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Engineering is evolution: a perspective on
design processes to engineer biology

Simeon D. Castle 1 , Michiel Stock 2 & Thomas E. Gorochowski 1,3

Careful consideration of how we approach design is crucial to all areas of
biotechnology. However, choosing or developing an effective design metho-
dology is not always easy as biology, unlike most areas of engineering, is able
to adapt and evolve. Here, we put forward that design and evolution follow a
similar cyclic process and therefore all design methods, including traditional
design, directed evolution, and even random trial and error, exist within an
evolutionary design spectrum. This contrasts with conventional views that
often place these methods at odds and provides a valuable framework for
unifying engineering approaches for challenging biological design problems.

Synthetic biology aims to apply engineering principles and the design
process to create biological systems with new and desired
functionalities1. While it is seen bymany as a young field that promises
a lot, we have, in fact, been making with biology for millennia, most
notably through agriculture and forestry, breeding, and fermentation
of foods and beverages. However, it wasn’t until the turn of the 21st
century that we developed a formal engineering discipline around
biology2–4. There are parallels here with mechanical engineering and
thermodynamics. Mechanical systems had been built for thousands of
years. Still, it was only during the Industrial Revolution thatmechanical
engineering became a fully-fledged discipline, predating and driving
the scientific development of thermodynamics upon which it now
rests5,6. Biological engineering today is in a similar position to where
mechanical engineering was then, lacking the knowledge and models
needed for more predictable design.

Over the last two decades, synthetic biology has made notable
progress towards becoming a mature engineering discipline.
However, we have also been humbled by how difficult it is to
engineer biology. We are still limited to building relatively modest
systems, mostly in model organisms, and success is far from
guaranteed. This is partly due to technical challenges and our
incomplete knowledge of biology. More fundamentally though, it
stems from the complex nature of biosystems. Bioengineers deal
with living systems with long evolutionary histories that grow,
display agency, and have potential evolutionary futures. Existing
bioengineering paradigms that do not acknowledge this fact will

always hold back our ability to engineer biology, regardless of how
advanced our technology and biological knowledge may become.
We, therefore, need a new kind of engineering that leans on dif-
ferent philosophical assumptions, where change, uncertainty,
emergence, and complexity are built in.

A common trend across the field has been to apply classical
engineering principles such as standardisation7–11, decoupling12–17 and
abstraction18,19 in an attempt to tame biological complexity. However,
there has been a conspicuous lack of consideration as to how these
principles should be applied and whether the fact that biology is an
evolved and evolving substrate warrants a different approach. To
consider more deeply how engineering principles and the design
process should be applied to biology, we must first answer some
fundamental questions about engineering and design. What precisely
do we do when we engineer something? What is the design process,
and how does it work? How does applying engineering principles for a
given discipline relate to the substrate it engineers? We need to apply
an engineering mindsight to the design of the engineering discipline
itself.

Biological engineering is meta-engineering
By evolving, biosystems produce and refine themselves, and they have
a purpose. Just as a hammer is designed for and fulfils the purpose of
driving nails, biological objects such as a limb or an enzyme have
evolved to perform tasks at which they must succeed (e.g., enabling a
crucial chemical conversion). Evolution separates biological systems
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from non-biological natural systems20. Bioengineers do not design
simple artefacts; they design systems that are themselves capable of
something like design. It allows, and perhaps even requires, that
bioengineers take a step back and operate at a higher level of
abstraction. We need to become meta-engineers: engineers that
engineer the engineering process itself.

An analogy can be made with photography. Before the camera
was invented, creativity and skill in image-makingwere applied directly
to the construction of the image itself throughmarks left on canvas or
paper (e.g., where to apply brush strokes and which colours to use).
Once the camera was invented, we no longer needed to create the
images ourselves. We could instead construct image-making systems.
Human skill and creativity were still very much present, but simply
applied at a higher level of abstraction (e.g., considering the choice of
subject, lens, shutter speed, and a multitude of other parameters).
Rather than creating an image directly, the photographer carefully
tunes a system and process to create an image theway theywant. After
the invention of photography, questions about image-making took on
a new form.Howdowemake the best camera? Howdoweknowwhich
settings to use to achieve a desired result? What are the principles and
rules for this new image-making art form?21

Engineering design as an evolutionary process
The most commonly taught framework for the design process is the
German systematic method, which describes design as occurring in
three stages: (i) functional, (ii) conceptual, and (iii) embodiment22.
However, anyone who has carried out even a simple design project
knows that it does not follow this simple sequential process. The three
stagesmingle and overlap and are cycled throughmany times (Fig. 1a).
The design-build-test cycle (Fig. 1b), first proposed by management
theorist Kim B. Clark23, is popular amongst synthetic biologists and
captures the iterative nature of the engineering method more closely.
Still, the details of how each stage works and relates to each other are
not always well defined. The idea that design is a process that needs no
explanation is simply assumed.

In perhaps the most theoretically rigorous attempt at explaining
the design process, Armand Hatchuel and Benoît Weil’s CK theory
describes design as existing in two spaces: concept space, and
knowledge space (Fig. 1c)24. Design progresses by translating concepts,
C (design ideas whose viability are unknown), into knowledge, K, in an
iterative process consisting of four “operators” collectively named the
design square. Concepts can generate new concepts through ideation
(C-C operator), concepts can be converted into knowledge through
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Fig. 1 | Schematics of variousmodels of the design process and links to natural
and artificial evolution. aThe basic design cycle of Roozenberg and Eekels9.bThe
design-build-test cycle that is often referred to in synthetic biology. c In CK theory
byHatchuel andWeil8, design is a formof knowledgegeneration that takesplace via
various operations from concept space to knowledge space, in a cyclical process.
d Connections between natural evolutionary processes (bottom) and artificial

evolutionary processes (top). While natural evolutionary processes harness the
innate capabilities of biological populations to evolve through variation, their
genotype to phenotype map, and selection, artificial evolutionary processes can
modify these core elements using synthetic biology and other engineering tools.
This enables the intent of the biological engineer to be embedded within the
evolutionary process itself, even though natural evolution has no intent of its own.
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prototyping (C-K operator), knowledge can feed new ideas (K-C
operator), and knowledge can be expanded, e.g., through research
(K-K operator). By separating the spaces based on logical status, CK
theorycan incorporate creativity via exploring the concept spacewhile
simultaneously expanding and incorporating domain knowledge.

Historian Walter Vincenti’s book ‘What engineers know and how
they know it’, is to our knowledge theonly thorough attempt atplacing
the engineering process on a firm epistemological footing25. He uses a
wealth of case studies fromaviation todemonstrate that engineering is
its own form of knowledge generation and not simply applied science,
concluding that the design process takes place through a cyclic pro-
cess of idea generation and “vicarious testing”25.

All these descriptions of the design process have a common core.
They describe design as a cyclic iterative process where multiple
concepts or ideas are either modified or recombined, and then pro-
duced physically (i.e., a prototype developed) or virtually through
simulation or imagination to form candidate solutions that can be
tested. Theutility (ability to solve thedesignproblem)of thesevariants
is then assessed, and the best candidates are taken forward for further
rounds of iteration. This process is directly analogous to biological
evolution, where information about variant solutions is encoded in
DNA as genotypes, expressed in the physical world via gene expression
and development to produce phenotypes, and tested in the environ-
ment (Fig. 1d). Sufficiently functional solutions are then taken forward
for future rounds of iteration by natural selection. It is therefore not
surprising that biological evolution has successfully been applied to
solve difficult engineering problems, both in silico with genetic algo-
rithms commonly used to generate design solutions (e.g., novel
satellite antenna shapes26) and in the lab where directed evolution is
widely used to develop and improve enzymes27. Biological evolution is

a powerful design tool because biological evolution and design follow
the same process.

More broadly, evolution is further evident at the macro scale of
the entire technosphere. Technologies have been shown to progress
through the modification and recombination of existing technologies
that are then selected for by free market economics28. Macro-
evolutionary trends are also apparent in technology just as they are
in biology: new “species” of technology can arise, technologies
become extinct, and all technologies can ultimately be traced back
through a lineage that starts with the first prehistoric tools29.

The evolutionary design spectrum
We propose that all design approaches can be considered evolu-
tionary: they combine some form of variation and selection overmany
iterations. This allows them to be characterised by the number of
variants (the population size) that can be tested simultaneously
(throughput) and how many design cycles/generations are needed to
find a feasible solution (time). The product of these two numbers is the
total number of variants that canbe tested and is the exploratory power
of the design approach. This will always pale in significance compared
to the vast design space for anybiological systemmorecomplex thana
short peptide. Despite this tiny sampling, solutions can still be found in
the design space for two reasons: (i) exploration – design approaches
learn from previous iterations as they go, and (ii) exploitation – design
approaches are constrained and guided by prior knowledge.

These two forms of learning vastly reduce the exploratory power
needed for a design approach to find feasible solutions. Exploration
is equivalent to the search performedby natural evolution as it roams
the fitness landscape. Natural systems also exploit prior knowledge
in the form of the unbroken lineage of their past; every generation of
which has proven to be both heritable and adaptive. Exploitation is
therefore linked to the evolution of evolvability30. Through evolva-
bility, biosystems exploit past evolution in developing body plans,
symmetries, functional modules, and other mechanisms that con-
strain and bias evolution to increase the likelihood of adaptive
change. Furthermore, mechanisms, such as learning and epigenetics,
which pass information from one individual to the next, are of great
importance in evolution31,32. Leveraging either form of knowledge
decreases the exploratory power needed by the design process and,
thus, the time and throughput required to reach performant solu-
tions. Different design processes leverage exploration and exploita-
tion to different extents and have different practical limits on
throughput and time. Though natural evolutionary processes have
no intent (i.e., long-term goal), they do have a purpose to increase
fitness. This is well illustrated by the Luria-Delbrück experiment,
which suggested that adaptation is not due to deliberate genetic
mutations in response to selective pressures but instead arises by
selecting for random mutations already present in the evolving
population33. Evolution by natural selection, therefore, lacks the
intent we would typically ascribe to the concept of design. However,
in artificial evolutionary systems (e.g. directed evolution), the
bioengineer can steer the underlying processes toward an intended
goal because they control how variation and selection occur, as well
as the genotype to phenotype map (Fig. 1d). They can indirectly
install their intent through design of the evolutionary process itself.

Any designmethodology can thereforebe considered a point on a
two-dimensional evolutionary design spectrum (Fig. 2) where one
dimension is the throughput of the methodology (i.e., how many
designs can be created and tested at once) and the other is generation
count (i.e., the number of iterations, cycles, generations, that the
design process is made up of). Methodologies with high throughputs
and high numbers of design cycles have high exploratory power.
Conversely, methodologies with lower throughputs and design cycles
have lower power and require greater exploitation of prior knowledge
and greater evolvability to produce successful designs.
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Fig. 2 | The evolutionary design spectrum. Design approaches in the bottom left
have low numbers of variants (population sizes) and design cycles (generations).
These require significant prior knowledge for successful design with an oracle able
to create a perfect design in a single attempt. Design approaches at the top right
make little use of prior knowledge and learning, require less evolvability, and their
search is less constrained. Trial and error (with no prior knowledge), falls at this
extreme, where hyper-astronomical scales are required to design non-trivial sys-
tems. Between these extremes, you have all other design methods. In all these
cases, prior knowledge can be used to constrain the design space and learned
knowledge can dynamically guide the process on the fly. Furthermore, automation
and robotics can help to enhance evolutionary design processes, increasing their
design throughput and the number of generations that can be feasibly run.

Perspective https://doi.org/10.1038/s41467-024-48000-1

Nature Communications |         (2024) 15:3640 3



Adesignmethodologymust have sufficient specific evolvability to
generate phenotypic functions that meet design requirements within
the practical constraints of resources and time. This means that for
design success, efforts must be made to either maximise evolvability
or exploratory power (or both). To improve specific evolvability,
exploitation of prior knowledge, ad-hoc exploration, and engineering
principles like modularity and hierarchy can be used to constrain the
evolutionary landscape to improve the efficiency of search. Take, for
example, the simple design problem of creating a synthetic promoter
with a given specification (e.g., a desired transcription initiation rate).
This could be designed using a variety of methods:

• Trial and error (hyper-astronomical population size and number
of design cycles): Our starting material is a pool of random
sequences, there is no prior knowledge about promoters, and no
knowledge is carried from one generation to the next. Finding the
optimal design requires random trial and error through the entire
search space. Even for this small genetic part, the design space is
in the order of 1060. We would therefore need hyper-astronomical
population sizes and timescales for all but the simplest systems.
However, if we instead merely need to find a minimally
satisfactory solution, there are some cases where a design space
is sufficiently populated for this strategy to work. For example,
10% of randomly selected DNA sequences of length 100
nucleotides have been shown to display some promoter activity34.

• Constrained trial and error (moderate population size and
number of design cycles): When employing a trial-and-error type
approach, it is common for significant amounts of prior knowl-
edge about the system to be used to cut down the search space to
a size that can be reasonably assessed through a feasible number
of design cycles. In promoter design, this would relate to a core
template sequence that is known to have some basal level of
activity, with design variants exploringmutations in a small region
known to affect function (e.g., RNA polymerase binding affinity).
While this makes trial and error a feasible approach, the diversity
of the designs is highly limited and knowledge from one design
cycle does not help inform the next.

• Continuous evolution with selection (large population size, large
number of design cycles): If a way of coupling utility to survival
can be found, e.g., by placing the promoter design candidates
upstream of an essential gene in the chosen organism, then con-
tinuous evolution is possible35–37. This means population size is
limited by what can be cultured, not what can be screened, and
generation counts are limited by how long the experiment can be
run. Thus, hundreds or even thousands of generations are feasible
for fast-growing organisms like Escherichia coli 38.

• Directed evolution via screening (moderate population size,
moderate number of design cycles): Alternatively, we could use
prior knowledge to select an imperfect promoter as a starting
point and learn from each generation by choosing improved
candidates. For example, the promoter can be coupled to a
fluorescent reporter gene and screened via cytometry39. This way,
we could find satisfactory designs withmoderate population sizes
(e.g., hundreds or thousands).

• Massively parallel reporter assays (moderate/large population
size, single design cycle): Special cases of evolutionary design
methods are those with a generation count of one and often a
highly constrained design space. Though no continuous learning
is possible, design solutions can be found if prior knowledge of
the systems can be combined with sufficient throughput. So-
called massively parallel reporter assays (MPRAs) often involve
fluorescence-activated cell sorting (FACS) andDNA sequencing to
reconstruct the evolutionary landscape. In this example, a library
of potential promoter designs could be used to drive the
expression of a fluorescence reporter gene40. Other forms of
MPRA use barcoded RNA sequencing to measure transcription

rates of variants in a library directly41. In principle, these
approaches can be expanded into multiple generations by
repeating the process, though this may be costly and labour-
intensive.

• Combinatorial design (small/moderate population size, single
design cycle): When designing larger or more complex systems,
working at single nucleotide resolution may be inefficient. Prior
knowledge and abstraction canbe used toworkwith genetic units
larger than single nucleotides. For example, if various domains of
a promoter are known (e.g., transcription factor binding domains,
sigma factor binding domains, TATA box), then these domains
can be abstracted into parts that can serve as “genetic units” to be
assembled in a combinatorial fashion and the resultant library
screened for the best candidates. This strategy depends on
abstraction to create complex forms of genetic recombination
that allow for search to take place in a highly constrained
design space.

• Traditional design (small population size, small number of design
cycles): The traditional design process leverages prior knowledge
of the design problem built up through many generations – both
formal codified knowledge (e.g., models), tacit knowledge, and
intuition to constrain the design space. Design therefore takes
place needing only small numbers of variant concepts and itera-
tions. For example, a traditional or rational design approach may
involve using existing knowledge of natural functional elements
within promoters and mathematical modelling to construct a
synthetic promoter that may be iterated throughmultiple rounds
of testing and improvement42.

• Data-centric design (small to large population size, small number
of design cycles): The data-centric design approach can be seen as
a variant of the traditional design that often employs high-
throughput assays (e.g., MPRAs). Typically, a predictive model is
initially trained on existing data sets to estimate how well a new
variant is expected to work. Models range from a basic linear
regression tomore complex artificial neural networks that, for the
promoter example, would take a DNA sequence as input and
return the expected promoter strength. Datasets used for training
could contain naturally occurring variants or synthetically
designed and synthesised variants that have been characterised
in the lab. If searching for a specific promoter strength, themodel
can alsobeused to suggest variants that areknown to improve the
model (e.g., exploring novel areas of design space) in a process
called active learning43. This type of design process is often
coupled with Design of Experiment (DoE) or Bayesian Optimiza-
tionmethods to optimally select new variants to build and test for
subsequent design cycles to maximise the information learnt
about the relationship between factors of a design/
experiment44–46. Furthermore, the application of liquid handling
robotics allows for far greater numbersof design cycles at the cost
of smaller population sizes47.

• Oracle (population of one, single design cycle): If it were possible
to have complete knowledge of a system before beginning the
design process, we could select the ideal design without any
testing. Such an oracle could perform the design process in a
single generation with a population size of one, immediately
producing an optimal promoter base-for-base.

Choosing a design approach
As outlined above, different design methods have different practical
limits for population size and generation count. This means they
leverage exploration and exploitation to differing extents and thus
have varying degrees of exploratory power. In addition, there are
practical limits to population size and generation count depending on
the type of system being designed and the nature of the design pro-
blem. For example, amethodology for designing a complex biosystem
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such as a multi-component genetic circuit may have limited explora-
tory power due to practical constraints on throughput and time.
Conversely, a simple system such as a small protein whose function
can be selected for with a continuous growth assaymay be carried out
in a large population for many generations quite readily. The design
process chosen must, therefore, match the constraints of the design
problem. As exploratory power reduces, specific evolvability must
increase. This can be done through leveraging prior knowledge or
applying known engineering principles. However, there may be other
ways of improving specific evolvability for specific designs problems,
such as by engineering genetic variation48.

If evolutionary design approaches are to be used to their full
potential for engineering biology, methods to generate and char-
acterise libraries of greater genetic diversity will need to be developed.
These libraries should have structural and functional variety and go
beyond nucleotide variation or the simple interchanging of parts.
What form of synthetic variation is most important and how artificial
genetic units should be engineered and selected to maximise the
evolvability of resultant populations depends on the size and com-
plexity of the genetic system tobe evolved andon technical limitations
in terms of generating and reproducing populations, and measuring,
screening or selecting the functions of individual genotypes. Different
types of genetic systems across scales require different evolutionary
design approaches, falling into different regions of the evolutionary
design spectrum.

Generally, a more complex biosystem will have greater technical
limits on population size and generation times. Therefore, as the
complexity of a biosystem increases, the appropriate evolutionary
design approach shifts to a point between traditional design and trial
and error in the evolutionary design spectrum. Complex systems are
difficult for the human mind to design via traditional approaches
(bottom left, Fig. 2), but useful results are also unlikely to occur if trial
and error is used due to the vastness of the design landscape. The
application of deep learning approaches that can exploit high-
dimensional gradients inferred from data to guide a design process
(i.e., data-centric design) may be able to help in these situations.

In the following sections, we look at how the design methodolo-
gies described above can be applied in different ways to engineer
biological systems across scales.

Designing genetic regulatory elements and proteins
Regulatory elements like promoters, ribosome binding sites (RBSs)
and terminators have relatively small genotypes making them amen-
able to direct oligo synthesis or nucleotide mutagenesis of a starting
template via error-prone PCR. Activity levels can be coupled to fluor-
escence to enable selection via FACS49, or expression of an antibiotic
resistance gene50 or DNA polymerase51 to affect the reproductive
success of the underlying design. This allows for enormous population
sizes, where even a single generation may yield good results.
Nanopore-baseddirect-RNA sequencing has alsobeenused tomonitor
the performance of thousands of transcriptional regulators effectively
from largemixed pools of diverse combinatorically assembled designs
in a single experiment52. Beyond screening, there has been some suc-
cess in exploiting our knowledge of the modular structure of these
biological parts and keymotifs within them (e.g., the crucial role of –10
and –35 sites in Escherichia coli promoters). However, in virtually all
examples to date, current models cannot accurately predict the phe-
notype from genotype, resulting in the need for nucleotide-level
mutations of moderately performant designs to achieve a desired
functionality53,54.

Proteins havebeen extensively designed using directed evolution.
Sequence lengths range frompeptides of a few amino acids, which can
potentially be explored exhaustively55, but are typically on the order of
~1–3 kb long when encoded in DNA. At this scale, single nucleotide

mutations are an effective design strategy, especially if focused on
specific target domains or regions.Oneof themostwidely used in vitro
methodologies for this task is phage-assisted continuous evolution
(PACE)37, which enables rapid cycles of evolution by having the gene of
interest encoded within a bacteriophage and linking its activity to the
fitness of phage replication. Continuous in vivo evolution platforms
like OrthoRep56 or eMutaT757 are also ideally suited to this task. How-
ever, for complex, multi-domain proteins, the addition of structured
recombination considering domain boundaries can significantly
improve evolvability, as beneficial mutations across different modules
can be effectively combined58,59. Screening can be performed using
in vitro methods with large populations60 and a handful of design
cycles are typically sufficient to find improved designs.

There is also growing interest in leveraging the power of auto-
mation to increase throughput and, thus, exploratory power61. Inte-
gration of advanced liquid handling robotics and high-throughput
assayswith existing continuous directed evolutionplatforms like PACE
offers the ability to greatly expand the number of evolutionary tra-
jectories that can be simultaneously explored62–64. These provide
valuable information regarding the reproducibility of these design
processes and help to improve overall reliability. The use of feedback
control within these systems can also help to accelerate evolution by
reshaping fitness landscapes dynamically over time to support effec-
tive adaption of the population62.

Outside the lab, emerging machine learning methods for protein
structure prediction allow formore traditional and data-centric design
approaches to be applied. These can supplement, or in some simple
cases, surpass the need for further directed evolution65–67. However,
designing complex molecular dynamics and unstructured regions
remains challenging for computational models. In these cases, com-
putationally efficient coarse-grainedmodels able to capturequalitative
features of protein dynamics can be used to provide semi-functional
starting points68, and high-throughput automated directed evolution
applied for further refinement of the designs.

Designing multi-gene circuits and pathways
Genetic circuits and metabolic pathways are often composed of
numerousproteins and regulatoryelements that together enablemore
complex functionalities. Apart from the DNA encoding them being
much longer (typically tens of kilobases long), their multi-component
structure means that hierarchy begins to play a role. Specifically, var-
iation can occur at the nucleotide level, or modifications can be made
at higher levels of organisation (e.g., the swapping of a transcription
factor or entire promoter) enabling larger jumps in the
genotype space.

To engineer genetic circuits, the most common approach to date
has been through model-guided design to find suitable regulatory
topologies that implement a desired logic, and then the application of
trial and error to vary the components used and introduction of
mutations in key regulatory elements to finally tune gene expression
levels such that anoverall function is optimised. Introducing insulating
elements like self-cleaving ribozymes into sub-circuits (e.g., simple
logic gates) has enabled traditional design approaches topush forward
the complexity of the circuits we can build. However, limits are soon
reached,making the design of functional genetic circuits composed of
more than ten regulators a challenge. A further difficulty in employing
approaches like directed or continuous evolution is the multi-state
nature of these systems, where multiple inputs and outputs exist.
Unlike simple functional screens that can select designs based on a
single output measurement (e.g., fluorescence or enzymatic activity),
genetic circuits often require a specific input-output response. These
are difficult to screen because of the combinatorial explosion in the
number of possible states that must be tested as the number of inputs
and outputs grows. Some attempts have been made to overcome this
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for simple cases (e.g., a single input and output) by removing the need
to carry out cell sorting and using changes in growth rate followed by
deep sequencing50, but the population sizes will always be funda-
mentally limited, highlighting the need for traditionalmodel-guided or
data-centric design approaches in this area.

In contrast, the engineering ofmetabolic pathways often employs
a different approach becausemaximising a single outputmetabolite is
the goal. In this context, the topology of the pathway is typically fixed
(i.e., a specific set of chemical conversions is required), making it well
suited to a combinatorial design approach. Sets of enzymes for each
step in the pathway can be combined in different ways and genetic
regulatory parts with varying activity levels are used to create popu-
lations of designs where the set of required enzymes are expressed at
differing levels. Because screening can be costly to perform in high
throughput (although more feasible than for multi-state genetic cir-
cuits), the combinatorial approach can be guided by DoE methods to
ensure the most information is learnt after each design cycle45.

An interesting alternative to combinatorial design for metabolic
pathways is the use of in vitro SCRaMbLE (Synthetic Chromosome
Rearrangement and Modification by loxP-mediated Evolution). In this
context, the genes encoding each enzyme of the pathway are con-
sidered as individual units that can be copied, deleted and their
orientation within the pathway flipped by the SCRaMbLE system. This
allows for the rapid generation of libraries of metabolic pathway var-
iants with diverse expression levels for each unit69. SCRaMbLE could
also be applied to gene regulatory networks. However, the enormous
design space for most genetic circuits (far exceeding those of meta-
bolic pathways) means that the random SCRaMbLE-based search may
not always be effective unless further constrained.

Designing whole cells
Attempting to design entire cells is yet another step up in terms of
complexity, with the need to simultaneously coordinate many differ-
ent cellular processes tomaintain viability and fitness. In this setting, a
few mechanistic ‘whole cell’ models of well-studied organisms have
been built that recapitulate general cellular phenotypes and can be
used to support traditional model-based design approaches at this
scale70–72. These models have guided host modifications for improved
metabolic engineering73 and even been used to generate minimised
genomes in silico74. While these models are sometimes useful, their
accuracy is severely lacking due to our limited knowledge of how cells
work andmissing parameters. It therefore remains to be seen howwell
predictions from these models generalise outside of the conditions in
which they were built. The difficulty in building such models also
highlights the need to embrace evolutionary design approaches that
rely less on prior knowledge and actively search a design space for
desired features.

Beyond computational approaches, long-term experimental
evolution studies have shown that novel traits can emerge through
natural variation and selection. However, the timescales for dis-
covering these traits can be incredibly slow, requiring thousands of
generations75. The emerging field of synthetic genomics76 offers
routes to accelerate this process and overcome our lack of knowl-
edge when designing at a cellular scale. Efforts to synthesise and
refactor entire genomes opens opportunities to unravel the core
principles underlying genome structure and operation77–79. It also
allows for the creation of genomes with new capabilities. For exam-
ple, the Sc2.0 project is resynthesizing and refactoring the Sacchar-
omyces cerevisiae genome to extract and consolidate typically
unstable elements (e.g., tRNAs80), and has introduced genome-wide
modifications to enable SCRaMbLE’ing of genome architecture for
accelerated in vivo generation of genomic diversity81. This system has
already demonstrated its ability to evolve strains optimised to pro-
duce desired chemicals82 and has provided insights into the incred-
ible plasticity of the S. cerevisiae genome83.

Designing microbial communities and ecosystems
Many biological processes, such as the nitrogen cycle, arise via the
collective action of multiple species. Microbial communities are
composed of many different types of organisms that compete, coop-
erate and tolerate each other. Microbiome engineering84 is concerned
with finding the community that can perform a desired function, such
as degrading a pollutant85, increasing digestive health/capabilities86,87

or making smart materials88 and developing methods to stabilise its
existence within the broader environment in which it will be deployed
(e.g., the human gut).

Artificial selection (a form of directed evolution) can be used to
evolve communities directly89. The selection takes place at the popu-
lation level rather than the individual organism.Because itworkswith a
population of populations, the collective is often referred to as ameta-
population – an important concept in ecology90,91. Population selec-
tion was pioneered in selecting microbial communities in the soil to
increase plant biomass89 and has since been combined with mathe-
matical models to guide the selection of promising co-cultures92,93. A
challenge with the approach is that while microorganisms are, in
principle, free-living and can be combined at will, this does not mean
there is an incentive for functional associations to form. Another issue
is handling the dynamics of the communities. For example, when a
contributing species goes extinct or fast-growing organisms take
over94.

To enable the engineering of stable communities, autotrophic
dependencies can be exploited and engineered95 or other forms of
dependency and interaction used96,97. In this context, traditional
model-based design approaches have proven useful in sufficiently
capturing the dynamics of the well-defined communities built in the
lab. Deploying these communities into real-world environments,
though, remains a significant challenge due to a lack of knowledge
regarding the interactions present within complex and diverse native
communities that might impact the function of engineered commu-
nities and their ability to stably associate. To overcome this, physical
separation via encapsulation of engineeredmicrobes has been used to
lessen competitive effects and safeguard against unwanted release98,99.
Looking forward, a mixture of traditional design and evolutionary
approaches will likely be required to develop sufficiently robust sys-
tems to handle the complexity of real-world microbial communities
and ecosystems.

Towards the effective design of engineered biology
Engineering biology is vastly different from other engineering dis-
ciplines. This is not only because living matter has the inherent
capacity to evolve but also because human-built “machines” (e.g.,
cars, computers, etc.) are typically organised differently than biolo-
gical systems100. Both machines and biological organisms contain
hierarchical levels. However, machines are designed so that every
level is predictable and can be understood independently from other
levels. For example, formulating rocket fuel requires distinct exper-
tise from designing a rocket’s navigation system, and while both are
required to build a rocket, they can be considered independent
during design. In contrast, living systems have organisational levels
that are highly interconnected, allowing small mutations to affect
broad phenotypes in complex ways. Furthermore, it is common for
higher levels or organisation to influence lower ones via downward
causation, and human-built machines typically show a hardware-
software duality, whereas biological components have blurred lines
of information storage and processing (e.g., RNA being a genetic
information carrier and a catalytic entity in its own right)101. Tradi-
tional design works with blueprints, which are typically a one-to-one
mapping to the artefact built, while living systems have highly non-
linear genotype-phenotype maps that are executed via develop-
mental processes and influenced by environmental factors.
These properties mean that engineering frameworks based on
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reductionism are challenging to apply102. In contrast, evolution is
naturally adept at handling these properties because it acts holi-
stically on the system within its wider environment.

These difficulties mean that adopting a single design methodol-
ogy for all bioengineering tasks is likely impossible. Instead, combining
more traditional design cycles that use model-based design with high
levels of abstraction, may allow a targeted population of designs to be
generated upon which more classical evolutionary design approaches
can be used to tune and refine partially functional or suboptimal
designs103. Such hybrid methods are already being applied to minimal
genome design, helping to accelerate the generation of a minimal cell
with reasonable fitness104. Beyond combining design methods, instal-
ling new abilities for cells to design themselves through guided
mutations57 and rearrangements105 of their genetic material could
further accelerate the design process (e.g., systems like SCRaMbLE).
This would work with biology’s innate capacity to evolve, while also
allowing us to constrain the paths evolution can take such that prior
knowledge can bolster the overall exploratory power of the system.
Living systems also tend to evolve to become more evolvable, e.g., by
making them more robust or modular106. For example, certain muta-
tions can stabilize a protein andmake it more susceptible to beneficial
mutations107,108. Hence, it may be possible to engineer such systems so
that they are easier to improve.

Another fundamental challenge that is typical when engineering
biology is the definition of a successful design. In most engineering
fields, the goal is tomaximise some desired utility function. However,
with biology, there is always a trade-off in the utility of the design
(i.e., how well it performs the task we require) and the fitness of the
resultant biological system (i.e., its reproductive rate). We previously
developed the ‘evotype’ as a framework for capturing the evolu-
tionary capacity of a biological design and explicitly highlighting this
trade-off48. Stated differently, when designing with living matter, we
do not only have to consider how well it works, but we also need to
consider how it will adapt and evolve during use. Note that this
concept integrates the top-down objective (intent) of the bioengi-
neer in the utility with the bottom-up evolutionary aspects captured
by fitness.

While we can never fully escape evolution when designing and
deploying engineered biological systems, its impact can sometimes be
heavily reduced. Recent studies have demonstrated that cooperative
assembly of transcription factors can confer regulatory specificity and
long-term genetic circuit stability109, and the development of highly
characterised and insulated landing pads in genomes can both
increase the predictability of genetic parts and reduce selective pres-
sures tomutate or remove these foreign elements once installed17. In a
similar way, dynamic regulation of the burden a genetic circuit impo-
ses on a host through feedback control have also proven successful in
extending the functional lifetime of synthetic genetic circuitry and
enabling improved production yields110. This effort to reduce burden
mirrors how computer software needs to be optimized to best exploit
underlying hardware. For example, mobile apps are often coded to
best utilize lower-power processor instructions and minimize con-
tinuously running background computations to conserve battery life.
However, the burden in these settings manifests differently. While
burden in biological systems can lead to mutations that change the
functionality of the genetic circuit, the burden of code running on an
electronic computer mainly affects performance and resource usage.
In living systems, the “software” component influences how the
“hardware” evolves.

In conclusion, evolutionary theory is doubly important when
engineering biology: not only is the substrate of synthetic biology a
result of evolution, engineering itself can be seen as a form of evolu-
tion. It turns out that evolutionmust be understood as the foundation
of the engineering method, as well as the creator and driving force of
the living substrate itself. Though biological evolution and

technological evolution may seem very different, they are fundamen-
tally the same process. Recognition of this opens the potential for a
new way of thinking about how to engineer biology and effectively
“design” in the context of living systems.
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