Browse Articles

Filter By:

  • A pulsed laser created optical nanostructures (holograms) on hydrogel-based soft contact lenses. The nanostructures produced varying diffraction patterns in response to the environmental changes. Vision obstruction was considered while designing the nanostructure features on the lens surface. A change in curvature of the contact lens caused the nanostructure spacing to change, influencing the visible color of the hologram. A smartphone camera application was used to monitor the diffraction colors by analyzing the RGB color values.

    • Bader AlQattan
    • Mohamed Elsherif
    • Haider Butt
    ArticleOpen Access
  • Our investigation delves into the pulse-laser-induced emission of THz waves from a single layer of Co2MnGa thin film, emphasizing its notable anomalous Hall effect (AHE) stemming from its Weyl semimetallic characteristics. We establish robust correlations between THz emission, AHE, and the chemical structure of Co2MnGa thin films. Significantly, Co2MnGa films exhibit much larger THz emission compared to conventional CoFeB films. These findings introduce an innovative approach to designing spin-based THz emitters and promise to deepen our understanding of Weyl physics.

    • Ruma Mandal
    • Ren Momma
    • Shigemi Mizukami
    ArticleOpen Access
  • The world’s strongest iron-based superconducting magnet has been manufactured. Machine learning using Bayesian optimization was employed to improve the superconducting properties of potassium-doped barium iron arsenide (Ba,K)Fe2As2. Two large disk-shaped samples were fabricated using common industrial processing techniques under the best conditions deduced from data- and researcher-driven methods. After magnetizing the samples, they could retain a magnetic field of 2.83 T as a quasi-permanent magnet, around 2.7 times the previous record, with decay rates less than −0.1 ppm/h, crucial for MRI scanners. The two approaches produced divergent microstructures, opening the door to redefining what makes for a superior superconducting material.

    • Akiyasu Yamamoto
    • Shinnosuke Tokuta
    • Mark D. Ainslie
    ArticleOpen Access
  • The next-generation coronary artery stent by self-assembled coating: Self-assembled coatings in drug-eluting stents can bind biomaterials and offer several advantages over traditional coatings, including thinner structures, stronger binding capacity, and better biocompatibility. The encouraging achievements of self-assembled stent coatings include corrosion resistance, anti-fouling, anti-thrombogenicity, endothelialization, and targeted gene therapy. Future investigation and development of self-assembly in stent coatings will help improve the functionalities of self-assembled coatings in coronary artery stents and greatly extend their applications.

    • Feng Zhao
    • Feng Liu
    • Hui Xin
    Review ArticleOpen Access
  • The interplay of electron-electron and electron-lattice interactions plays an important role in determining exotic properties in strongly correlated electron systems. Here, we report the discovery of two distinct and simultaneous commensurate CDWs, Wigner crystal and Peierls-like instabilities, in Sr0.95NbO3.37 using resonant soft X-ray scattering. These CDWs arise from charge anisotropy and redistribution in Nb 4d – O 2p hybridization and influence transport and optical gaps. The strength of Wigner crystal is within the strong coupling limit. This study paves the way for utilizing RSXS to distinguish CDWs and calls for further investigation of electron‒electron and electron–lattice interactions in inorganic systems

    • Angga Dito Fauzi
    • Caozheng Diao
    • Andrivo Rusydi
    ArticleOpen Access
  • Adhesive polydimethylsiloxane (PDMS) film is successfully fabricated by casting process using thermoplastic polyurethane (TPU). During the curing process, the PDMS lightly cross-linked at the interface with the TPU exhibited a remarkable increase in adhesion properties. The catalytic reaction used for polymerization was regulated by the TPU, which is known to adsorb metal ions. This adhesive PDMS film (APF) demonstrated outstanding adhesion on various substrates under dry and underwater conditions and maintained adhesion even after repeated use. Our findings suggest that the APF could be used an effective waterproof patch by adhering to the surfaces of objects submerged in water.

    • Sangyeun Park
    • Minhyeok Kim
    • Hongyun So
    ArticleOpen Access
  • This study reports the direct observation of atomic density fluctuations in silica glass using angstrom-beam electron diffraction. The local atomic fluctuations are found to originate from quasi-periodic arrays of nanoscale columnar atomic configurations and interstitial tubular voids. The present study also reveals longer-range fluctuations associated with the shoulder of the first sharp diffraction peak. These findings may help to understand the properties and performance of materials.

    • Akihiko Hirata
    • Shuya Sato
    • Shinji Kohara
    ArticleOpen Access
  • Black phase CsPbI3 easily transforms into the non-perovskite yellow phase, while losing the outstanding optoelectronic properties. In this review, the origin of the phase stability in CsPbI3 and strategies to stabilize the black phases exhibiting the α-phase or the relatively easily stabilized β/γ-phases are extensively discussed. Furthermore, a profound analysis of the CsPbI3 stabilization progress and the evolution of the performance efficiency records of black phase CsPbI3 is provided. Lastly, a prospective on future research on CsPbI3 solar cells pinpoints the current challenges and directs future research approaches toward more efficient and stable devices.

    • Handong Jin
    • Yu-Jia Zeng
    • Elke Debroye
    Review ArticleOpen Access
  • The interfaces linking biological tissues and man-made devices is challenging due to mechanical mismatch, biofouling, and water content. Soft materials such as hydrogels have emerged in diverse applications, however, their unresolved problem is the loss of functions in a short period. This report explores natural connective tissue, called periostracum, which is perfectly bridged between biological tissue and inorganic nonliving shell with high durability for long-lasting functions. Its hierarchically designed strategy provides a novel blueprint to design durable soft materials for the interfacing device into tissue.

    • Hyungbin Kim
    • Heejin Lim
    • Dong Soo Hwang
    ArticleOpen Access
  • The structure of a commercially important glass-ceramic ZrO2-doped lithium aluminosilicate system during its initial nucleation stage was investigated by an X-ray multiscale analysis which enables us to observe the structure from the atomic to the nanometer scale by using diffraction, small-angle scattering, absorption, and anomalous scattering techniques. The combinatorial approach revealed that the formation of edge sharing between the ZrOx polyhedra and (Si/Al)O4 tetrahedra, and that the Zr-centric periodic structure in which the local structure of the Zr4+ ions resembled a cubic or tetragonal ZrO2 crystalline phase was potentially the initial crystal nucleus for the Zr-doped lithium aluminosilicate glass-ceramic.

    • Yohei Onodera
    • Yasuyuki Takimoto
    • Shinji Kohara
    ArticleOpen Access
  • We demonstrate the magnetic-field induced reversal of antiferromagnetic spins and the electric field modulation of the switching field. The modulation efficiency is significantly high, greater than 4 T nm/V, and this giant modulation efficiency is attributed to the magnetoelectric effect of the antiferromagnetic Cr2O3. The magnetoelectric (ME) based mechanism provides a scheme for the energy-efficient, nonvolatile, deterministic 180° switching of the magnetic state in the pure antiferromagnetic (AFM) component. This study represents a great advancement in the AFM-based ME random access memory with ultralow writing power, an inherently fast switching speed and superior robustness to the magnetic state.

    • Kakeru Ujimoto
    • Hiroki Sameshima
    • Yu Shiratsuchi
    ArticleOpen Access
  • This research is emphasized particularly on cathodes (such as carbon, metal oxides, MXenes, and redox-active polymers), anodes (such as Zn-based composite materials and Zn-free materials), electrolytes (organic/ionic liquid electrolytes, WiSs, redox electrolytes, polymer or solid electrolytes) as well as the design of a novel device for ZHSCs.

    • Weijia Fan
    • Faxing Wang
    • Yuping Wu
    Review ArticleOpen Access
  • Bayesian optimization improved the thermoelectric properties of InGaAsSb thin films; this domain warrants comprehensive investigation due to the need to simultaneously control multiple parameters, such as, the composition, dopant concentration, and film-deposition temperatures. After six optimization cycles, the dimensionless figure of merit exhibited an approximately threefold improvement compared to its values obtained in the random initial experimental trials. These findings not only promote the development of thermoelectric devices based on III–V semiconductors but also highlight the effectiveness of using Bayesian optimization for multicomponent materials.

    • Takamitsu Ishiyama
    • Koki Nozawa
    • Kaoru Toko
    ArticleOpen Access
  • The energy loss mechanism due to magnetostriction was clarified by analytical formulation considering the viscosity of magnetic materials. Effects of magnetostriction have been focused on contributions to magnetic anisotropy. However, our formulation shows that the magnetic anisotropy due to magnetostriction cannot explain excess losses in nanocrystalline soft magnetic materials, and the viscosity causes resistance forces acting on domain wall motions. This viscous resistance dissipates the magnetic energy and generates the energy loss, which has the same frequency dependence as anomalous eddy current loss. The results of this research provide new design criteria for ultra-efficient soft magnetic materials.

    • Hiroshi Tsukahara
    • Haodong Huang
    • Kanta Ono
    ArticleOpen Access
  • A novel magnetic anisotropic hydrogel (MAH) with magnetic and topographic anisotropy was designed by combining static magnetic field-induced magnetic nanomaterials and a hydrogel. The duel anisotropic hydrogel promotes osteogenic differentiation of BMSCs through upregulating SNHG5 and downstream SIRT6, which modulated the level of NOTCH1/2 by antagonizing DNMT1 protein stability.

    • Shijia Tang
    • Yue Yan
    • Ning Gu
    ArticleOpen Access
  • Despite years of exploration, numerous challenges remain unresolved in the field of hydrogels and hydrogel membranes for bone repair. In this review, we provide a comprehensive overview of the fundamental principles and current development status of hydrogel materials for bone repair, including their mechanisms, formation principles, and medical benefits in bone regeneration. Additionally, we summarize recent effective strategies to develop advanced hydrogels and technical approaches for bone repair while also discussing future directions.

    • Wang Ding
    • Yuxiang Ge
    • Xiaofan Yin
    Review ArticleOpen Access
  • The figure depicts a new type of transparent electrode recording array made of vertically aligned zinc oxide nanotubes grown on graphene (top middle). The nanotubes are formed by sharp nanowalls to penetrate the cell (top left) while transparent graphene layers allow imaging the neurons using with conventional microscopy (top right). As a result, simultaneous recording of electrical signals was obtained from multiple neurons at single-cell resolution. Moreover, the signals had distinguishable waveforms that implicated extracellular- and intracellular-like electrophysiological voltage changes (bottom).

    • Jamin Lee
    • Keundong Lee
    • Gyu-Chul Yi
    ArticleOpen Access
  • A biodegradable triboelectric nanogenerator made from both natural and synthetic biodegradable materials that is utilized to collect mechanical energy in vivo and transduce it into electricity. Reed film and polylactic acid were chosen among different biodegradable materials as the triboelectric layers due to having the best output performance. The nanogenerator was connected to an interdigital electrode to generate an electric field, which stimulated the accelerated release of doxorubicin from red blood cells in targeted drug delivery systems. The release of doxorubicin normalized, facilitating the precise killing of cancer cells, demonstrating the broad potential in the field of cancer treatments.

    • Gang Jian
    • Shangtao Zhu
    • Ching-Ping Wong
    ArticleOpen Access