissociation.  
Such a triple-phosphorylated CaMKII would be locked in a 
partially active state that cannot be further stimulated[67], but 
it would be completely inactivated only after selective T286 
dephosphorylation.  

Glutamate-induced translocation of CaMKII 
Ca2+-influx through NMDA-type glutamate receptors stimu-
lates CaMKII activity and T286 auto-phosphorylation.  Both 
are required for induction of long-term potentiation of syn-
aptic strength[68, 73, 74], a form of synaptic plasticity underly-
ing learning and memory[29, 30, 75].  Additionally, glutamate-
induced Ca2+-influx causes two forms of CaMKII transloca-
tion: (i) to post-synaptic sites[64, 76–78], and (ii) to extra-synaptic 
clusters[79–82].  Synaptic translocation occurs after physiological 
glutamate stimuli and is involved in synaptic plasticity[83, 84].  
Several synaptic proteins have been described as binding 
partners for CaMKII, but the NMDA receptor subunit GluN2B 
(formerly known as NR2B) appears to be most important for 
CaMKII translocation to the synapse[64, 78, 85–89].  Extra-synaptic 
clustering has been described after pathological glutamate 
stimuli and ischemic conditions[79–82], and is likely mediated by 

Figure 3.  CaMKII structure[50, 51] and regulation.  (A) 
CaMKII forms multimeric holoenzymes via C-terminal 
association domains (acqua).  Each kinase domain 
(grey, dark blue) is stimulated separately by Ca2+/
CaM binding, but intersubunit autophosphorylation 
at T286 generates autonomous activity that persists 
even after dissociation of Ca2+/CaM.  (B) In the basal 
state, the regulatory α-helix (ribbon) interacts with the 
T-site (yellow) and prevents access to the substrate 
binding S-site (orange).  Autophosphorylation sites 
(red) generate autonomous activity (T286) or prevent 
CaM binding (T305/306) and affect targeting.  (C) 
The sequence of the regulatory α-helix.  The regions 
contributing to CaM-binding and to auto-inhibition are 
marked.
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self-association of multiple CaMKII holoenzymes into large 
insoluble complexes[79, 90, 91], a process here termed aggregation.  
Both types of translocation require protein-interactions via the 
CaMKII T-site, specifically T-site binding to the GluN2B region 
around S1303[64, 85, 92] or the region around T286 of a CaMKII 
subunit within another holoenzyme[82, 90, 91].  Accordingly, both 
interactions require Ca2+/CaM-binding, in order to make the 
T-site accessible.  Both interactions are also enhanced by nucle-
otide.  However, holoenzyme aggregation in vitro requires 
mimicking ischemic conditions, ie low ATP/ADP ratio and 
low pH.  High ATP concentrations favor T286 auto-phospho-
rylation, which enhances CaMKII binding to GluN2B[64, 85], 
but inhibits CaMKII aggregation (as it inhibits interaction of 
T286 with the T-site)[91].  The molecular basis for requirement 
of a pH below 6.8 for CaMKII aggregation is unclear, but may 
involve protonation of His282, which is located at the hinge 
of the auto-regulatory α-helix (Figure 3B).  CaMKII aggrega-
tion causes a reduction in the degree of activity that can be 
stimulated by Ca2+/CaM[79], an effect also observed in brain 
after ischemia[93–95].  For this reason, it has been speculated that 
CaMKII aggregation may be a neuroprotective mechanism, as 
it would limit aberrant CaMKII activity during disregulated, 
pathological Ca2+ signaling[79].  However, the potential neu-
roprotective functions of CaMKII aggregation have yet to be 
determined.

Inhibitors of CaMKII
The traditional small molecule CaMKII inhibitors KN62 and 
KN93[96, 97] have proved to be very useful tools for studying 
CaMKII functions in cells, as they are membrane penetrating 
and their selectivity for CaMKII is relatively good[96–98].  How-
ever, the KN inhibitors cannot distinguish between CaMKII 
and CaMKIV[99].  Through an unusual affect on the scaffold-
ing protein AKAP79/150[100], KN inhibitors can also inhibit 
PKC action at the synapse[101].  Maybe more importantly, KN 
inhibitors additionally affect voltage gated Ca2+ and K+ chan-
nels[102, 103].  Another limitation is that both KN62 and KN93 
are competitive with CaM and inhibit only stimulated but not 
autonomous CaMKII activity[6, 96, 97].  Peptide inhibitors derived 
from the CaMKII autoregulatory region, such as AC3-I or 
AIP[7, 104, 105], are generally thought to be more selective than 
the KN compounds.  However, they can also inhibit other 
kinases, including PKC, MLCK, and PKD[106–108].  Additionally, 
some studies indicated a relatively low potency (IC50 of ~3 
µmol/L)[109, 110].  

More recently, an alternative was provided by CN21, a 
potent and selective CaMKII inhibitor[111].  CN21 is a 21mer 
peptide derived from the natural CaMKII inhibitory protein 
CaM-KIIN[112].  Peptides and even proteins can be made cell 
penetrating by fusion with sequence motifs such as ant/
penetratin or tat[113–115].  In initial attempts to make CN pep-
tides cell penetrating, ant fusion was used[116, 117].  However, 
it was subsequently shown that the ant/penetratin sequence 
directly binds CaM, an effect further enhanced by fusion with 
CN21[74].  Thus, while fusion of CN to ant added an additional 
CaMKII-inhibitory mechanism, selectivity for CaMKII was 

compromised.  However, alternative fusion of CN21 to tat still 
allowed cell-penetration without the caveat of binding CaM[74].  
The resulting tatCN21 is a potent (IC50 of ~50 nmol/L), selec-
tive, and cell penetrating peptide inhibitor of both stimulated 
and autonomous CaMKII activity[6, 74, 111].  Consistent with pre-
vious reports that tat fusion peptides can cross the blood brain 
barrier[26, 118], tatCN21 inhibited CaMKII functions in brain 
even after systemic application[6, 74].

CaMKII autonomy as a drug target for post-insult neuro
protection
Inhibiting stimulated and autonomous CaMKII activity with 
tatCN21 attenuated neuronal cell death induced by glutamate 
insult in primary cultures as well as in a mouse model of 
stroke (middle cerebral arterial occlusion; MCAO), even when 
administered significantly after the insult[6].  The longest post-
insult time periods tested in this study were 6 h in hippocam-
pal cultures, 1 h in cortical cultures, and 1 h in vivo[6].  A recent 
study independently confirmed post-insult neuroprotection 
by CaMKII inhibition, using both tatCN21 and tatAIP[7].  This 
study found significant neuroprotection in cortical cultures also 
when tatCN21 was administered 2 h after the insult[7].  By con-
trast, the traditional CaMKII inhibitor KN93 was neuroprotec-
tive only when administered during but not after the insult in 
both studies[6, 7].  During an insult, tatCN21, tatAIP, and KN93 
can inhibit CaMKII activation and/or generation of autono-
mous activity.  However, after the insult, tatCN21 and tatAIP 
but not KN93 can inhibit autonomous CaMKII activity that has 
already been generated.  Thus, these findings indicated that 
autonomous CaMKII activity is the relevant drug target for 
post-insult neuroprotection by tatCN21.  Indeed, overexpres-
sion of CaMKII wild-type or the constitutively autonomous 
T286D mutant (which mimics T286 phosphorylation) increased 
glutamate-induced neuronal death significantly more than 
overexpression of the autonomy-incompetent T286A mutant[6].  
Consistent with these recent results[6, 7], neuroprotection by 
CaMKII inhibition had been described previously, although 
only for inhibition during or prior to excitotoxic insults[119–123].  
Protection was seen in cortical cultures[6, 7, 119, 121], hippocampal 
cultures[6, 123] and retinal cells[120, 122].  However, other studies 
indicated an opposite effect, ie that abolishing CaMKII activity 
can promote neuronal cell death[124–128].  Some of these results 
may be explained by different death-inducing stimuli and dif-
ferent culture systems, as cerebellar granule cells and spiral 
ganglion cells depend on depolarization-induced Ca2+ signals 
for survival[126–128].  Additionally, different results using the 
inhibitor KN93 may depend on the balance between death- 
and survival-promoting signals mediated by CaMKII and 
CaMKIV, respectively[125].  Notably, however, genetic knock-
out of CaMKIIα resulted in increased infarct size in a mouse 
model of stroke[124], the opposite effect from the observation 
after acute CaMKII inhibition with tatCN21[6].  This difference 
could be explained by developmental effects caused by the 
absence of CaMKIIα.  Indeed, the CaMKIIα knock-out mice are 
epileptic[129], and hyper-excitability may contribute to higher 
susceptibility to ischemic insults.  Additionally, inhibition of 
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CaMKII and complete removal of CaMKIIα protein may have 
profoundly different effects on glutamate-induced neuronal 
death.  Thus, it will be interesting to compare CaMKII knock 
down by RNAi with CaMKII inhibition in neuronal cultures 
and to compare CaMKIIα knock-out mice with existing knock-
in mice that carry the inactive CaMKIIα K42R mutation[130].  
However, a recent study indicated that long-term (8–24 h) 
inhibition of CaMKII activity (without loss of CaMKII protein) 
is sufficient to increase vulnerability to subsequent excitotoxic 
insults[7], even though acute CaMKII inhibition during or after 
the insults reduced neuronal cell death (Table 1)[6, 7].  

Other CaM kinases in neuronal death and survival
CaMKII is not the only CaM kinase family member impli-
cated in the regulation of neuronal survival and cell death.  
For example, CaMKIV activity has been described to be neu-
roprotective in multiple systems, likely by its phosphoryla-
tion and activation of the transcription factor CREB[127, 131–133].  
CaMKI may have a similar effect, as it can activate Mek/Erk, 
which, in turn, also activates CREB[134].  CaMKK activity is 
also neuroprotective, as its inhibition by STO-609[135] increases 
neuronal cell death[6].  CaMKK is an upstream activator of 
at least two survival kinases, CaMKIV (see above) and Akt/
PKB (which is not a member of the CaM kinase family)[136].  
However, CaMKK is also an upstream activator of AMPK, a 
non-CaM-binding CaM kinase family member that has been 
implicated in promoting stroke-related neuronal death[137, 138].  
Interestingly, acute treatment with the AMPK activator met-
formin during stroke insults increases neuronal death, while 
previous treatment with metformin before the insult reduces 
cell death[139].  This is similar to the phenomenon of ischemic 
preconditioning, in which previous mild insults can partially 
protect from the effect of subsequent stronger insults[140–143], 
indicating that AMPK may be part of a mechanism for this 
ischemic preconditioning.  Thus, AMPK is also a possible 
target for stroke treatment, however, the effect of therapeuti-
cally relevant post-insult AMPK inhibition has not yet been 
tested[144].

Death-associated protein kinases (DAPKs) are another 
branch of the CaM kinases family associated with the regu-
lation of cell death and survival[40].  DAPK1 has specifically 

been implicated in mediating excitotoxicity and stroke related 
death of neurons[145].  Interestingly, this required an interaction 
between DAPK1 and the NMDA-receptor subunit GluN2B[145] 
at the same site that also interacts with CaMKII[64, 92].  This 
raises the possibility that some of the neuroprotective treat-
ments designed to target DAPK1 or CaMKII may act in part 
through effects on the other kinase; in fact, targeting both 
kinases with the same compound may be desirable for maxi-
mal therapeutic effect.  However, molecular manipulations 
indicated that targeting each kinase separately is also neuro-
protective independent from effects on the other kinase[6, 145].  
Interestingly, manipulations that dissociate the scaffolding 
protein PSD95 from GluN2B also protect neurons from exci-
totoxic and stroke induced death[26, 146].  It has been proposed 
that this neuroprotection is due to the resulting dissociation 
of neuronal nitric oxide synthase (nNOS) from the NMDA-
receptor[26, 146].  It will be interesting to test if this manipulation 
additionally indirectly affects GluN2B interaction with CaM-
KII and/or DAPK1.

What are the downstream targets for CaMKII after exci
totoxic insults?
The mechanisms by which inhibition of autonomous CaMKII 
activity may mediate post-insult neuroprotection are currently 
unclear.  Possible pathways by which CaMKII may participate 
in the regulation of neuronal death and survival are described 
below and summarized in Figure 4.  Potentially death pro-
moting effects of CaMKII activity include increase of AMPA-
receptor single channel conductance by phosphorylating its 
GluR1 subunit at S831[147, 148].  This effect is especially pro-
nounced for GluR1-homomeric AMPA-receptors[149], which are 
(in contrast to GluR2 containing channels) Ca2+-conducting[150, 

151], and could thus further promote death-inducing Ca2+ over-
load.  Indeed, such Ca2+-conducting AMPA-receptors have 
been implicated in ischemic injury[152].  CaMKII could also fur-
ther increase the Ca2+ overload by facilitating or potentiating 
L-type voltage dependent Ca2+ channels (VDCCs) via their α 
or β subunits[153, 154].  Additionally, CaMKII can directly inter-
act with connexin hemichannels[155], which are important in 
neuronal homeostasis and for neuron-glia communication and 
have been implicated in glutamate-induced cell death[156–158].  
CaMKII activity may also contribute to neuronal cell death 
through phosphorylation of acid-sensing ion channels, which 
enhances the ischemia-induced activation of the ion chan-
nel[123].  Recently, CaMKII activity was also shown to be 
required for ischemia-induced shuttling of cytoplasmic poly-
adenylation element binding 4 (CPEB4) into the nucleus[159].  
CPEBs regulate cytoplasmic polyadenylation and translation 
in neurons[160, 161], and some cross-talk between CPEB1 and 
CaMKII signaling has been described[162, 163].  CPEB4 knock 
down induces neuronal death, which can be rescued by re-
expression of CPEB4 wild type, but not to the same extent 
by its nuclear export-incompetent mutant[159].  Thus, nuclear 
retention of CPEB4 by CaMKII activity may contribute to isch-
emia-induced neuronal death.  Another protein that induces 
neuronal death upon nuclear shuttling is apoptosis inducing 

Table 1.  Post-insult neuroprotection by CaMKII inhibitors[6, 7].  Tested were 
glutamate insults in hippocampal and/or cortical cultures, and a MCAO 
stroke model in mouse.  (Stim, stimulated; Aut, autonomous).    

	                       CaMKII activity                     Neuroprotection
  
Inhibitor

                              blocked	                  when applied	
                                      

Stim              Aut
	    During          After         After 

                                                                            insult	       insult       stroke
 
	 KN93	 x	 –	 x	 –	 ?
	 tatCN21	 x	 x	 x	 x	 x
	 tatAIP	 x	 x	 x	 x	 ?
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factor (AIF)[164].  However, involvement of CaMKII in nuclear 
shuttling of AIF has not yet been tested.

On the other hand, several downstream effects of CaMKII 
activity could instead promote neuronal survival.  Maybe 
most prominently, CaMKII can phosphorylate and inhibit 
nNOS[165–168], thereby reducing production of nitric oxide, 
which is neuro-toxic[14, 169–172].  CaMKII can also regulate several 
ion channels in a way that may afford neuroprotection from 
excitotoxic insults: It promotes desensitization NMDA-recep-
tors[173], and it enhances surface expression of the inhibitory 
GABAA-receptors[174, 175].  Additionally, CaMKII can activate 
pro-survival proteins such as Erk[117, 176] and CREB[177], inhibit 
death-promoting proteins such GSK-3[178] and Bad[127].  CaMKII 
can also promote neuronal survival by inhibiting HDAC5[126], 
a CaMKII substrate that inhibits the pro-survival transcription 
factor MEF[179].  These possible mechanisms may explain why 
the effect of CaMKII inhibition on cell survival can depend 
on the cell type and/or the death-inducing stimulus.  Maybe 
more importantly, it may also explain why prolonged reduc-
tion of CaMKII activity increases vulnerability to subsequent 
excitotoxic insults[7, 124].  However, there is ample evidence 
that acute CaMKII inhibition protects hippocampal, cortical, 
and retinal neurons from glutamate excitotoxicity[6, 7, 119–123], 
consistent with the neuroprotection seen in a mouse model of 
stroke[6].

CaMKII regulation of apoptotic cell death: lessons from 
non-neuronal systems?
Apoptosis is a common mechanism of regulated cell death that 
involves caspase activation, nuclear condensation, and DNA 
fragmentation[180–183].  Ca2+ signaling and CaMKII have been 
linked to the regulation of apoptosis also in non-neuronal sys-
tems.  However, as for the neuronal CaMKII targets discussed 
above, some of these links to apoptosis can promote cell death 
while others promote survival.  CaMKII has been shown to 
be involved in mediating apoptosis induced by TNFα and 

UV irradiation[184] microcystein (phosphatase inhibitor)[185, 186], 
GW7845 (PPARγ agonist) [187],  ER stress[188],  TRAIL [189], 
and -in cardiac myocytes- by isoproterenol (β adrenergic 
agonist)[190, 191], ouabain (Na+/K+-ATPase inhibitor)[192], oxi-
dative stress (induced by H2O2 or angiotensin II)[193–195], and 
cardiac ischemia[196–198].  In these cases, CaMKII inhibition 
attenuated apoptotic death.  However, CaMKII inhibition 
has also been described to enhance apoptosis, indicating that 
CaMKII can also suppress apoptosis in other systems[199–204].  
Anti-apoptotic CaMKII mechanisms included inhibition of 
caspase 2[199], enhancing expression of Bcl-xL[203], and promot-
ing Akt-mediated inhibition of Bad[204].  Interestingly, CaMKII-
mediated activation of Akt has been linked to both pro-[189] and 
anti-apoptotic[200, 201, 204] functions.  

In the heart, CaMKII contributes to cell death in response 
to a variety of insults, and CaMKII inhibition consistently 
promoted cell survival[205] (see above).  However, even in the 
heart, the situation is more complicated: While cytoplasmic 
CaMKII isoforms were consistently found to promote cell 
death, nuclear isoforms (ie CaMKII δB)[206] may instead pro-
mote survival[194, 207].  

Clearly, the mechanisms by which CaMKII can regulate cell 
viability are complex and in need of further elucidation.  How-
ever, the dual role for CaMKII in mediating both cell survival 
and death may not be that surprising after all, given that its 
principal activator, Ca2+, is already well established to mediate 
both[208, 209].  Even Ca2+ signaling mediated by NMDA receptors 
can promote not only death but also survival[210, 211].  Gener-
ally, CaMKII appears likely to have pro-survival function in 
systems and situations in which Ca2+ is required for maintain-
ing cell viability (such as activity-mediated neuronal survival).  
By contrast, in situations where Ca2+ acts instead as a trigger 
of death signaling, CaMKII is likely to be involved as a major 
mediator of cell death (such as in cerebral ischemia and exito-
toxicity).  

Figure 4.  CaMKII downstream targets that may be 
involved in regulation of neuronal viability.  CaMKII 
signaling may promote excitotoxic cell death (red) 
or neuronal survival (green).  Activation (arrow) or 
inhibition (bar) of the downstream targets is indicated.  
Some but not all of these downstream effects are 
mediated by direct phosphorylation of the target.
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Concluding remarks and therapeutic potential
Recent results implicated that autonomous activity of CaMKII, 
induced by T286 auto-phosphorylation, provides a promis-
ing drug target for post-insult neuroprotection after cerebral 
ischemia and possibly other conditions involving glutamate 
excitotoxicity[6,7].  In the future, therapy development may 
include identification of selective small-molecule inhibitors 
of autonomous CaMKII.  However, the peptide inhibitor 
tatCN21 itself also holds promise, as it was effective even after 
systemic delivery in an animal model[6, 74].  The toxicology 
for tatCN21 is still lacking, but no immediately obvious toxic 
effects were observed in mice.  TatCN21 did interfere with 
learning in mice, which could be a potential contraindication 
for chronic treatment in humans[74].  However, for acute treat-
ment after stroke, a temporary learning impairment would be 
more than acceptable, especially since tatCN21 did not inter-
fere with memory storage or retrieval[74], and is thus unlikely 
to induce retrograde amnesia.  Potency of tatCN21 is very rea-
sonable, with an IC50 of ~50 nmol/L[74], and further improve-
ments of potency may be possible.  However, further studies 
are needed in order to elucidate the downstream mechanisms 
linking CaMKII to the neuronal cell death that is induced by 
ischemic conditions.  Additionally, the window of therapeutic 
opportunity (at least 1 h in a mouse model of stroke[6]) needs 
to be evaluated more closely after different types of ischemic 
insults in vivo.  After glutamate insults in culture, hippocampal 
neurons were significantly protected by tatCN21 application 
even 6 h after the insult[6], while protection of cortical neurons 
was only seen when tatCN21 was applied less than 3 h after 
the insult[7].  This difference may be caused by the type of 
glutamate insult (400 µmol/L for 5 min[6], versus 100 µmol/L 
for 60 min[7]).  However, if the difference is instead inherent to 
the neuronal cell type, tatCN21 may have an even longer win-
dow of therapeutic opportunity after global cerebral ischemia, 
which particularly affects the hippocampus[47], compared to 
focal cerebral ischemia (stroke).  Additionally, the therapeutic 
potential in other acute conditions involving glutamate excito-
toxicity, such as traumatic brain injury, should be evaluated.
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