Browse Articles

Filter By:

  • We systematically characterized the twist-angle-dependent electronic and transport properties of twisted bilayer graphene (tBLG) grown via chemical vapor deposition. Parameters such as charge-neutral point voltage, carrier concentration, resistance, and mobility were examined across a wide range of twist angles from 0° to 30°. Our experimental results demonstrated that these parameters exhibited twist-angle-dependent trends corresponding to the moiré period. Notably, high twist angles exceeding 9° displayed practically useful features, including improved mobilities compared to single-layer graphene. Additionally, we found that the doping states and work functions showed weak dependence on the twist angles, a finding corroborated by first-principles calculations.

    • Jin Hong Kim
    • Seoung-Hun Kang
    • Jin Sik Choi
    ArticleOpen Access
  • Magnetically assisted 3D printing allows customizable electromagnetic interference (EMI) shielding effectiveness (SE). Aligning high-density graphite microplatelets during the 3D printing parallel or perpendicularly to incident waves leads to their tailored reflection and transmission. Designing the micro/macrostructure of materials allows customization and enhancement of electronic packaging’s EMI SE while achieving good heat dissipation and mechanical protection. These advances pave the way for more reliable and safer electronic systems.

    • Lizhi Guan
    • Jingbo Fan
    • Hortense Le Ferrand
    ArticleOpen Access
  • A two-step spray coating process (first step: 20 cycles of spray coating at 110 °C with 40 s intervals; second step: 180 cycles of spray coating at 130 °C with 20 s intervals) was employed to a produce large-area, compact, and thick Cs3Bi2I9 perovskite film for the application of direct X-ray detectors. The fabricated device achieved a large active area of 150 mm2, a sensitivity of 127.23 μC Gyair−1 cm−2, a detection limit of 7.4 μGyairs−1, and durability after long-term X-ray pulse irradiation.

    • Yen-Ting Chen
    • Zi-Xiang Wen
    • Peter Chen
    ArticleOpen Access
  • Although atomically thin 2D materials have attracted great interest from their unique properties and promising applications, the integration of multiple 2D materials or their modifications are more exciting because they offer opportunities to explore new frontier of materials science. This perspective illustrates the new concept of “2.5-dimensional (2.5D) materials”, which symbolically represents the great potential offered by different routes to extend the realm of 2D materials. Some examples of 2.5D materials are reviewed, such as multicomponent heterostructures, intercalation, combination with other dimensional materials, functionalization, and application to 3D devices. In this perspective, we present the recent progress of this 2.5D materials research and future outlook.

    • Hiroki Ago
    • Pablo Solís-Fernández
    PerspectiveOpen Access
  • We report on conductive ultrathin films (referred to as “nanosheets”) with stretchability and water vapor permeability for skin-conformable bioelectrodes. By combining conductive fibrous networks of single-wall carbon nanotubes and poly(styrene-b-butadiene-b-styrene) continuous nanosheets (i.e., SWCNT-SBS nanosheets), the conductive nanosheet shows a high tolerance to bending on a model skin sheet and a high permeability to humidity. Finally, we demonstrate that the conductive nanosheet can detect the surface electromyogram signals from a subject’s forearm.

    • Tatsuhiro Horii
    • Kai Yamashita
    • Toshinori Fujie
    ArticleOpen Access
  • A pulsed laser created optical nanostructures (holograms) on hydrogel-based soft contact lenses. The nanostructures produced varying diffraction patterns in response to the environmental changes. Vision obstruction was considered while designing the nanostructure features on the lens surface. A change in curvature of the contact lens caused the nanostructure spacing to change, influencing the visible color of the hologram. A smartphone camera application was used to monitor the diffraction colors by analyzing the RGB color values.

    • Bader AlQattan
    • Mohamed Elsherif
    • Haider Butt
    ArticleOpen Access
  • Our investigation delves into the pulse-laser-induced emission of THz waves from a single layer of Co2MnGa thin film, emphasizing its notable anomalous Hall effect (AHE) stemming from its Weyl semimetallic characteristics. We establish robust correlations between THz emission, AHE, and the chemical structure of Co2MnGa thin films. Significantly, Co2MnGa films exhibit much larger THz emission compared to conventional CoFeB films. These findings introduce an innovative approach to designing spin-based THz emitters and promise to deepen our understanding of Weyl physics.

    • Ruma Mandal
    • Ren Momma
    • Shigemi Mizukami
    ArticleOpen Access
  • The world’s strongest iron-based superconducting magnet has been manufactured. Machine learning using Bayesian optimization was employed to improve the superconducting properties of potassium-doped barium iron arsenide (Ba,K)Fe2As2. Two large disk-shaped samples were fabricated using common industrial processing techniques under the best conditions deduced from data- and researcher-driven methods. After magnetizing the samples, they could retain a magnetic field of 2.83 T as a quasi-permanent magnet, around 2.7 times the previous record, with decay rates less than −0.1 ppm/h, crucial for MRI scanners. The two approaches produced divergent microstructures, opening the door to redefining what makes for a superior superconducting material.

    • Akiyasu Yamamoto
    • Shinnosuke Tokuta
    • Mark D. Ainslie
    ArticleOpen Access
  • The next-generation coronary artery stent by self-assembled coating: Self-assembled coatings in drug-eluting stents can bind biomaterials and offer several advantages over traditional coatings, including thinner structures, stronger binding capacity, and better biocompatibility. The encouraging achievements of self-assembled stent coatings include corrosion resistance, anti-fouling, anti-thrombogenicity, endothelialization, and targeted gene therapy. Future investigation and development of self-assembly in stent coatings will help improve the functionalities of self-assembled coatings in coronary artery stents and greatly extend their applications.

    • Feng Zhao
    • Feng Liu
    • Hui Xin
    Review ArticleOpen Access
  • The interplay of electron-electron and electron-lattice interactions plays an important role in determining exotic properties in strongly correlated electron systems. Here, we report the discovery of two distinct and simultaneous commensurate CDWs, Wigner crystal and Peierls-like instabilities, in Sr0.95NbO3.37 using resonant soft X-ray scattering. These CDWs arise from charge anisotropy and redistribution in Nb 4d – O 2p hybridization and influence transport and optical gaps. The strength of Wigner crystal is within the strong coupling limit. This study paves the way for utilizing RSXS to distinguish CDWs and calls for further investigation of electron‒electron and electron–lattice interactions in inorganic systems

    • Angga Dito Fauzi
    • Caozheng Diao
    • Andrivo Rusydi
    ArticleOpen Access
  • Adhesive polydimethylsiloxane (PDMS) film is successfully fabricated by casting process using thermoplastic polyurethane (TPU). During the curing process, the PDMS lightly cross-linked at the interface with the TPU exhibited a remarkable increase in adhesion properties. The catalytic reaction used for polymerization was regulated by the TPU, which is known to adsorb metal ions. This adhesive PDMS film (APF) demonstrated outstanding adhesion on various substrates under dry and underwater conditions and maintained adhesion even after repeated use. Our findings suggest that the APF could be used an effective waterproof patch by adhering to the surfaces of objects submerged in water.

    • Sangyeun Park
    • Minhyeok Kim
    • Hongyun So
    ArticleOpen Access
  • This study reports the direct observation of atomic density fluctuations in silica glass using angstrom-beam electron diffraction. The local atomic fluctuations are found to originate from quasi-periodic arrays of nanoscale columnar atomic configurations and interstitial tubular voids. The present study also reveals longer-range fluctuations associated with the shoulder of the first sharp diffraction peak. These findings may help to understand the properties and performance of materials.

    • Akihiko Hirata
    • Shuya Sato
    • Shinji Kohara
    ArticleOpen Access
  • Black phase CsPbI3 easily transforms into the non-perovskite yellow phase, while losing the outstanding optoelectronic properties. In this review, the origin of the phase stability in CsPbI3 and strategies to stabilize the black phases exhibiting the α-phase or the relatively easily stabilized β/γ-phases are extensively discussed. Furthermore, a profound analysis of the CsPbI3 stabilization progress and the evolution of the performance efficiency records of black phase CsPbI3 is provided. Lastly, a prospective on future research on CsPbI3 solar cells pinpoints the current challenges and directs future research approaches toward more efficient and stable devices.

    • Handong Jin
    • Yu-Jia Zeng
    • Elke Debroye
    Review ArticleOpen Access
  • The interfaces linking biological tissues and man-made devices is challenging due to mechanical mismatch, biofouling, and water content. Soft materials such as hydrogels have emerged in diverse applications, however, their unresolved problem is the loss of functions in a short period. This report explores natural connective tissue, called periostracum, which is perfectly bridged between biological tissue and inorganic nonliving shell with high durability for long-lasting functions. Its hierarchically designed strategy provides a novel blueprint to design durable soft materials for the interfacing device into tissue.

    • Hyungbin Kim
    • Heejin Lim
    • Dong Soo Hwang
    ArticleOpen Access
  • The structure of a commercially important glass-ceramic ZrO2-doped lithium aluminosilicate system during its initial nucleation stage was investigated by an X-ray multiscale analysis which enables us to observe the structure from the atomic to the nanometer scale by using diffraction, small-angle scattering, absorption, and anomalous scattering techniques. The combinatorial approach revealed that the formation of edge sharing between the ZrOx polyhedra and (Si/Al)O4 tetrahedra, and that the Zr-centric periodic structure in which the local structure of the Zr4+ ions resembled a cubic or tetragonal ZrO2 crystalline phase was potentially the initial crystal nucleus for the Zr-doped lithium aluminosilicate glass-ceramic.

    • Yohei Onodera
    • Yasuyuki Takimoto
    • Shinji Kohara
    ArticleOpen Access
  • We demonstrate the magnetic-field induced reversal of antiferromagnetic spins and the electric field modulation of the switching field. The modulation efficiency is significantly high, greater than 4 T nm/V, and this giant modulation efficiency is attributed to the magnetoelectric effect of the antiferromagnetic Cr2O3. The magnetoelectric (ME) based mechanism provides a scheme for the energy-efficient, nonvolatile, deterministic 180° switching of the magnetic state in the pure antiferromagnetic (AFM) component. This study represents a great advancement in the AFM-based ME random access memory with ultralow writing power, an inherently fast switching speed and superior robustness to the magnetic state.

    • Kakeru Ujimoto
    • Hiroki Sameshima
    • Yu Shiratsuchi
    ArticleOpen Access
  • This research is emphasized particularly on cathodes (such as carbon, metal oxides, MXenes, and redox-active polymers), anodes (such as Zn-based composite materials and Zn-free materials), electrolytes (organic/ionic liquid electrolytes, WiSs, redox electrolytes, polymer or solid electrolytes) as well as the design of a novel device for ZHSCs.

    • Weijia Fan
    • Faxing Wang
    • Yuping Wu
    Review ArticleOpen Access
  • Bayesian optimization improved the thermoelectric properties of InGaAsSb thin films; this domain warrants comprehensive investigation due to the need to simultaneously control multiple parameters, such as, the composition, dopant concentration, and film-deposition temperatures. After six optimization cycles, the dimensionless figure of merit exhibited an approximately threefold improvement compared to its values obtained in the random initial experimental trials. These findings not only promote the development of thermoelectric devices based on III–V semiconductors but also highlight the effectiveness of using Bayesian optimization for multicomponent materials.

    • Takamitsu Ishiyama
    • Koki Nozawa
    • Kaoru Toko
    ArticleOpen Access
  • The energy loss mechanism due to magnetostriction was clarified by analytical formulation considering the viscosity of magnetic materials. Effects of magnetostriction have been focused on contributions to magnetic anisotropy. However, our formulation shows that the magnetic anisotropy due to magnetostriction cannot explain excess losses in nanocrystalline soft magnetic materials, and the viscosity causes resistance forces acting on domain wall motions. This viscous resistance dissipates the magnetic energy and generates the energy loss, which has the same frequency dependence as anomalous eddy current loss. The results of this research provide new design criteria for ultra-efficient soft magnetic materials.

    • Hiroshi Tsukahara
    • Haodong Huang
    • Kanta Ono
    ArticleOpen Access