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A dual‑branch selective attention 
capsule network for classifying 
kiwifruit soft rot with hyperspectral 
images
Zhiqiang Guo 1, Yingfang Ni 1, Hongsheng Gao 1, Gang Ding 2 & Yunliu Zeng 2*

Kiwifruit soft rot is highly contagious and causes serious economic loss. Therefore, early detection and 
elimination of soft rot are important for postharvest treatment and storage of kiwifruit. This study 
aims to accurately detect kiwifruit soft rot based on hyperspectral images by using a deep learning 
approach for image classification. A dual‑branch selective attention capsule network (DBSACaps) was 
proposed to improve the classification accuracy. The network uses two branches to separately extract 
the spectral and spatial features so as to reduce their mutual interference, followed by fusion of the 
two features through the attention mechanism. Capsule network was used instead of convolutional 
neural networks to extract the features and complete the classification. Compared with existing 
methods, the proposed method exhibited the best classification performance on the kiwifruit soft rot 
dataset, with an overall accuracy of 97.08% and a 97.83% accuracy for soft rot. Our results confirm 
that potential soft rot of kiwifruit can be detected using hyperspectral images, which may contribute 
to the construction of smart agriculture.

Keywords Kiwifruit, Soft rot classification, Hyperspectral image classification, Attention mechanism, 
Capsule network

Kiwifruit is popular among consumers for its tender flesh, sweet and sour taste, and high rich nutritional value. 
Therefore, the planting area of kiwifruit is constantly expanding in recent years. However, with continuously 
increasing kiwifruit production, various kiwifruit diseases are also  emerging1–5, among which soft rot, a fungal 
rot disease of kiwifruit, causes the most serious postharvest loss. Early detection of soft rot is very important for 
kiwifruit growers, sellers, and researchers. Early and accurate detection of diseases can help to distinguish healthy 
fruit from diseased fruit, and prevent postharvest losses due to infection of healthy  fruit6.

The diseased kiwifruit of soft rot generally shows no evident appearance characteristics at the early stage, 
and rapidly becomes soft at the later stage of disease. Typically, the diseased fruit shows round or oval spots with 
a watery ring around on the peel, and the flesh under the peel at the spot is creamy white, which can cause rot 
of the whole fruit in severe  cases7. Because the symptoms are not obvious at the early stage of disease, manual 
or machine vision has limited effectiveness in distinguishing healthy kiwifruit from diseased  ones8. In recent 
years, non-destructive detection techniques based on hyperspectral imaging (HSI) have gradually emerged. 
HSI technology can simultaneously obtain the image and spectral information of fruit, in which the image 
information can reveal the external shape characteristics, defects, and disease spots, while the spectral informa-
tion can indicate various chemical components of the fruit, and at specific wavelengths, the images can more 
sensitively reflect the  defects9. At present, HSI technology has been widely used in non-destructive detection 
of fruit quality and  diseases10–12. For example, the  study11 used HSI to detect fungal-infected strawberries. Sun 
et al.13,14 employed HSI to classify three common diseases of peaches. Pan et al.15 achieved a 97.5% accuracy 
using hyperspectral images combined with support vector machines in detecting black spot disease of pears. 
These studies have indicated the potential of using HSI to detect fruit diseases. However, most fruit disease 
classifications are conducted based on classical machine learning methods, which are somewhat blind in terms 
of feature extraction and classifier selection, and are lack of uniform selection criteria for different objects. In 
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recent years, deep learning has been widely used in image classification due to its powerful representation and 
automatic learning of  features16–18, and hyperspectral images are highly appropriate for deep learning research 
due to their rich information. For instance, Wang et al.19 used deep learning methods to improve the accuracy 
of detecting mechanical damage inside blueberries while reducing the computation time. Gao et al.20 employed 
convolutional neural networks to classify early and mature blueberries with a test set accuracy of 98.6%.The 
combination of hyperspectral data and deep learning has also been extensively studied in the field of remote 
sensing. Ma et al.21 proposed a dual-branch multi-attention mechanism network (DBMA) for HSI classification 
to separately extract the spectral and spatial features to reduce the mutual interference between them. Roy et al.22 
proposed a hybrid spectral convolutional neural network (HybridSN) to reduce the complexity of the model 
and the risk of overfitting. Zhang et al.23 constructed the SPRN network for hyperspectral image classification 
by using residual learning and a spectral partitioning strategy.

Significant progress has been achieved in integrating deep learning with hyperspectral images, yet current 
research still faces limitations. For example, while some researchers have utilized CNN to automatically extract 
features, they simply reshape one-dimensional vectors of spectral information into two-dimensional pseudo-
images for  processing24,25; Others have trained the multiband images of hyperspectral images analogous to the 
3-channel images of RGB images directly using basic convolutional neural networks such as AlexNet  networks20. 
However most of these methods do not fully leverage the unique properties of hyperspectral images, particularly 
the integration of spatial and spectral information. Additionally, they often neglect network optimization 
specifically designed for fruit hyperspectral images. Hence, there is still potential to improve classification 
accuracy.

To fully extract the features of kiwifruit hyperspectral images, this work proposes a dual-branch selective 
attention capsule network (DBSACaps) for classification of kiwifruit soft rot. The main contributions are as 
follows. Firstly, feature extraction is divided into the spectral branch and spatial branch to separately extract the 
features so as to prevent their mutual interference. Secondly, a selective attention module is set to fuse spectral 
features and spatial features, which can improve the contribution of useful features to the classification. Finally, 
a capsule network instead of the convolutional neural network is used to obtain more robust features. Compared 
with other methods, the proposed network can achieve the highest classification accuracy.

Materials and methods
Dataset construction
Sample preparation
The ‘Yunhai No.1’ (Actinidia chinensis) were harvested from Chuyang orchard in Wuhan, Hubei Province, China. 
Fruit with ripeness at commercial harvest with soluble solids content of 8%–9%, and fruit weights of 80–110 g 
were selected as samples. In addition, after removal of deformed and scarred fruit, the remaining samples were 
treated with prochloraz and imazalil, and stored under cold storage as described in Asiche et al.26. Diaporthe 
ereswas used to inoculate samples at the central equator of the fruit. The experiment was divided into a healthy 
control group and an experimental group. The healthy control group was injected with sterile saline to eliminate 
the impact of the inoculated wound on classification. The experimental group was subjected to two doses (6 mL 
and 10 mL) of inoculation to simulate the onset of kiwifruit soft rot under different conditions. After inoculation, 
all fruit were single-bagged and stored with the inoculated side up at 20 °C. The day of inoculation was recorded 
as day 0, and hyperspectral images were acquired at 1:00 p.m. daily from day 1, while the development of soft 
rot was monitored until it became severe or white mycelium appeared.

Hyperspectral image acquisition and processing
A portable hyperspectral imager developed by Interuniversity Microelectronics Centre(IMEC), and Belgium 
was used for hyperspectral data  acquisition27. The imager has 150 available spectral bands at 470–900 nm, with 
an imaging resolution of 800× 800 pixels according to the size of kiwifruit. The camera integration time is 4 ms, 
and the analog gain is 1.6 dB. During image acquisition, the whole system was placed in a closed black box to 
prevent interference from external light sources.

Considering that soft rot occupies a relatively small portion of the whole image, a cut method similar to that 
used in remote sensing image classification was employed to segment the kiwifruit image into blocks as shown 
in Fig. 1. First, the image was normalized to a uniform image size of 256× 256 , and then divided into blocks of 
64× 64 with a step size of 32.

The labels for image blocks were made as follows: (1) when the percentage of soft rot exceeded 10%, the block 
was labeled as soft rot; (2) when the percentage of background pixels exceeded 50%, the block was labeled as 
background; (3) the remaining blocks were taken as healthy kiwifruit.

Firstly, the hyperspectral images before segmentation were divided into the training set, validation set, and 
test set at a ratio of 2: 1: 1, which were then respectively divided into blocks. Finally, the training set comprised 
a total of 1876 samples; the validation set 899 samples; and the test set 928 samples.

To obtain more images and improve the diversity of the dataset, data augmentation was carried out based on 
these block images by mirroring, random cropping, and adding shadow  noise28. Since the background image 
features were relatively simple, only healthy images and soft rot images were augmented. After augmentation, a 
total of 11,194 samples were obtained. The specific number of samples is presented in Table 1.

Model architecture
RGB image is a cube with two spatial dimensions and one channel dimension, and has three channels of red, 
green, and blue in the channel dimension. Comparatively, hyperspectral images have significantly more channels 
than RGB images. The data of hyperspectral images are much larger at the same spatial resolution, and the RGB 
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image classification network cannot capture the relationship between spectra. In addition, another problem of 
hyperspectral images is the small data sets. Unlike large RGB image data sets that can be used for pre-training, 
hyperspectral images do not have large data sets to be used for pre-training, which also limits the depth and 
width of the network due to limited training samples.

For remote sensing image classification networks, single-branch networks, such as  FDSSC19,  SSRN29, and 
 HybridSN22, extract spectral features and spatial features successively. Since the two kinds of features are in 
different domains, when extracting spatial features, the spectral features are easily destroyed. Different from 
single-branch networks, the  DBMA21 network divides the feature extraction into spectral and spatial branches 
to separately extract the corresponding features, which reduces the mutual interference between the two types 
of features. However, the large depth of feature extraction of the network leads to longer training time, and there 
is a lack of fusion mechanism in the direct superposition of spectral and spatial information, which negatively 
affects the classification performance.

To address the above problems, we propose a hyperspectral image classification network based on a dual-
branch selective attention and capsule network for kiwifruit soft rot classification. Figure 2 illustrates the overall 
structure of the network, which consists of three parts. The first part is feature extraction, which is divided into 
spectral branch and spatial branch for feature extraction; the second part is feature fusion, which uses the atten-
tion mechanism to select features from different branches; and the third part is the classification by the capsule 
network. Next, we will introduce these three parts in detail.

Dual branch feature extraction
The proposed network is an end-to-end network without relying on feature engineering for dimensionality 
reduction. For a hyperspectral image cube of size C ×H ×W  , it can be directly fed into the network to use 
CNN for dimensionality reduction and feature extraction. For example, when using 3DCNN to extract features, 
a convolutional kernel of 7× 3× 3 can learn both spectral and spatial features. To enable feature separation, 
we use a dual-branch structure with kernels of different sizes to separately extract spectral and spatial features.

For the spectral branch, a 3DCNN with a convolution kernel size of d × 1× 1 is used. The two-dimensional 
convolution process aims to extract local spatial features, while a 3DCNNN of d × 1× 1 does not extract 

Figure 1.  Blocking process of kiwifruit image. First, the image was normalized to a uniform image size 
of 256× 256 , and then divided into blocks of 64× 64 with a step size of 32. the blocks were labeled as soft 
rot, healthy and background based on the percentage of soft rot. The figure highlights canonical examples 
representing each of the three categories.

Table 1.  Dataset of kiwifruit soft rot disease. The specific number of samples for each category before and after 
dataset augmentation is presented in Table.

Data augmentation Category Training set Validation set Test set Sample size

Before augmentation

Background 600 293 313 1206

Healthy 630 334 304 1268

Soft rot 646 272 311 1229

After augmentation

Background 600 293 313 1206

Healthy 2520 1336 1216 5072

Soft rot 2584 1088 1244 4916
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any spatial elements as it does not consider the relationship between pixel points in a spatial image and their 
neighboring pixels, and convolution of 1× 1 size allows a linear combination of each pixel in a spatial image. 
Therefore, for hyperspectral images, using a 3DCNN of d × 1× 1 size can extract spectral features and well 
preserve spatial features.

For hyperspectral image data, the dimensionality can be reduced by using 3DCNN and reshaping. The key 
to dimensionality reduction lies in the padding method of 3DCNN. Same padding and valid padding are two 
commonly used padding methods. Same padding means that before convolution, the input feature is subjected to 
zero-padding, and the convolution results at the boundary can be preserved. Usually, the output shape is the same 
as the input shape. Valid padding means that the boundary data are not processed, and d × 1× 1 size of 3DCNN 
combined with valid padding can achieve dimensionality reduction and retain the original spatial information.

For the spatial branch, after using 3DCNN to reduce the dimensionality and reshape it into a 2D image, the 
use of a 2DCNN with a convolution kernel size of A× A can effectively extract spatial features. The details of 
feature extraction are shown in Table 2.

Feature fusion
After dual-branch feature extraction, the spectral features and spatial features can be fully extracted without 
mutual interference. However, for current common dual-branch classification networks, most spectral and spatial 
features are directly aggregated in the feature dimension for classification. For the kiwifruit soft rot data set used 
in this study, Fig. 3 shows a schematic diagram of some samples. It can be seen that for kiwifruit samples with 
obvious soft rot, their spatial characteristics are significantly different from those of healthy kiwifruit. However, 

Figure 2.  DBSACaps network structure. Figure 2 illustrates the overall structure of the network, which consists 
of three parts. The first part is feature extraction, which is divided into spectral branch and spatial branch 
for feature extraction; the second part is feature fusion, which uses the attention mechanism (The SAModule 
module is shown in Fig. 3) to select features from different branches; and the third part is the classification by 
the capsule network. The operation process in the network is represented by corresponding color blocks, and the 
corresponding relationship is shown in the legend in the bottom right corner of the figure.

Table 2.  Feature extraction network structure and parameters. The network structure and parameters of Dual 
Branch Feature Extraction (including convolution kernel size, step size, padding, activation function, output 
size) are presented in the Table.

Branch Layer Kernel size Stride Padding Activation Output size

/ Input / / / / 1150 × 64 × 64

Spectral

3DConv_1 7 × 1 × 1 (2,1,1) 0 ReLU 64,72 × 64 × 64

3DConv_2 7 × 1 × 1 (2,1,1) 0 ReLU 64,33 × 64 × 64

3DConv_3 33 × 1 × 1 1 0 ReLU 128,1 × 64 × 64

Reshape_1 / / / / 128,64 × 64

Spatial

3DConv_4 150 × 1 × 1 1 0 ReLU 64,1 × 64 × 64

Reshape_2 / / / / 64,64 × 64

2DConv_1 3 × 3 1 1 ReLU 64,64 × 64

2DConv_2 3 × 3 1 1 ReLU 128,64 × 64
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for kiwifruit samples with mild symptoms, the feature differences are small on the spatial image. For these sam-
ples, spectral features play a more important role in the classification.

If the dual-branch features are aggregated directly, it is equivalent to giving the same weight to the spatial and 
spectral features, which is unfavorable for the classification of some samples. Inspired by  SKNet30, we designed a 
selective attention module (SAModule), which assigns different weights to spatial features and spectral features 
before feature fusion, improving the classification accuracy of hyperspectral images. The selective attention 
module is shown in Fig. 4.

The module mainly includes two parts: Concat and Select. The two input branches are spectral features 
Uspe and spatial features Uspa extracted by the feature extraction module. The main process of Concat is to 
superimpose the spectral features and spatial features in the channel dimension to obtain a fusion feature map, 
and then use SEWeight31 to extract the attention weight information to obtain the attention weight vectors of 
different branches.

where U ∈ ℜC×S×S,C is the number of channels after concat , and S × S is the space size of the feature map. 
Us ∈ ℜ

C
2 ×S×S refers to Uspe or Uspa , Zs refers to Zspe or Zspa , which are attention weight vectors corresponding to 

spectral features or spatial features, respectively.
For the Select part, the main purpose is to fuse the attention weight vectors of the two branches, and then 

recalibrate the fused vector. We chose the Softmax activation function to complete it.

(1)U = concat(Uspe ,Uspa)

(2)Zs = SEWeight(Us),

(3)Z = concat(Zspe ,Zspa)

Figure 3.  Partial image of the kiwifruit dataset. Figure 3 shows a schematic diagram of some samples. It can be 
seen that for kiwifruit samples with obvious soft rot, their spatial characteristics are significantly different from 
those of healthy kiwifruit. However, for kiwifruit samples with mild symptoms, the feature differences are small 
on the spatial image. For these samples, spectral features play a more important role in the classification.

Figure 4.  Selective attention module. The two input branches are spectral features Uspe and spatial features Uspa 
extracted by the feature extraction module. The main process of Concat is to superimpose the spectral features 
and spatial features in the channel dimension to obtain a fusion feature map, and then use SEWeight31 to extract 
the attention weight information to obtain the attention weight vectors of different branches. U,Zspe and Zspa 
are respectively defined by Eqs. (1) and (2). For the Select part, the main purpose is to fuse the attention weight 
vectors of the two branches, and then recalibrate the fused vector. We chose the Softmax activation function to 
complete it. attspe , attspa are respectively defined by Eq. (4). Finally, the attention vector and the feature map are 
multiplied along the channel dimension to obtain the attention feature map, and the attention feature maps of 
the two branches are superimposed along the channel dimension to obtain the fusion feature. The formula is 
as follows, in which ⊗ means the multiplication of corresponding elements along the channel dimension. V is 
defined by Eq. (5).
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where attspe , attspa correspond to the attention vector of Uspe ,Uspa , respectively.
Finally, the attention vector and the feature map are multiplied along the channel dimension to obtain the 

attention feature map, and the attention feature maps of the two branches are superimposed along the channel 
dimension to obtain the fusion feature. The formula is as follows, in which ⊗ means the multiplication of 
corresponding elements along the channel dimension.

Capsule network classification
In a convolutional neural network, a single convolutional layer is used to extract local features, and it is easy to 
ignore the spatial location relationship between features. When low-level features need to be combined to extract 
deep complex features, it is necessary to use a pooling layer to reduce the size of the feature map, and the pooling 
operation will lead to the loss of some information such as location information, and the increase in pooling 
operation requires more training data to compensate for this lost information. To solve these problems, Sabour 
et al.32 proposed the Capsule Network (CapsNet). Capsule is defined as a group of neurons instead of a single 
neuron, and represents an entity by using vectors instead of scalars. The activation of neurons in the capsule 
represents various properties of the entity, such as position, direction, size, and texture, and the vector length is 
used to represent the probability for the existence of the entity.

After the capsule network was proposed, many researchers attempted to apply CapsNet for the classification 
of HSI and achieved high accuracy. Ma et al.33 a two-dimensional capsule network to extract features and then 
classify them after PCA. Paoletti et al.34 extended the two-dimensional capsule network to a three-dimensional 
one to extract the spectral and spatial features of hyperspectral images. Jiang et al.35 proposed a dual-channel 
capsule network, which uses two separate convolution channels to extract the spectral and spatial features, 
and then connects and sends them to the capsule layer for classification. These studies have demonstrated the 
potential of CapsNet in HSI classification tasks. Hence, after the fusion of spectral and spatial features, the 
capsule network is used instead of a convolutional neural network to further extract features. In DBSACaps, the 
number of output capsules in the primary capsule layer is 64 and the capsule vector length is 8. The number of 
output capsules in the digital capsule layer is 3, namely the number of categories, and the capsule vector length 
is 16. The existence probability of each category can be obtained by calculating the modulus length of the output 
capsule of the digital capsule layer. Since the network does not use a reconstruction network, the loss function 
used in this network only includes the margin loss function.

Evaluation index and experimental setup
In our experiments, all experiments were performed on a workstation equipped with Inter Xeon CPU E5-2620 v4 
@ 2.1 GHz, Nvidia Geforce RTX2080Ti GPU, 64G RAM. For a fair comparison, all classification networks were 
implemented using the Pytorch library and the Python language. The experimental parameters of the proposed 
DBSACaps network are: the number of capsule network routing is set to 3; the batch size is 16; the initial learning 
rate is 0.000005; the training epoch is 100; the Adam optimizer is used for optimization; and the weight decay 
is 0.000001. The main classification evaluation metrics include overall accuracy (OA), average accuracy (AA), 
precision, recall rate, and F1 score.

To demonstrate the effectiveness of the proposed method, it was compared with several other widely used 
methods as  ResNet5036,  CapsuleNet34,  DBMA21,  HybridSN22, HS-CNN37,  LMFN38,  SPRN23.

In the comparison networks, Adam optimizer is used to update the parameters, and the training epoch is 
fixed at 100. Considering the different convergence speeds of different networks, we tested four learning rates 
for different networks, including 0.001, 0.0001, 0.00001, and 0.000005, and used the learning rate with the best 
performance in the case of not overfitting.

Research involving plants
The study complies with the IUCN Policy Statement on Research Involving Species at Risk of Extinction and the 
Convention on the Trade in Endangered Species of Wild Fauna and Flora. The kiwifruits were used in this study. 
‘Yunhai No.1’ (Actinidia chinensis) were harvested from Chuyang orchard in Wuhan, Hubei Province, China.

Results and discussion
Classification results of different networks
The overall classification results of different networks on the test set are presented in Table 3, and those of each 
category are shown in Table 4. The data marked in bold indicate the highest classification accuracy for that 
category and the italicized data represent the second highest.

Table 3 shows that the proposed DBSACaps network has the best performance among all methods, with an 
OA and AA of 97.08% and 97.64%, respectively, which are 0.72% and 0.74% higher than those of the second 
highest network (CapsuleNet and HS-CNN, respectively). Besides the proposed network, CapsuleNet and HS-
CNN are the two networks with relatively better performance, which may be ascribed to the following reasons. 
First, the CapsuleNet network can extract more features from the kiwifruit dataset due to its outstanding ability 
to capture the correlation of sample features, which contributes to its better classification performance compared 

(4)attspe =
exp(Zspe)

exp(Zspe)+ exp(Zspa)
, attspa =

exp(Zspa)

exp(Zspe)+ exp(Zspa)
,

(5)V = concat((attspe ⊗ Uspe), (attspa ⊗ Uspa)).
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with that of other networks. Secondly, the HS-CNN network is specifically proposed for avocado and kiwifruit 
ripeness, and therefore has a relatively good generalization performance with the dataset of this study.

Among the four networks of DBMA, HybridSN, LMFN, and SPRN, the LMFN network seems to have the 
best performance, which may be due to the sample size and characteristics of the data set in this study. The 
performance of HybridSN and SPRN is not comparable to that of DBMA, because both of them are single-branch 
networks, in which spectral features and spatial features easily interfere with each other.

The spatial attention module HPDM proposed in SPRN was proved to improve the classification accuracy of 
the network; however, the use of this module decreased the classification accuracy for the data set in this study, 
which can be mainly attributed to the difference between the two data sets. For the public dataset used in SPRN, 
although the block algorithm is used, the label of each patch only depends on the central pixel, while all other 
pixels have their own labels. The HPDM module is designed to prevent the degradation of classification accuracy 
caused by the interference of other pixels with increasing patch size. In this work, there is only one label for each 
patch. Hence, other pixels outside the center pixel can well be used for classification without interference, which 
may explain the decrease in accuracy after using the HPDM module.

As shown in Table 4, different networks have different effects on image classification for the three categories. 
In all the three metrics, our proposed DBSACaps network has the highest average precision rate, average recall 
rate, and average F1 index. In the background images, the CapsuleNet network has the best classification effect, 
with the highest precision rate and F1 index, and the DBSACaps network has the second highest recall rate and 
F1 index. Obviously, all networks have better classification results on the background images, probably because 
the background images have simpler features and have not been expanded with data. In healthy images, the 
DBSACaps network showed the highest precision rate and F1 index, and in soft rot images, this network had 
the highest recall rate and F1 index, which is consistent with the purpose of kiwifruit soft rot classification. The 
high precision rate of healthy images indicates a low probability of misreporting soft rot images as healthy by 
the network, and the high recall rate of soft rot images indicates that the network can well detect the potential 
soft rot disease.

Table 3.  Comparison of classification results of different networks. The overall classification results of different 
networks on the test set are presented in Table. The results shows that the proposed DBSACaps network has 
the best performance among all methods, with an OA and AA of 97.08% and 97.64%, respectively, which are 
0.72% and 0.74% higher than those of the second highest network (CapsuleNet and HS-CNN, respectively). 
The highest value in each column is bold and the second highest is italicized.

Network Learning rate Average accuracy (%) Overall accuracy (%)

ResNet50 0.00001 96.65 95.74

CapsuleNet 0.000005 96.80 96.36

DBMA 0.0001 96.02 95.67

HybridSN 0.00001 94.96 93.69

HS-CNN 0.0001 96.90 95.96

LMFN 0.001 96.43 96.00

SPRN 0.00001 95.57 94.30

HPDM-SPRN 0.00001 94.82 94.16

DBSACaps 0.000005 97.64 97.08

Table 4.  Evaluation indexes of different network categories. The highest value in each column is bold and 
the second highest is italicized. The each category classification results of different networks on the test set are 
presented in Table. As shown in Table 4, different networks have different effects on image classification for the 
three categories. In all the three metrics, our proposed DBSACaps network has the highest average precision 
rate, average recall rate, and average F1 index.

Network

Background Healthy Soft rot

Average precision Average recall Average F1Precision Recall F1 Precision Recall F1 Precision Recall F1

ResNet50 0.9780 0.9936 0.9857 0.9463 0.9572 0.9518 0.9633 0.9486 0.9559 0.9625 0.9665 0.9644

CapsuleNet 0.9968 0.9808 0.9887 0.9435 0.9753 0.9592 0.9760 0.9477 0.9617 0.9721 0.9680 0.9699

DBMA 0.9902 0.9712 0.9806 0.9597 0.9408 0.9502 0.9458 0.9686 0.9571 0.9653 0.9602 0.9626

HybridSN 0.9656 0.9872 0.9763 0.9082 0.9523 0.9297 0.9601 0.9092 0.9339 0.9477 0.9496 0.9467

HS-CNN 0.9720 0.9968 0.9842 0.9313 0.9803 0.9551 0.9872 0.9301 0.9578 0.9635 0.9690 0.9657

LMFN 0.9714 0.9776 0.9745 0.9601 0.9498 0.9549 0.9570 0.9654 0.9612 0.9628 0.9643 0.9635

SPRN 0.9511 0.9936 0.9719 0.9239 0.9482 0.9359 0.9608 0.9252 0.9427 0.9452 0.9557 0.9501

HPDM-SPRN 0.9902 0.9681 0.9790 0.9257 0.9424 0.9340 0.9455 0.9341 0.9397 0.9538 0.9482 0.9509

DBSACaps 0.9780 0.9936 0.9857 0.9765 0.9572 0.9668 0.9636 0.9783 0.9709 0.9727 0.9764 0.9745
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Effectiveness of dual branch
In order to validate the superiority of dual-branch feature extraction, three comparative network models were 
designed, namely HybridCaps, SpectralCaps, and SpatialCaps. Among them, SpectralCaps and SpatialCaps only 
use the spectral and spatial branches to extract spectral and spatial features in the feature extraction module, 
respectively; HybridCaps uses a single-branch feature extraction structure. Specifically, three consecutive 3DCNN 
is used to extract the spectral features, and then 2DCNN is used to extract spatial features after reshaping. 
None of the three networks requires a feature fusion module, and thus the capsule network is directly used for 
classification after feature extraction. The experimental results are shown in Table 5.

Table 5 shows that DBSACaps has higher OA and AA than HybridCaps, indicating that compared with the 
extraction of hybrid features with a single branch, extraction of features with dual branches is more favorable for 
the classification of kiwifruit soft rot. In addition, SpectralCaps is more powerful in predicting the category of 
soft rot, while SpatialCaps performs better in predicting the category of health, indicating that spectral features 
may be more important in distinguishing soft rot kiwifruit. Extraction of hybrid features with a single branch 
can improve the classification accuracy of the health category, but decrease that of soft rot, further indicating 
that single-branch extracted hybrid features tend to weaken the spectral features due to mutual interference 
between spatial and spectral features.

Effectiveness of selective attention and capsule networks
To validate the effectiveness of the selective attention module on feature fusion and capsule network classification, 
three comparative network models were designed, namely DBNet, DBSA, and DBCaps. DBNet uses a layer of 
2DCNN and then a fully connected layer to replace the capsule network for classification after dual-branch 
feature extraction. DBSA employs SAModule for feature fusion based on DBNet, and DBCaps does not use 
SAModule relative to DBSACaps. The DBNet and DBSA networks use fully connected layers for classification, 
and thus the loss function uses cross-entropy loss, and DBCaps uses the margin loss function. The experimental 
results are shown in Table 6.

Table 6 shows that DBNet is the benchmark network with the fewest modules, with an OA of 94.95% and an 
AA of 96.06%. Compared with DBNet, the DBSA network has a 0.33% increase in OA and a 0.34% increase in 
AA; compared with DBCaps, the DBSACaps network has a 0.36% increase in OA and a 0.26% increase in AA, and 
the use of SAModule improves the classification accuracy of soft rot images by 1.93%. These results demonstrate 
the effectiveness of SAModule for dual-branch feature fusion.

DBCaps improves the OA by 1.77% and AA by 1.32% compared to DBNet, and DBSACaps increases the 
OA by 1.8% and AA by 1.24% compared to DBSA. Figure 5 shows the acc and loss curves for the validation set 
of these four networks during training. It can be seen that the networks converge faster when using the capsule 
network for classification, and the loss is much smaller than that using the fully connected layer for classification, 
indicating that the capsule network has a significant advantage in the kiwifruit soft rot dataset.

Table 5.  Experimental results of dual-branch effectiveness. Table shows that DBSACaps has higher OA and 
AA than HybridCaps, indicating that compared with the extraction of hybrid features with a single branch, 
extraction of features with dual branches is more favorable for the classification of kiwifruit soft rot. The 
highest value in each column is in bold.

Network Background Healthy Soft rot Average accuracy (%) Overall accuracy (%)

HybridCaps 99.04 97.04 95.50 97.19 96.57

SpectralCaps 99.36 95.64 96.86 97.29 96.61

SpatialCaps 98.08 95.97 95.66 96.57 96.07

DBSACaps 99.36 95.72 97.83 97.64 97.08

Table 6.  Experimental results of selective attention and capsule network effectiveness. Table shows that 
DBNet is the benchmark network with the fewest modules, with an OA of 94.95% and an AA of 96.06%. 
Compared with DBNet, the DBSA network has a 0.33% increase in OA and a 0.34% increase in AA; compared 
with DBCaps, the DBSACaps network has a 0.36% increase in OA and a 0.26% increase in AA, and the use 
of SAModule improves the classification accuracy of soft rot images by 1.93%. These results demonstrate the 
effectiveness of SAModule for dual-branch feature fusion. The highest value in each column is in bold.

Network Background Healthy Soft rot Average accuracy (%) Overall accuracy (%)

DBNet 99.36 95.89 92.93 96.06 94.95

DBSA 99.68 99.10 90.43 96.40 95.28

DBCaps 99.36 96.88 95.90 97.38 96.72

DBSACaps 99.36 95.72 97.83 97.64 97.08
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Experiments on reconstruction network
Capsule networks usually use reconstruction networks to further enhance model interpretability after 
the output of digital capsule layers. In order to explore whether the proposed DBSACaps network needs 
reconstruction networks, three comparison networks named as DBSACapsWithRec1, DBSACapsWithRec2, 
and DBSACapsWithRec3 were designed. DBSACapsWithRec1 uses the reconstruction network in the original 
capsule network, and employs three fully connected layers to complete the reconstruction of images. Since the 
image size used in this paper is 150× 64× 64 , the fully connected layer will cause a large number of parameters. 
Therefore, the DBSACapsWithRec2 network was constructed, in which images are first reconstructed at a 64× 64 
size in the fully connected layer, and then reconstruction of the spectral band dimension is completed using a 
layer of 2DCNN. The DBSACapsWithRec3 network employs the upsampling process in image  segmentation39. 
In the reconstruction process of the fully connected layer, images are first reconstructed at a 32× 32 size, and 
then restored to the size of 64× 64 through transposed convolution, and finally reconstruction of the spectral 
band dimension is completed using a layer of 2DCNN. The experimental results are shown in Table 7.

Table 7 shows that the DBSACapsWithRec1 network directly uses the fully connected layer to reconstruct 
the image, and as a result, the number of parameters increases from 7 to 100 million. Under the limited training 
samples, the classification effect of the network is largely reduced. However, DBSACapsWithRec2, the number 
of network parameters drops significantly to 8 million, and there are also slight increases in OA and AA. In the 
DBSACapsWithRec3 network, the amount of parameters is further reduced, and the classification accuracy 
is close to that of DBSACaps. The OA and AA of the DBSACapsWithRec3 network do not exceed those of 
DBSACaps, and the use of the reconstruction network improves the accuracy of healthy images but reduces that 
of soft rot images. Therefore, the reconstruction network is not used in the proposed network.

Figure 5.  Validation set accuracy and loss curve. (a) shows the acc curves for the validation set of these four 
networks during training. (b) shows the acc curves for the validation set of these four networks during training. 
Different networks are distinguished by curves of different colors.

Table 7.  Experimental results of reconstruction network. Table shows that the DBSACapsWithRec1 network 
directly uses the fully connected layer to reconstruct the image, and as a result, the number of parameters 
increases from 7 to 100 million. Under the limited training samples, the classification effect of the network is 
largely reduced. However, DBSACapsWithRec2, the number of network parameters drops significantly to 8 
million, and there are also slight increases in OA and AA. In the DBSACapsWithRec3 network, the amount 
of parameters is further reduced, and the classification accuracy is close to that of DBSACaps. The OA and 
AA of the DBSACapsWithRec3 network do not exceed those of DBSACaps, and the use of the reconstruction 
network improves the accuracy of healthy images but reduces that of soft rot images. Therefore, the 
reconstruction network is not used in the proposed network. The highest value in each column is in bold.

Network Parameters Background Healthy Soft rot Average accuracy (%) Overall accuracy (%)

DBSACapsWithRec1 125,793,752 99.36 96.38 95.34 97.03 96.25

DBSACapsWithRec2 8,005,380 99.36 95.07 96.86 97.10 96.36

DBSACapsWithRec3 7,422,574 99.36 99.10 94.13 97.53 96.90

DBSACaps 7,135,312 99.36 95.72 97.83 97.64 97.08
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Conclusion
In this study, hyperspectral imaging system and deep learning were combined for kiwifruit soft rot disease 
detection. And a dual-branch classification model based on attention and capsule networks is proposed according 
to the characteristics of the kiwifruit soft rot disease dataset. The proposed network avoids the mutual interference 
of the two types of features by separately extracting the spatial and spectral features using dual branches. In 
addition, in the feature fusion stage, the attention mechanism is used to redistribute the weights of different 
features, and in this way the network pays more attention to the features with greater contributions to the 
classification results. Finally, the use of capsule networks effectively reduces the training loss. Compared with 
other image classification networks, the DBSACaps network has better classification performance on the kiwifruit 
soft rot dataset. This study experimentally demonstrates the feasibility of using deep learning and hyperspectral 
images for soft rot classification of kiwifruit, providing additional support and possibilities for fruit disease 
detection. However, this data was based on a single cultivar, future work will involve collecting kiwifruit samples 
of various qualities from different regions for testing. This will help in adaptively adjusting model parameters to 
broaden the model’s applicability.

Additionally, the hyperspectral images in this study contain 150 bands, resulting in substantial data storage 
requirements. Future research will explore the selection of spectral bands to achieve higher accuracy with fewer 
bands. This approach will also consider how to maintain model accuracy with fewer samples, potentially aiding 
in the development of cost-effective multispectral cameras.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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