Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A fast and robust quantum random number generator with a self-contained integrated photonic randomness core

Abstract

Generating random numbers securely and at a high rate is important for information technology. Integrated photonics could potentially be used to create mass-manufactured quantum random number generators. However, the development of robust and scalable approaches that are compatible with industrial deployment is challenging. Here, we report a fast quantum random number generator based on a photonic integrated circuit directly embedded on an electronic platform. We manufacture eight boards, which harvest randomness from an optical entropy core and process and distribute it in real time. We benchmark performance over a week of continuous gigahertz operation. We deploy our quantum random number generator in a quantum key distribution system and, despite operating in an uncontrolled environment, the physical randomness features minimal variations over 2.9 million histograms collected over 38 days. We also use a security model with our quantum random number generator to adjust the rate of the randomness content generated and demonstrate secure generation at 2 Gbit s−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Implementation of a deployable OEC with integrated photonics.
Fig. 2: Experimental set-up for the characterization of the OEC and OEC bandwidth.
Fig. 3: Performance of the OEC with different modulation formats.
Fig. 4: Long-term stability of a QRNG deployed for 38 days and of five QRNGs operating simultaneously for a week.
Fig. 5: One-week entropy characterization and test of the security preservation function.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding authors on reasonable request.

References

  1. Castelvecchi, D. The race to save the internet from quantum hackers. Nature 602, 198–201 (2022).

    Article  Google Scholar 

  2. Piani, M., Mosca, M. & Neill, B. Quantum Random-Number Generators: Practical Considerations and Use Cases (evolutionQ, 2021).

  3. Ma, X., Yuan, X., Cao, Z., Qi, B. & Zhang, Z. Quantum random number generation. npj Quantum Inf. 2, 16021 (2016).

    Article  Google Scholar 

  4. Turan, M. S. et al. Recommendation for the Entropy Sources Used for Random Bit Generation 102 (Special Publication 800-90B) (NIST, 2018).

  5. Abellan, C. et al. Quantum entropy source on an InP photonic integrated circuit for random number generation. Optica 3, 989–994 (2016).

    Article  Google Scholar 

  6. Rudé, M. et al. Interferometric photodetection in silicon photonics for phase diffusion quantum entropy sources. Opt. Express 26, 31957–31964 (2018).

    Article  Google Scholar 

  7. Bai, B. et al. 18.8 Gbps real-time quantum random number generator with a photonic integrated chip. Appl. Phys. Lett. 118, 264001 (2021).

    Article  Google Scholar 

  8. Raffaelli, F. et al. A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers. Quantum Sci. Technol. 3, 025003 (2018).

    Article  Google Scholar 

  9. Paraïso, T. K. et al. A modulator-free quantum key distribution transmitter chip. npj Quantum Inf. 5, 42 (2019).

    Article  Google Scholar 

  10. Roger, T. et al. Real-time interferometric quantum random number generation on chip. J. Opt. Soc. Am. B 36, 137–142 (2019).

    Article  Google Scholar 

  11. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    Article  Google Scholar 

  12. Bruynsteen, C., Gehring, T., Lupo, C., Bauwelinck, J. & Yin, X. 100-gbit/s integrated quantum random number generator based on vacuum fluctuations. PRX Quantum 4, 010330 (2023).

    Article  Google Scholar 

  13. Guo, H., Tang, W., Liu, Y. & Wei, W. Truly random number generation based on measurement of phase noise of a laser. Phys. Rev. E 81, 051137 (2010).

    Article  Google Scholar 

  14. Qi, B., Chi, Y.-M., Lo, H.-K. & Qian, L. High-speed quantum random number generation by measuring phase noise of a single-mode laser. Opt. Lett. 35, 312–314 (2010).

    Article  Google Scholar 

  15. Jofre, M. et al. True random numbers from amplified quantum vacuum. Opt. Express 19, 20665–20672 (2011).

    Article  Google Scholar 

  16. Xu, F. et al. Ultrafast quantum random number generation based on quantum phase fluctuations. Opt. Express 20, 12366–12377 (2012).

    Article  Google Scholar 

  17. Abellán, C. et al. Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Opt. Express 22, 1645–1654 (2014).

    Article  Google Scholar 

  18. Shen, Y., Tian, L. & Zou, H. Practical quantum random number generator based on measuring the shot noise of vacuum states. Phys. Rev. A 81, 063814 (2010).

    Article  Google Scholar 

  19. Gabriel, C. et al. A generator for unique quantum random numbers based on vacuum states. Nat. Photon. 4, 711–715 (2010).

    Article  Google Scholar 

  20. Symul, T., Assad, S. & Lam, P. K. Real time demonstration of high bitrate quantum random number generation with coherent laser light. Appl. Phys. Lett. 98, 231103 (2011).

    Article  Google Scholar 

  21. Marangon, D. G., Vallone, G. & Villoresi, P. Source-device-independent ultrafast quantum random number generation. Phys. Rev. Lett. 118, 060503 (2017).

    Article  Google Scholar 

  22. Zheng, Z., Zhang, Y., Huang, W., Yu, S. & Guo, H. 6 Gbps real-time optical quantum random number generator based on vacuum fluctuation. Rev. Sci. Instrum. 90, 043105 (2019).

    Article  Google Scholar 

  23. Drahi, D. et al. Certified quantum random numbers from untrusted light. Phys. Rev. X 10, 041048 (2020).

    Google Scholar 

  24. Gehring, T. et al. Homodyne-based quantum random number generator at 2.9 Gbps secure against quantum side-information. Nat. Commun. 12, 605 (2021).

    Article  Google Scholar 

  25. Haw, J. et al. Maximization of extractable randomness in a quantum random-number generator. Phys. Rev. Appl. 3, 054004 (2015).

    Article  Google Scholar 

  26. Quantum Security Technologies White Paper v.1.0 (National Cyber Security Centre, 2020).

  27. Smith, P., Marangon, D., Lucamarini, M., Yuan, Z. & Shields, A. Out-of-band electromagnetic injection attack on a quantum random number generator. Phys. Rev. Appl. 15, 044044 (2021).

    Article  Google Scholar 

  28. Yuan, Z. et al. Robust random number generation using steady-state emission of gain-switched laser diodes. Appl. Phys. Lett. 104, 261112 (2014).

    Article  Google Scholar 

  29. Zhou, H., Yuan, X. & Ma, X. Randomness generation based on spontaneous emissions of lasers. Phys. Rev. A 91, 062316 (2015).

    Article  Google Scholar 

  30. Septriani, B., Vries, O., Steinlechner, F. & Gräfe, M. Parametric study of the phase diffusion process in a gain-switched semiconductor laser for randomness assessment in quantum random number generator. AIP Adv. 10, 055022 (2020).

    Article  Google Scholar 

  31. Shakhovoy, R. et al. Influence of chirp, jitter, and relaxation oscillations on probabilistic properties of laser pulse interference. IEEE J. Quantum Electron. 57, 2000307 (2021).

    Article  Google Scholar 

  32. Paraïso, T. K. et al. Advanced laser technology for quantum communications (tutorial review). Adv. Quantum Technol. 4, 2100062 (2021).

    Article  Google Scholar 

  33. Lovic, V., Marangon, D. G., Lucamarini, M., Yuan, Z. & Shields, A. J. Characterizing phase noise in a gain-switched laser diode for quantum random-number generation. Phys. Rev. Appl. 16, 054012 (2021).

    Article  Google Scholar 

  34. Quirce, A. & Valle, A. Phase diffusion in gain-switched semiconductor lasers for quantum random number generation. Opt. Express 29, 39473–39485 (2021).

    Article  Google Scholar 

  35. Sun, S.-H. & Xu, F. Experimental study of a quantum random-number generator based on two independent lasers. Phys. Rev. A 96, 062314 (2017).

    Article  Google Scholar 

  36. Zanforlin, U., Donaldson, R. J., Collins, R. J. & Buller, G. S. Analysis of the effects of imperfections in an optical heterodyne quantum random-number generator. Phys. Rev. A 99, 052305 (2019).

    Article  Google Scholar 

  37. Herrero-Collantes, M. & Garcia-Escartin, J. C. Quantum random number generators. Rev. Mod. Phys. 89, 015004 (2017).

    Article  MathSciNet  Google Scholar 

  38. Ma, X. et al. Postprocessing for quantum random-number generators: entropy evaluation and randomness extraction. Phys. Rev. A 87, 062327 (2013).

    Article  Google Scholar 

  39. Frauchiger, D., Renner, R. & Troyer, M. True randomness from realistic quantum devices. Preprint at https://arxiv.org/abs/1311.4547 (2013).

  40. Shakhovoy, R. et al. Quantum noise extraction from the interference of laser pulses in an optical quantum random number generator. Opt. Express 28, 6209–6224 (2020).

    Article  Google Scholar 

  41. Mitchell, M. W., Abellan, C. & Amaya, W. Strong experimental guarantees in ultrafast quantum random number generation. Phys. Rev. A 91, 012314 (2015).

    Article  Google Scholar 

  42. L’ecuyer, P. & Simard, R. TestU01: a C library for empirical testing of random number generators. ACM Trans. Math. Softw. 33, 22 (2007).

    MathSciNet  Google Scholar 

  43. Rukhin, A. et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications (Special Publication 800-22) (NIST, 2010).

  44. Paraïso, T. K. et al. A photonic integrated quantum secure communication system. Nat. Photon. 15, 850–856 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial Strategy Challenge Fund (ISCF): 106374-49229 Assurance of Quantum Random Number Generators (AQuRand). V.L. acknowledges financial support from the EPSRC (EP/S513635/1) and Toshiba Europe Ltd.

Author information

Authors and Affiliations

Authors

Contributions

D.G.M., T.K.P., T.R., Z.Y. and A.J.S. conceived the experiment. T.K.P. and D.G.M. designed the PICs. D.G.M. developed the OEC packaging. D.G.M., P.R.S., T.K.P. and V.L. characterized the OECs. M.S. and D.G.M. developed the QRNG electronics. D.G.M., N.W., M.L. and P.R.S. developed the security model. P.R.S. set the QRNGs for the week-long test. D.G.M., N.W. and P.R.S. analysed the data. J.F.D. installed the QRNG and operated the quantum key distribution systems. T.R., I.D.M. and P.R.S. assisted with the OEC and QRNG software. D.G.M. wrote the manuscript with contributions from all the authors. D.G.M., Z.Y. and A.J.S. supervised the project.

Corresponding authors

Correspondence to Davide G. Marangon, Peter R. Smith or Andrew J. Shields.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Nicoló Leone and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Average min-entropies for the 5 boards during the 7 days of continuous operation

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marangon, D.G., Smith, P.R., Walk, N. et al. A fast and robust quantum random number generator with a self-contained integrated photonic randomness core. Nat Electron 7, 396–404 (2024). https://doi.org/10.1038/s41928-024-01140-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-024-01140-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing