Microscopy articles within Nature Communications

Featured

  • Article
    | Open Access

    The authors introduce a highspeed acquisition technique, sHAPR, for rapid exploration of biodynamics using fluorescence microscopy. The method leverages sCMOS cameras and custom fibre optics to convert microscopy images into 1D recordings, enabling acquisition at the maximum camera readout rate.

    • Biagio Mandracchia
    • , Corey Zheng
    •  & Shu Jia
  • Article
    | Open Access

    The structure of the Golgi and the localization of glycosylation enzymes remain largely elusive. Here, the authors use super-resolution microscopy to show that the Golgi is composed of small dynamic units which have rapidly moving zones of glycosylation enzymes.

    • Akihiro Harada
    • , Masataka Kunii
    •  & Akihiko Nakano
  • Article
    | Open Access

    Controlled manipulation of cultured cells by delivery of exogenous macromolecules is a cornerstone of experimental biology. Here, the authors describe a platform to deliver defined numbers of macromolecules into cultured cell lines at single molecule resolution.

    • Chalmers C. Chau
    • , Christopher M. Maffeo
    •  & Paolo Actis
  • Article
    | Open Access

    Biomolecular condensates form via phase separation of multivalent macromolecules. Phase separation is governed by solubility whereas multivalence drives percolation, also known as gelation. The authors in this work identify the distinct energy and length scales that influence phase separation versus percolation.

    • Mrityunjoy Kar
    • , Laura T. Vogel
    •  & Rohit V. Pappu
  • Article
    | Open Access

    Biosensing tools to detect multiple analytes in a high-throughput manner are still hindered by many limitations. Here, the authors present a label-free optofluidic platform integrating digital holography and microfluidics for analyte detection, allowing for the fingerprinting of heterogenous biological samples.

    • Alexia Stollmann
    • , Jose Garcia-Guirado
    •  & Romain Quidant
  • Article
    | Open Access

    Previous measurements of FeSe0.45Te0.55 found one-dimensional (1D) defects that were interpretated as domain walls hosting propagating Majorana topological modes. Here, the authors reveal that these 1D defects correspond to sub-surface debris and show that the filling of the superconducting gap on these defects is topologically trivial.

    • A. Mesaros
    • , G. D. Gu
    •  & F. Massee
  • Article
    | Open Access

    Abbe’s diffraction limit has been a defining concept for microscopy. With finite photon, photon noise remains one essential factor yet to be considered in the theoretical resolution limit. Here, the authors introduced information-based resolution limit allowing for photon-considered resolution assessment of various microscopy and super-resolution modalities.

    • Yilun Li
    •  & Fang Huang
  • Article
    | Open Access

    The authors characterize the phonon modes at the FeSe/SrTiO3 interface with atomically resolved electron energy loss spectroscopy and correlate them with accurate atomic structure in an electron microscope. They find several phonon modes highly localized at the interface, one of which engages in strong interactions with the electrons in FeSe.

    • Ruochen Shi
    • , Qize Li
    •  & Peng Gao
  • Article
    | Open Access

    Kekulé vortices in hexagonal lattices can host fractionalized charges at zero magnetic field, but have remained out of experimental reach. Here, the authors report a Kekulé vortex in the local density states of graphene around a chemisorbed hydrogen adatom.

    • Yifei Guan
    • , Clement Dutreix
    •  & Vincent T. Renard
  • Article
    | Open Access

    Bioimaging with photocontrol and multiplexing capability is vital for studying cellular interactions and dynamics, but multiplexed stimulated Raman scattering (SRS) imaging with reversible photocontrol is elusive. Here, the authors report SRS microscopy with Carbow-switch enabling multiplexed SRS imaging and tracking in live cells with reversible photocontrol and high spatiotemporal selectivity.

    • Yueli Yang
    • , Xueyang Bai
    •  & Fanghao Hu
  • Article
    | Open Access

    Application of correlative light and electron microscopy (CLEM) in plants remains challenging. Here, the authors use Click-iT chemistry as a tool for CLEM, due to its unique properties in resin permeability and super-resolution microscopy. They use this approach to study cellular physiology in Arabidopsis.

    • Michal Franek
    • , Lenka Koptašíková
    •  & Jíří Fajkus
  • Article
    | Open Access

    Quickly acquiring topographical information from a sample remains a challenge in optics. Here, the authors introduce encoded search focal scan, a technique for sub-micrometric imaging of tens of topographies per second based on collecting a reduced set of images.

    • Narcís Vilar
    • , Roger Artigas
    •  & Guillem Carles
  • Article
    | Open Access

    Current approaches for volumetric super-resolution microscopy can yield large and complex PSF spatial footprints. Here, the authors show a super-resolution microscopy approach using a hexagonal microlens array, which offers speed improvements in volumetric imaging compared to other single-molecule methods.

    • Sam Daly
    • , João Ferreira Fernandes
    •  & Steven F. Lee
  • Article
    | Open Access

    There is a lack of universal tools to analyse protein assemblies and quantify underlying structures in single-molecule localization microscopy. Here, the authors present SEMORE, a semi-automatic machine learning framework for system- and input-dependent analysis of super-resolution data.

    • Steen W. B. Bender
    • , Marcus W. Dreisler
    •  & Nikos S. Hatzakis
  • Article
    | Open Access

    The researchers showcase swept-coded aperture real-time femtophotography—an all-optical single-shot computational imaging modality at up to 156.3 trillion frames per second—video-records transient absorption in a semiconductor and ultrafast demagnetization of a metal alloy.

    • Jingdan Liu
    • , Miguel Marquez
    •  & Jinyang Liang
  • Article
    | Open Access

    Researchers developed an open-hardware structured illumination microscopy add-on. This affordable upgrade provides super-resolution capabilities for normal optical microscopes. Detailed instructions enable easy reproduction to help democratize advanced microscopy.

    • Mélanie T. M. Hannebelle
    • , Esther Raeth
    •  & Georg E. Fantner
  • Article
    | Open Access

    High and medium-entropy alloys have shown excellent mechanical performance, yet the role of short-range order (SRO) on these properties has been unclear. Here, the authors demonstrate that the reduction of SRO by deformation leads to rejuvenation, explaining their remarkable damage tolerance.

    • Yang Yang
    • , Sheng Yin
    •  & Andrew M. Minor
  • Article
    | Open Access

    The GRIN lenses widely used for deep brain functional imaging suffer from a small measurement field of view due to strong fourth-order astigmatism. Here the authors report Geometric Transformation Adaptive Optics (GTAO) that corrects field-dependent astigmatism and enables large-volume in vivo imaging of deep mouse brain through 0.5 mm GRIN lenses.

    • Yuting Li
    • , Zongyue Cheng
    •  & Meng Cui
  • Article
    | Open Access

    By combining real and diffraction space data recorded in electron microscopes, ptychography retrieves specimen details with super-resolution. Here, the inverse problem is solved in the presence of thermal diffuse scattering and applied to measure ferroelectric displacements with picometer precision.

    • Benedikt Diederichs
    • , Ziria Herdegen
    •  & Knut Müller-Caspary
  • Article
    | Open Access

    Conventional optical tomography can have disadvantages, including anisotropic resolution and incomplete imaging of cellular structures. Here, the authors propose an AI-driven 3D cell imaging system with a cell rotator, which offers improved resolution and automated processing.

    • Jiawei Sun
    • , Bin Yang
    •  & Juergen W. Czarske
  • Article
    | Open Access

    The wide variety of cellular processes involving biomolecular condensation makes their quantification a challenging task. Here, the authors present an integrated platform based on single-photon microscopy to study complex biomolecular processes.

    • Eleonora Perego
    • , Sabrina Zappone
    •  & Giuseppe Vicidomini
  • Article
    | Open Access

    A fundamental challenge for molecular electronics is the change in photophysical properties of molecules upon direct electrical contact. Here, the authors observe hot luminescence emitted by single-molecule chromophores that are electrically and mechanically self-decoupled by a tripodal scaffold.

    • Vibhuti Rai
    • , Nico Balzer
    •  & Michal Valášek
  • Article
    | Open Access

    The correlation between charged and antiphase states in BiFeO3 remain elusive. Here, the authors report a fabrication of in-plane charged antiphase boundaries in BiFeO3 thin films, revealing the atomic bonding configurations and atomically sharp 180° polarization reversal of such boundaries.

    • Xiangbin Cai
    • , Chao Chen
    •  & Deyang Chen
  • Article
    | Open Access

    Grain boundary atomic structures of crystalline materials have long been believed to be commensurate with the crystal periodicity of the adjacent crystals. Here, the authors discover an incommensurate grain boundary structure based on direct observations and theoretical calculations.

    • Takehito Seki
    • , Toshihiro Futazuka
    •  & Naoya Shibata
  • Article
    | Open Access

    Standard techniques for Fluorescence Lifetime Imaging Microscopy are limited by the electronics to 100’s of picoseconds time resolution. Here, the authors show how to use two-photon interference to perform fluorescence lifetime sensing with picosecond-scale resolution.

    • Ashley Lyons
    • , Vytautas Zickus
    •  & Daniele Faccio
  • Article
    | Open Access

    The detailed 3D organization of human centromere components is unknown. Here, the authors use super-resolution microscopy to present a working model for a common core centromere structure.

    • Ayantika Sen Gupta
    • , Chris Seidel
    •  & Jennifer L. Gerton
  • Article
    | Open Access

    Here, the authors describe a pathogenic fungus from a 400-million-year-old fossil plant from the Devonian Rhynie Chert in Scotland. They use advanced imaging methods to determine that the fungus belongs to the sac fungi, the most diverse group of Fungi today.

    • Christine Strullu-Derrien
    • , Tomasz Goral
    •  & David L. Hawksworth