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Anti-Hebbian plasticity drives sequence
learning in striatum
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Gaëtan Vignoud1, Laurent Venance 1,3 & Jonathan D. Touboul 2,3

Spatio-temporal activity patterns have been observed in a variety of brain areas in spontaneous
activity, prior to or during action, or in response to stimuli. Biological mechanisms endowing neurons
with the ability to distinguish between different sequences remain largely unknown. Learning
sequences of spikes raises multiple challenges, such as maintaining in memory spike history and
discriminating partially overlapping sequences. Here, we show that anti-Hebbian spike-timing
dependent plasticity (STDP), as observed at cortico-striatal synapses, can naturally lead to learning
spike sequences. We design a spiking model of the striatal output neuron receiving spike patterns
defined as sequential input froma fixed set of cortical neurons.We use a simple synaptic plasticity rule
that combines anti-Hebbian STDP and non-associative potentiation for a subset of the presented
patterns called rewarded patterns. We study the ability of striatal output neurons to discriminate
rewarded from non-rewarded patterns by firing only after the presentation of a rewarded pattern. In
particular, we show that two biological properties of striatal networks, spiking latency and collateral
inhibition, contribute to an increase in accuracy, by allowing a better discrimination of partially
overlapping sequences. These results suggest that anti-Hebbian STDP may serve as a biological
substrate for learning sequences of spikes.

Nerve cells generate spatio-temporal patterns of action potentials, generally
construed to convey information in the central nervous system. While
spiking sequences have indeed been observed on a variety of timescales and
in distinct brain areas1–7, the biological mechanisms employed to encode,
store a sequence or distinguish between different sequences are still largely
unknown. At behavioral timescales (seconds), episodic experience is by
nature a sequence of events8. In the brain, this results in the generation of
spatio-temporal spike sequences, as for instance with hippocampal place
cells activating following the movement of the animals1 or with action-
dependent spike sequences emerging in a virtual navigation-decision task in
parietal cortex2. Generating dynamical output also requires the formation of
sequential cortical activity, as observed in bird’s ability to repeat spatio-
temporal sequences over tens of seconds and with temporal structure
maintaining millisecond accuracy within synfire chains3, or more generally
the generation of sequential activation of neural assemblies4. At shorter
timescales, cortical spike sequences lasting tens of milliseconds were also
reported in the relative timing of spikes between sequences in oscillating
neural assemblies, where spike ordering and latencies depended on the
stimulus5, in sequential activation after an up state transition6 in response to

a single spike9, or even in spontaneous patterns of activity10. Theoretically,
networks with Hebbian synaptic plasticity have the ability to generate
sequential activity or to complete sequences they have been exposed to11–15.

Interpreting this ubiquitous sequential spike activity requires neural
mechanisms to identify and distinguish sequences, so output neurons may
fire in response to specificpatterns and remain silent for others. Identifying a
sequence is a complex task that requires integrating signals on a timescale of
several spikes. Moreover, it requires distinguishing sequences that share
similar sub-patterns, for instance sequences that are initially identical and
only differ in their last spikes; the learning of such overlapping sequences
could even sometimes appear incompatible.

Machine learning algorithms were proposed for the selection of spike
sequences16. In that domain, a large body ofwork has addressed the problem
of generating a specific target output spike train in response to a sequence of
spikes. Methods proposed relied on error backpropagation17, high-
threshold projection18, Remote Supervision Methods (ReSuMe)19, or, for
the Chronotron20, smooth modifications of the Victor & Purpura distance
for spike trains to compute error terms, were shown to be successful in
performing those tasks. Closer to the problem at hand, some algorithms
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were designed to decode statistical information from spike trains, or even to
simply spike in response to particular sequences of input spikes. Those
techniques, which include the Tempotron21,22, and its extensions16,23, were
designed to discriminate specific structures of spike sequences (inparticular,
patterns defined by the latency between pre-synaptic neurons spikes or
synchrony) and rely on a computational learning rule that potentiates
synapses associated with specific (rewarded) patterns when the neurons did
not spike, and depress synapses of non-rewarded patterns if the output
neuron spiked in response to the pattern. The accuracy of the tempotron
was then estimated by the fraction of rewarded pattern presentations
associated with a spike fired at any point during a sequence. These early
work provide a solid basis for testing sequence learning that we use and
extend here.

Our study takes an opposite approach to machine learning and com-
putational algorithms that looked for efficient algorithms to process
sequences with spiking neurons. Here, we model the biological learning
rules observed in the striatum and explore the type of patterns that can be
learned from them. The dorsal striatum, the main input structure of the
basal ganglia, receives excitatory inputs from all cortical areas and
most thalamic nuclei24 and has been shown to play a major role in action
selection25–28 and to be a prominent site for memory formation and pro-
cedural learning28. In this variety of tasks, it is expected that the striatumuses
information from sequences of evidence to take a decision29–31. Contrasting
with associative recurrent cortices that are efficient in recollecting missing
information when presented with partial patterns, the striatum is a largely
feedforward network, that combines a variety of cortical inputs to produce
an output. Corticostriatal synapses display anti-Hebbian Spike Timing
Dependent Plasticity (STDP) in vitro32–36 or in vivo37,38, whereby a cortical
spike followed by a striatal medium spiny neuron (MSN) spike leads to a
depression of the associated synaptic weight. While many computational
studies have investigated the impact of Hebbian STDP, only a few studies
considered anti-Hebbian STDP. Those concentrated on the question of
stability of synaptic weights39–41, compensation of dendritic attenuation42,
cancellation of correlated signals and novelty detection43,44, in particular in
the electrosensory systemof themormyrid electricfish.As shown inall these
works, when presentedwith correlated activity, anti-Hebbian STDP leads to
thedepressionof the associated synapses. This phenomenoncouldnaturally
endow the systemwith the patience necessary to listen to full sequences and
identify specific ones.

Our study explores the possible role of cortico-striatal anti-Hebbian
STDP, reported experimentally in regions typically associated with proce-
dural learning36, in the learning of spike sequences.We use a theoretical and
computational approach. To test for different features separately, our
models progress from the simplest to more realistic, which allows an in-
depth exploration of the ability of the biological learning rules to support
sequence learning and the role played by each biological feature in con-
tributing to sequence learning. Our results show that three basic biological

mechanisms observed in the striatum, namely anti-Hebbian learning, spike
latency and collateral inhibition, combined with a reward mechanism, are
particularly efficient for the learning of spatio-temporal spiking sequences.
In particular, we show that the combination of anti-Hebbian STDP with a
simple, non-associative LTP is sufficient for a single MSN to acquire the
ability to distinguish sequences, providing a functional relevance for the
anti-Hebbian STDP learning rules recently observed. Moreover, while the
simplest models of neurons with instantaneous firing can learn sequences,
our simulations show that they tend to spike too early, which is problematic
in particular when learning to distinguish overlapping spike sequences. We
show that this drawback is naturally corrected by incorporating spike
latency and collateral inhibition, two key classical biological observations
fromthe striatal network.This analysis further proposesa functional role for
these two biological observations in the framework of sequence learning,
suggesting that they could contribute to a remarkable ability to identify and
optimize the learning of sequences of spikes that outperforms some artificial
learning algorithms subjected to similar constraints.

Results
Modeling a sequence learning task in striatum
Given a spatio-temporal sequence of cortical spikes, as observed in vivo in
rodents or non-human primates31,45–50, we posit that a MSN has learned to
distinguish between two groups of sequences if it acquires the ability to
selectively spike at or after the end of a subset of sequences and remain silent
otherwise. While basic, this notion of sequence learning is quite distinct
from the literature. Indeed, previousworks focusedon the ability of neurons
to (i) reproduce or complete a target spike train17–20 or (ii) classify a pattern
by spiking at any time during the presentation of the stimulus16,21–23. Our
notion of sequence learning is similar to the latter criterion. However,
imposing theMSN to spike after the end of the sequence allows the learning
of complete sequences and endows the system with distinguishing nested
stimuli. In detail, for any pattern A eliciting a spike, any superpattern of A
(i.e., spike pattern containing A) needs to be in the same class for the
learning task to be consistent. Requiring instead that the MSN spikes at the
end of a pattern presentation opens theway to distinguish such patterns and
respond differently to each of them, thereby allowing to exploit any addi-
tional information contained in a superpattern. From a functional view-
point, task (ii) as well as our task (namely, requiring the MSN to fire after
specific patterns) both relate to the role of the striatal neurons that integrate
cortical correlated patterns and then spike to trigger further downstream
pathways leading to motor processing and eventually, an action.

We explored the ability of striatal networks to do this task using simple,
yet increasingly realistic, mathematical models. MSNs integrate numerous
cortical and thalamic inputs, and act as coincidence detectors, since their
high threshold requires the concomitant arrival of many spikes to induce a
spike, which is fired after a period of latency51,52. Those neurons have been
described in depth, both biologically and computationally, and several
mathematical models were proposed to describe their behavior53–57. Within
the striatum,MSNs produce sparse inhibitory collateral connections among
themselves, which reportedly plays a major role in the regulation of MSN
firings or their overall activity 58–63.

Our approach consists of starting from the most simple setting of a
single MSN receiving many cortical inputs and expressing the type of
cortico-striatal plasticity observed experimentally, and building our way
towardsmore complexmodels of two-neuronnetworkswithnon-linearities
and adaptation, assessing in each case the performance of the system. All
models are defined in the “Material and Methods” section.

We started by modeling the neuron as a linear integrate-and-fire
neuron (M1),with parametersfitted fromelectrophysiological recordings of
MSNs (n = 16) in acute brain slices of adultmice (Material andMethods and
Fig. S1). Figure S1a provides a comparison between this experimental data
(summarized inTable 1) and themodel, andFig. S1b compares theneuron’s
parameters with other models reported in the literature53,56. We obtained a
model that reproduced relatively accurately the phenomenology of MSN
activity; model M1 thus fitted however failed to reproduce the firing rates

Table 1 | Numerical parameter values for MSN models
M1 and M2

Parameters fitted M1 M2 from ref. 53 M1 from ref. 56

Veq (mV) −76.72 −80 −80

Vth (mV) −39.51 −20 −45

Vr (mV) −41.70 −55 −80

R (MΩ) 118.50 100 80

τ (ms) 11.85 n/a 16

C (nF) 0.098 0.05 0.2

a (ms−1) n/a 0.01 n/a

b (nF ms−1) n/a −0.02 n/a

d (nF ms−1 mV) n/a 0.15 n/a

Parameters for Models M1 and M2 fitted to the electrophysiological data and compared to the
parameters of Model (M1) used in ref. 56.
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observed experimentally in response to a constant input, which should not
affect the results of our learning experiments since these are only related to
single spike responses to transient spiking input. The cortico-striatal
synapses were endowed with both STDP32,33 (Fig. 1a) and reward-LTP
(Fig. 1b). To emulate learning, patterns of spiking activity were presented to
theMSNduring the trainingphase.A rewardedpatternwasdeemed learned
if the MSN fired after the presentation of the whole pattern, whereas non-
rewarded patterns should not elicit any spike. Before learning, patterns A
and B did not trigger any spikes of the MSN, leading to a correct classifi-
cation forA (as a non-rewarded pattern) and amisclassification for B. After
learning, pattern A still did not elicit any spike while the MSN emitted a
spike after the presentation of all cortical spikes of pattern B, leading to a
correct classification (Fig. 1c). The accuracy of the learning process was
estimated through the averaged numbers of correct responses to the dif-
ferent patterns.

Weights distribution and firing rates in response to
Poisson inputs
In a first step towards understanding the role of STDP and reward-LTP on
learning, we analyzed the behavior of the system when presented with
various inputs and endowed with different plasticities (Fig. 1a). To quantify
the performance of sequence learning, we compared the evolution of the
following types of STDP:
– Symmetric anti-Hebbian STDP (symmetric LTD):

Apost�pre ¼ Apre�post ¼ �1, which represents STDP where correlated
spiking only leads to depression of the synaptic weight.

– Asymmetric Hebbian STDP: Apost�pre ¼ �1 and Apre-post = 1, where
pre-post pairings lead to potentiation, while post-pre pairings lead to
depression.

– Asymmetric anti-Hebbian STDP: Apost�pre ¼ 1 and Apre-post =− 1,
which is the reverse of the asymmetric Hebbian STDP.

– Symmetric Hebbian STDP (Symmetric LTP):
Apost�pre ¼ Apre�post ¼ 1, which represents STDP where correlated
spiking only leads to potentiation of the synaptic weight.

We distinguished Hebbian learning rules (symmetric and asymmetric
Hebbian STDP), characterized by Apre-post = 1, from anti-Hebbian learning
rules (symmetric and asymmetric anti-Hebbian STDP) withApre-post =− 1
(Fig. 1a). In each situation,we compared learning accuracieswithorwithout
reward LTP (Fig. 2).

Wepresented theMSNwith randomactivity from the cortical neurons
(firing as Poisson processes with rates of 10Hz or 100Hz for each cortical
neuron) and studied the distribution of the synaptic weights (Fig. S2 or 2a).
A first observation arising from these simulations is the fact that Hebbian
rules typically lead to an overall potentiation of the synaptic weights, with
symmetric LTP systematically leading to a saturation of the synaptic
weights, a consequence of the well-known divergence of synaptic weights in
Hebbian theory64–66. This resulted in a saturatingfiring rate for theMSN that
showed no dependence in whether or not patterns were rewarded (sym-
metric LTP without rewards in response to 10 or 100 Hz Poisson input
yielded MSN median firing rates of 89.26 and 465.15Hz, respectively,
Hebbian without rewards 90.07 and 467.32Hz, symmetric LTP with
rewards 88.38 and 467.90 Hz, and Hebbian with rewards 89.27 or
466.37 Hz, two-sample t-test with 20 repetitions found no significant dif-
ference between any of these conditions, p > 0.1). Instead, both of the anti-
Hebbian rules rather led to stationary distributions of synaptic weights
remaining away from saturation, and with a steady fraction of weights
having very low values. Without reward-LTP, symmetric LTD led to a
decrease in the synaptic weight until the MSN became silent. Reward-LTP
prevented such an extinction of the activity and yielded a distribution of
synaptic weights concentrated on relatively low values. Asymmetric anti-
Hebbian STDP yielded similar results in both cases. For very low initial
values of the synaptic weights, rare extinctions of the network are possible,
but in most cases, we observed the convergence of the synaptic weights to a

non-trivial distribution of weights, independent of the initialization, with a
typical profile showinga (dynamically-varying) fractionof theweights being
extinct while others were distributed on support away from the saturation
threshold. Thedistributionprofileswith orwithout reward-LTPwere found
to be similar, with, expectedly, broader support and larger synaptic weights
reached in the presence of reward LTP. Altogether, this analysis shows that,
in contrast withHebbian rules well known to be prone to divergences in the
synaptic weights, anti-Hebbian rules typically allow maintaining low
synaptic weights, possibly leading to the extinction of the network (absence
ofMSN spike) in the absence of reward-LTP.With these rewards, both anti-
Hebbian rules reached a steady distribution of weights with relatively low
amplitudes and the MSN’s activity stabilizes at a steady, relatively sparse
activity that increases frequency upon application of rewards (for 10 and
100Hz, respectively, symmetric LTD went from 0.00 and 0.04Hz without
rewards to 9.91 and 11Hz with rewards, or for asymmetric anti-Hebbian
learning, firing rates going from 0.01 and 0.52 Hzwithout rewards to 22.37
and 97Hzwith rewards. Two sample t test between any anti-Hebbian STDP
and any other condition showed a significant difference with a p < 0.0005.).

Learning rules and mechanisms of learning a single sequence
We then investigated the dynamics of the system in response to a single
pattern, obtained as a Poisson process with intensity λpoisson = 1 kHz on a
time interval of duration tpoisson = 5ms, conditionedwithhaving at least two
spikes (Fig. 2b). We computed the probability that theMSN remains silent,
the relative timing of the first spike of the MSN and the resulting accuracy,
for both non-rewarded and rewarded patterns, and closely investigated the
impact of the plasticity rules and rewards on the synaptic weights.

To understand the mechanisms by which anti-Hebbian learning
yielded accurate behaviors, we considered the heuristically the impact of the
repeated presentation of a pattern on synaptic weights and firing or
quiescence of an MSN, for non-rewarded or rewarded patterns, and for
synapses expressing one type of Hebbian or anti-Hebbian plasticity. For
non-rewarded patterns, two different situations arise depending on initial
conditions on synaptic weights:
– if weights are low enough so that the pattern presentation does not

induce a spike, then the absence of any plasticity (no reward-LTP and
no synaptic weight update because of the quiescence of the MSN)
implies that weights remain unchanged and a future pattern
presentation will not lead to any spike if weights were not modified
by another process in the meantime (Fig. 2b).

– If synaptic weights are initially large enough to trigger a spike in the
MSN in response to this non-rewarded pattern, then the pre-post
depression of anti-Hebbian STDP (both present in symmetric and
asymmetric plasticities) will lead to a decay of the synaptic weights
associated with the pattern ultimately leading the MSN to stop firing.
Instead, Hebbian STDP will only reinforce the initial MSN spiking by
making the synaptic weights of the pre-synaptic neurons that spiked
before theMSN larger, preventing the neuron to stop firing in response
to that non-rewarded pattern (Fig. 2b).

We next considered a rewarded pattern that, initially, does not induce
an MSN spike. In that case, all synapses associated with a spike during the
pattern presentation are potentiated through reward-LTP. The repeated
presentation of the pattern thus ultimately leads to anMSNspike, regardless
of plasticity. Once the MSN spikes, STDP combines with the rewards and
produce distinct outcomes depending on the type of plasticity. ForHebbian
STDP (both symmetric LTP and asymmetric Hebbian STDP), the pre-post
potentiation further increases the synaptic weight of pre-synaptic neurons
leading the neuron to spike increasingly early as the pattern is presented
(Fig. 2b), and providing an incorrect learning of the sequence. Contrasting
with this effect, anti-Hebbian STDP endows the system with mechanisms
allowing theMSN to spike at the end of the pattern (see statistics in Fig. 2b).
Typically, when Areward is small, the repeated presentation of a rewarded
pattern in the absence of an MSN spike occurs at the end of the sequence
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line, in brown). Synaptic update resulting from asymmetric anti-Hebbian STDP
(third line) or with non-associative reward-LTP (red, bottom line). c Classification
task. Schematic representation of the striatal network (right) with P = 4 cortical
neurons (green), a random input neuron with rate λext (yellow) and one MSN,
represented by its membrane potential V (brown). Two mechanisms of synaptic

plasticity are considered in the dynamics of the synaptic weightW (blue): STDP and
LTP related to the reward signal (reward-LTP) (red). Example of the learning task
(left), with test sessions and the training protocol (middle). Np = 2 patterns A and B
are presented to the network, with A being non-rewarded (−) and B rewarded (+).
Each pattern represent sequential activity (top right), A with a single cortical spike
and B with two spikes separated by a delay tdelay. All patterns have a duration of
tduration, and correlated cortical spikes are presented at toffset. Spiking activity of the
cortical neurons (green for pattern spikes and gray for random spikes) and the
random input neuron (yellow) are represented alongwith themembrane potentialV
of the output neuron (MSN, M1, brown). In the test sessions, below the MSN
potential, are represented accuracy results (correct classification in green, wrong
classification in red).
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(a success in our task). But even if the spike does not arise at the end of the
sequence, pre-post depression and post-pre potentiation have generally the
effect of moving the spike to the end of the pattern. Indeed, because
Areward+Apre-post < 0, the synaptic weights of pre-synaptic neurons spiking
just before the MSN decreases, eventually preventing the neuron from
spiking and moving the spike to later in the pattern where post-pre
potentiation is favorable to support a spike. While these mechanisms seem
to favor the learning of sequences andMSN firing at the end of the pattern,
they also allow two modes of failure depending on pattern duration and
synaptic weights thresholds: a decay of synaptic weights before the MSN

spike, andapossible increase in the synapticweights of spikes arising early in
the pattern.

To examine further the mechanisms by which this learning occurs, we
further simplified the setup by considering a simple pattern composed of
four spikeswith equal inter-spike intervals in the absence ofPoisson external
spikes unrelated to the pattern (Fig. 3). When success in the task arose and
theMSNspikedat the endof thepattern, all synapticweights associatedwith

neurons spiking towards the end of the pattern (precisely, less than Tp ¼
τs logð�

Apre�post

Areward
Þ units of time before the end of the pattern) are depressed,
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associated with high significances, p < 0.0005), while Hebbian rules showed
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of plasticity or the possible presence of reward-LTP (p > 0.1). Boxplots of the sta-
tionary distribution combine all values of the synaptic weights after 5s for all neu-
rons. bDynamics of learning with a Poisson sequence. Different learning properties,
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Areward = 0.5; N = 500 independent networks; Membrane potential and plasticity
reset between each pattern.
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with the strongest depression for the neuron firing last in the pattern.
Instead, neurons firing more than Tp units of the time before the end of the
pattern see their synaptic weight being potentiated (Fig. 3a) since the

amount of reward received exceeds the pre-post LTD. Both phenomena
conspire to prevent the emergence of an uninterrupted sequence of suc-
cesses. Instead, a sequence of successes terminates either :
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1. When the accumulated potentiation of synapses early in the pattern
exceeds a critical value and leads theMSN to spike before the end of the
sequence (type 1 error in Fig. 3a, left panel), or

2. When the decay of synaptic weights associated late in the sequence
eventually causes the MSN to fail to spike in response to the pattern
(type 2 error in Fig. 3a, right panel).

The potential occurrence of these failure modes depends both on the
neuron’s parameters, input timing anddurationandanypossible bounds on
synaptic weights. In the case of the integrate and fire neuron, simple con-
ditions can be found to outline the emergence of one or the other type of
error. Consider a pattern with n spikes occurring at times (t1,⋯ , tn) and
denote δlk ¼ tl � tk the time delay between the kth spike in the pattern and
the lth spike. A necessary condition for type 1 error to occur is that the
maximal voltage reached before the last spike exceeds the threshold, or

Vr þ wmax

Pn�1
k¼1e

�δn�1
k =τ ≥V th, while a sufficient condition for type 2 errors

to systematically occur is that the maximal voltage reached after a full
presentation does not exceed the threshold, Vr þ wmax

Pn
k¼1e

�δnk=τ ≤V th.
In the region where both conditions are satisfied, the system presents an
alternation of successes, type 1 and type 2 errors that are represented in
Fig. 3b for various combinations of synaptic weight thresholds and pattern
duration (controlling the delay between consecutive spikes), together with
the two conditions derived above (respectively, red and black lines in
Fig. 3b). As expected, long durations between spikes favor type 1 errors,
while type 2 error appears to be rather uniform on each side of the black
curve: arising all the timewhen thresholds are too low, and otherwise arising
occasionally. The occurrence of type 2 error in this region is more dynamic
and involves the STDP parameters. Considering that threshold conditions
are not saturated, each type 2 error yields a net increase in all synaptic
weights of amplitude Areward, while each success yields, in particular, a
decrease in the synapticweight of the last neuronof the pattern of amplitude
∣Apre-post+Areward∣. This phenomenon yields a typical serrated profile
clearly visible in Fig. 3c in the two cases that do not saturate the threshold
condition. Between two type 2 errors and if no type 1 error arises, the system

cannot support more than N ¼ d Areward
jApre�postþArewardje successes. Any error of

type 1 arising between two errors of type 2 will only increase the number of
pattern presentations between the next type 2 error as a consequence of the
post-pre LTP and rewards on the synaptic weight of the last neuron. This
implies thatNprovides anupper bound for the frequencyof type 2 error and
implies that the accuracy cannot exceed 1− 1/N. With our default para-
meters, n = 9, or a type 2 failure rate of around 10%, providing actually a
relatively accurate estimate of the stationary rate of the failure across all cases
tested in Fig. 3b.

In a generic situation, the anti-Hebbian STDP therefore does not allow
reaching a perfect performance, but alternates successes interspersed with
failures whose type and rate of occurrence depends on parameters. Various

typical situations are shown in Fig. 3c showing frequent type 1 errors for
long sequences of rare spikes (left), frequent type 2 errors when synaptic
weights are clipped to low maximal values (middle), or alternation of both
errors for intermediate parameters (right), and pattern duration alters the
ability of the neuron to learn. It is also to smooth out these dynamic alter-
nations of successes and errors that we introduced the MaxAccuracy
measure.

In conclusion, only symmetric and asymmetric anti-Hebbian STDP
correctly learned to classify rewarded and non-rewarded patterns, whereas
Hebbian rules performed poorly. It is particularly interesting to notice that
anti-Hebbian rules have been reported at corticostriatal synapses32–38,67, and
therefore enable the correct classification of patterns of sequential cortical
activity.

These experiments have however pointed out that the anti-Hebbian
rules, coupled with non-associative reward-LTP lead to an equilibrium
where the neuron oscillates between sub- and supra-threshold states. The
accuracy suffers from these dynamics and does not reflect that the network
has indeed learned the correct combination of weights to elicit a spike at the
end of the pattern. To avoid spurious fluctuations of accuracy due to the
structure of learning responses described above, we defined the Max-
Accuracy quantification (defined in Material and Methods), and used that
measure for most subsequent analyses.

Anti-Hebbian learning allows the learning of multiple spike
sequences
Wenext tested learning accuracy on a set ofmore complex tasks (defined in
the Material and Methods).

We started by presenting the network with spatio-temporal sequences
of spikes, with a fixed delay between each spike (Task 1). The results for this
task, withP = 10 cortical neurons,Np = 5 patterns andNstim ¼ 3maximum
spikes per pattern are presented in Fig. 4a. The temporal evolution of the
accuracy (dashed lines) and MaxAccuracy (solid lines) are represented for
all of the four types of STDP considered (Hebbian or anti-Hebbian, with
symmetric or asymmetric polarity). We found that both types of anti-
Hebbian learning rules learn to classify correctly the patterns. As previously
explained, the synaptic weights converged to a dynamically steady state
where theMSN alternated a few correct responseswith onewrong response
that initialized anew sequence of correct responses.Using theMaxAccuracy
quantification, we observed higher levels of performance indicating that the
network discriminated patterns correctly. Hebbian rules did not perform
well in this task, leading to low accuracies. It is interesting to note that
MaxAccuracy and accuracy converged to the same values forHebbian rules,
showing that MaxAccuracy did not always improve the accuracy value.

Similar results were obtained for various numbers of patterns Np

(Fig. 4a). For all tasks, only anti-Hebbian rulesperformed significantlybetter
than the control condition (reward-LTP absent, black circles in the graphs,
with significance levels indicated at the bottom of each condition). Hebbian
rules performed significantly worse than without supervision. When

Fig. 3 | Impact of anti-Hebbian learning rules and non-associative reward-LTP
on synaptic weights in learning sequences. P = 10 pre-synaptic neurons, 4 spikes
per pattern with a constant inter-spike interval Tdelay of varying duration. MSN
modelM1, and anti-Hebbian STDP at all synapses. aCenter: successful response to a
rewarded pattern leads to potentiation of all the synapses of neurons firing earlier
thanTp ¼ τs logð�

Apre�post

Areward
Þ before the end of the pattern (black line), while others get

depressed. Repeated successesmay thus lead to one of two failures: type 1 errors (left,
orange) where potentiation of early cortical spikes accumulate and lead the MSN to
spike before the end of the sequence (as visible after 3 successes on the left, with the
visible increase inW3 after the third pattern leads a spike after the third pattern at the
subsequent presentation of the pattern); or type 2 error (right, pink) where
depression of the synaptic weights of the last neurons spiking in the pattern leads to
an absence of spiking. (in both cases, default parameters with a pattern duration of
20 ms). bAccuracy as a function of pattern duration (ordinate) and synaptic weight
thresholdwmax (fraction of successes out of 200 pattern presentations), as well as the
complementary fractions of type 1 and type 2 errors (right). As expected, long

patterns with low synaptic thresholds lead favor type 2 errors (see also mean type 1
error frequency as a function of pattern duration), while high thresholds and long
patterns are associated with more frequent type 1 errors. Red curve: necessary
condition for the emergence of type 1 error and Black curve: necessary condition for
the emergence of a spike (above this curve, no spike is fired and all trajectories are
associatedwith an absence of spike, or type 2 error). Themaximal frequency of type 2
error, as computed in the main text, provides a fair estimate of the order of mag-
nitude of the occurrence of type 1 errors over the whole heatmap (right histogram
below the heatmap) and a clear upper bound for the occurrence of type 1 errors when
varying Areward (below). c Three typical learning situations for high threshold and
long patterns (position 1 in b), low thresholds and durations (position 2 in b), and
intermediate threshold and durations (position 3 in b). We observe the distinct
occurrences of error types in these distinct situations, as well as a typical serrated
pattern for the last synaptic weight in the sequence corresponding to sequences of
successes (decays) interspersed with a failure leading to a sudden increase.
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comparing with results from the logistic regression, anti-Hebbian rules
performedslightlyworse than the classicalmachine learning algorithm.As a
conclusion, anti-Hebbian rules enable efficient learning when learning
spatio-temporal patterns of spikes, whileHebbian rules performworse than
a non-supervised network.

To further investigate the equilibrium reached by anti-Hebbian rules
while memorizing the patterns, we tested the response of the network to
randomly selected subpatterns of the rewarded patterns (Fig. 4b). For
example, if during the task, the pattern (1, 3) was rewarded, we tested the
response of theMSN to the patterns ð1; +Þ, ð+; 3Þ, where+means that
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no spike was presented. We computed the MaxAccuracy of the learning of
not firing in response to the subpatterns. Anti-Hebbian rules performed
significantly better than Hebbian ones, in a task where classical logistic
regression produced fewer correct classifications (Fig. 4b).

To appreciate the robustness of these findings, we tested various
numbers of cortical neurons P, or numbers ofmaximum spikes by pattern
Nstim, and found consistent results (Fig. S3a-b), except for asymmetric
anti-Hebbian STDP which performs worse for a higher number of sti-
mulations. We also tested if changes in Apost�pre values led to different
dynamics (Fig. S3c), and found a less notable influence compared to our
observation of a strong dependence of learning ability onApre-post (that in
particular distinguishes Hebbian from anti-Hebbian rules). Finally, we
tested different values for Areward (Fig. S3d). To elicit learning, we needed
Areward+Apre-post < 0, which was verified when Apre-post =− 1, for
Areward < 1. Moreover, maximal learning was achieved when
Areward+Apre-post was small compared to Areward. Accordingly, we chose
in the sequel Areward = 0.9 which satisfied both properties.

In conclusion, anti-Hebbian rules donot only learn to correctly classify
rewarded patterns, but they also converge to an equilibrium where sub-
patterns of cortical activity arenot sufficient to trigger spiking at theMSN, so
thatMSNsexpressing ananti-HebbianSTDP learn to spikeonly if thewhole
pattern is presented.

Robustness to noise
To test the robustness of learning to spontaneous activity, we introduced
three types of noise in the neuronal network dynamics (Fig. 4c–e),

a. random cortical spikes at rate of λstim;
b. random MSN spikes at rate λext, implemented thanks to Iext spikes;
c. random jitter in the spike timings during pattern presentation, with

standard deviation τpattern, leading to more realistic patterns of cortical
activity with heterogeneous timing between cortical stimulations.

MaxAccuracy for P = 10, Np = 5 and Nstim ¼ 3, varying noise levels
were presented in Fig. 4c–e. Interestingly, learning of cortical sequences was
robust in the presence of random cortical spikes (Fig. 4c), up to 1Hz, and
that symmetric LTD performed well even with higher noise values. Again,
this confirmed that asymmetric anti-Hebbian STDP led to more unstable
dynamics, and started failing for lower noise intensities than symmetric
LTD.The same conclusionsheldwith randomMSNspikes (Fig. 4d). Inboth
symmetric and asymmetric anti-Hebbian STDP cases, adding noise with
higher frequency (100 Hz) expectedly prevented learning. Finally, adding
jitter in the timings of cortical spikes in the pattern presentation did not
prevent anti-Hebbian rules from reaching high accuracy (Fig. 4e). The
network was robust to noise, and accordingly in the following experiments,
we suppressedall noiseprocesses, to concentrate on thehigherboundsof the
network’s capacity.

Spiking latency enhances the network’s performance
Using the previous network, anti-Hebbian rules were able to approach
classical machine learning accuracy, but they did not perform as well.

Heuristically, integrate-and-fire models have the drawback of firing
instantaneously after the depolarization of the membrane potential. This
implies thatwhen presentedwith overlapping patterns, e.g., patternsA = (1)

andpatternB = (1, 2), the neuron is not able to learn to spike after the endof
both patterns because it either spikes in response to pattern A only, and
therefore fires before the end of patternB, or spikes after patternB, and thus
do not spike after pattern A. This “impatience” of the neuron described by
integrate-and-firemodels is a classical shortcoming of the integrate-and-fire
model. In reality,MSNs exhibit a spike latency, due to specific voltage-gated
potassium conductances delaying the emission of the first spike51,52,68.

To test whether the spike latency improves their ability to learn
sequences, we modified our neuron model to include a non-linearity and
adaptation53.We present in Fig. 5a, theMSNmembrane potential using the
non-linearmodel (M2), either for step (a1) or pulse (a2) currents.Nonlinear
dynamics and spike latency led to dynamics of the membrane potentials
closer to electrophysiological data from MSNs recorded in mouse brain
slices (compare Fig. S1a1 and Fig. 5a1). Spike latency was particularly
notable in theMSN’s response to cortical pulses (Fig. 5a2): when the current
pulse was just sufficient to trigger a spike (i.e., equal to the rheobase),
initiation of a spike takes several milliseconds.

Figure 5b reports the evolution of MaxAccuracy for learning spatio-
temporal patterns (Task 1), using the non-linear neuron (M2).Weobserved
that asymmetric anti-Hebbian STDP performed as well as the logistic
regression, which confirmed that the lack of spike latency was responsible
for the gap observed between the linear (M1) and non-linear (M2) neurons.
We more precisely compared both models and showed that with asym-
metric anti-Hebbian STDP, the non-linear neuron (M2) always reached
significantlyhigher accuracies than the linear one (M1) (forNp≥ 10, Fig. 5c).

Anti-Hebbian STDP rules coupled with a latency mechanism for
spiking make a simple striatal network as efficient as logistic regression to
learn a classification task using biological learning rules.

Impact of synaptic dynamics on learning
A task of sequence classification requires a neuron to resolve finely enough
the timing of pre-synaptic spikes, but also ensure enough persistence of the
signals to analyze a sequence as a whole. In that view, instantaneous
synapses used in the rest of the manuscript provide a maximal time reso-
lution but no persistence of currents, leaving it to the neuron to maintain a
trace of the currents received. Biologically, at cortico-striatal synapses, the
currents generated by a pre-synaptic neuron are not instantaneous: they
display a characteristic continuous time coursewith a rapid rise and a slower
decay, with a timescale on the order of 4–10ms69–72. These are classically
modeled by exponential profiles (that neglect the rise time but conserve the
typical decay) or more realistic alpha synapses (Material and Methods and
Fig. 6a, left)73. Contrasting with Dirac synapses inducing an instantaneous
change to the neuron’s voltage, continuous post-synaptic currents modify
the voltage of a post-synaptic neuron more smoothly as the membrane
potential integrates the progressive changes in synaptic current (Fig. 6a,
middle). Whether or not the neuron spikes (and when it spikes) in these
situations depends both on the parameters of the neurons, synaptic weights
and on the profile and timescale of synaptic currents (Fig. 6a, right). Because
of this, onemayhypothesize that synaptic currentprofileshave an impact on
the learning of sequences.

To test this hypothesis and uncover theway synaptic profiles constrain
learning, we computed the learning accuracy of a nonlinear MSN (model
M2) with anti-Hebbian STDP and alpha synapses with various timescales.
We observed that the learning accuracy showed a non-monotonic

Fig. 4 | Anti-Hebbian rules and non-associative LTP enable efficient learning
with a single linear integrate-and-fireMSN (M1). aA-Hebbian STDP supports the
learning of sequences of cortical inputs [Task 1] (left) Averaged accuracy (dashed
lines) andMaxAccuracy (solid lines) as a function of learning iterations, for different
STDP rules, for Np = 5 patterns. (right) Statistics of the final MaxAccuracy as a
function of the number of presented patterns Np, for different STDP rules. b Anti-
Hebbian rules lead to a specific equilibrium where smaller subsets of rewarded
patterns do not lead to a spike of theMSN. (left) [Task 1] Averaged accuracy (dashed
lines) andMaxAccuracy (solid lines) as a function of learning iterations, for different
STDP rules, when testing subpattern of Np = 5 learned patterns. (right) Statistics of

the finalMaxAccuracy when testing subpatterns ofNp learned patterns, for different
STDP rules. Influence of different types of noise on learning and performance in
Task 1, comparing the final MaxAccuracy upon variation of cortical inputs noise
λstim (c), external noise λext (d) and jitter in spike times during pattern presentation
τpattern (e), for different STDP rules. Training was performed for 500 patterns
iterations, with test sessions every Np iterations. Boxplot descriptions include
N = 250 simulations. Statistical t test from scipy.stats Python library; *: p < 0.05, **:
p < 0.005, ***: p < 0.0005. (below) (H0): networks without supervision (Areward = 0),
compared with networks with supervision (Areward = 0.9). (above) (H0): networks
with asymmetric Hebbian STDP, compared to other STDP rules.
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dependence on timescale with maximal learning accuracy reached for
τs = 10ms (Fig. 6b).This optimal timescalewas consistentwhenwe changed
the number of patterns presented and maintained a statistically significant
difference with biologically too slow (p ≥ 15) or too fast (p ≤ 0.5) synapses
for all choices of numbers of patterns learned (Fig. 6c). Heuristically, the
existence of an optimal timescale can be understood from the tension
between the necessity to resolve spike times finely and the requirement to
maintain spike information throughout the pattern presentation.While the
accuracy obtained depends on the scaling of synaptic currents, because the
total synaptic current transmitted by all alpha synapses is normalized, this

simulation also suggests that synaptic timescales allow for an efficient
repartition of the synaptic current in time enabling optimal learning of
sequences.

Alpha synapses encompass both a rapid rise time of currents and an
exponential decay. To disentangle the respective roles of rise and decay
time, we compared the learning accuracy of networks endowedwith alpha
and exponential synapses with the same timescale (Fig. 6d). Quite strik-
ingly, we found that not only the phenomenology was identical between
the two models, but also the accuracies obtained were all statistically
consistent with each other (p > 0.05) for all choices of timescales and
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Fig. 5 | Latency inMSNs enhances the network performance. aResponse of a non-
linear Izhikevich model (M2) to current steps with increasing intensity (a1) or
presentation of a pulse of current (a2). Membrane potential, first spiking event
(black). b [Task 1] Averaged accuracy (dashed lines) andMaxAccuracy (solid lines)
as a function of learning iterations, for different STDP rules, for Np = 5 patterns for
non-linear Izhikevich (M2) model. (right) Statistics of the final MaxAccuracy as a
function of the number of presented patternsNp, for different STDP rules. c Statistics
of the final MaxAccuracy as a function of the number of presented patterns Np, for
asymmetric Hebbian and anti-Hebbian STDP, comparing linear IAF (M1) and non-
linear Izhikevich (M2) models. Training performed for 500 patterns presentations,

with test sessions every Np iterations. Boxplot descriptions include
N = 250 simulations. Statistical t test from scipy.stats Python library; *: p < 0.05, **:
p < 0.005, ***: p < 0.0005. (bottom) (H0): networks without supervision
(Areward = 0), compared with networks with supervision (Areward = 0.9). (b, top)
(H0): networks with asymmetric Hebbian STDP, compared to other STDP rules.
(c, top) (H0): (M1, light shade) compared to (M2 dark shade) neuron models, for
asymmetric Hebbian STDP (green hue) and asymmetric anti-Hebbian STDP
(brown hue).
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numbers of patterns learned, except for the learning of five patterns with
τs = 5 where exponential synapses allow better learning of sequences than
the alpha synapse. This consistency suggests that the decay timescales,
rather than the rise time of synaptic currents, are responsible for the
observed phenomenology.

Altogether, this study showed that more realistic profiles of EPSCs
yielded a phenomenology consistent with instantaneous synapses and
allowed learning sequences, and that distributing the input in time allowed
using smaller synaptic currents for learning, with optimal timescales for
learning consistent with physiological decay timescales.

Fig. 6 | Impact of synaptic timescales on learning.
a Different synaptic profiles and their impact on
MSN firing. Simulations of an exponential (red) or
alpha (blue) synaptic current (see equations (2)) in
response to a single spike (left) or to an exemplar
spike train (five spikes arising at
t = 100, 120, 125, 126, 200, allowing to appreciate
the impact of distant or simultaneous spikes on
currents and voltages) for two choices of synaptic
timescale τs = 3 or τs = 10. Left: Voltage of modelM2
in response to each of these four currents and for
instantaneous synapses (bottom, black trace) for a
fixed synaptic weight equal to 6000, arbitrarily
chosen to reveal differences between the various
situations. Note the difference with Dirac synapses
justifying the distinct scaling chosen here compared
to Fig. 5. b Final accuracy of sequence learning for
alpha synapses for eight different synaptic time-
scales τs and four different numbers of patterns to
learn, averaged across 40 repetitions of the learning
process. We observe an optimal synaptic timescale
associated with learning, consistent through the
various number of patterns to learn. c Statistical
significance of the difference between timescales
using a two-sample t-test between all pairs of time-
scales tested. d Timescales, rather than synaptic
current profiles, control learning: Comparison
between learning accuracy between exponential
(lower-left hemisquare) or alpha (upper-right
hemisquare) as a function of synaptic timescale and
number of patterns. Not only is the phenomenology
of exponential synapses identical to alpha synapses,
but quantitatively learning accuracies end show no
significant difference using the two-sample t test
(p > 0.05) except for τs = 0.5 and P = 5 patterns (two-
sample t-test p = 0.039), a combination of para-
meters where exponential synapses are already able
to learn sequences well but alpha synapses cannot.
Two-sample t-test was used to identify significant
differences in (c).
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Inhibition in striatal networks improves learning
While taking into account non-linearities and adaptation produce latencies
that may allow the appropriate learning of nested rewarded patterns, the
excitatory nature of the cortico-striatal input prevents the system from
learning rewarded patternA and a non-rewarded pattern B that containsA
(Fig. 7a). Indeed, if theMSNspikes for patternA, implyingnecessarily that it
spikes for pattern B since it receives even more excitation (Fig. 7a); in
contrast, if the neuron does not fire for pattern B, then a fortiori the MSN
does not receive enough excitation to spike for sub-patternA.Wenote that a
similar issue arises with the logistic regression when we constrain the
weightsW to be positive. Biologically, the striatum is constituted by a large

number of MSNs, sharing part of their input, receiving distinct neuromo-
dulation, and interacting together through collateral inhibition58–62. Heur-
istically, this collateral inhibition could provide a mechanism to learn such
nested patterns.

We explored the role of collateral inhibition by considering a simple
two-neuron network model, where each MSN (MSN1 and MSN2) was a
non-linear neuron (M2),which integrated the same cortical activity through
two different weight matrices W1 and W2 (Fig. 7a), and MSN1 might be
inhibited byMSN2 through an additional current.We considered that both
cortico-striatal synapses underwent the same STDP rules, but opposite
rewarding signals.

https://doi.org/10.1038/s42003-024-06203-8 Article

Communications Biology |           (2024) 7:555 12



In the absence of collateral inhibition, MSN1 learned to respond to
pattern A, and as a consequence also spiked for pattern B⊃A, while MSN2

spiked after pattern B. Inhibition from MSN2 induced a strong enough
inhibition of MSN1 potential to prevent it from spiking, leading to the
correct classification of both patterns. Going beyond this specific case, we
investigated in detail how, statistically, collateral inhibition impacted
accuracies.

To studymore extensively this network property,we tested the ability
of our models to learn nested patterns (Task 2). The results are presented
in Fig. 7b, for P = 2, 3, 4 or 5 cortical neurons. cortical neurons P. In
agreement with the example of Fig. 7a, the network with collateral inhi-
bition correctly classified all sequences of patterns for P = 2, and remained
close to the optimal performance for higher values of P, and in particular,
outperformed both the network without inhibition and the logistic
regression.

Our choice of rewards forMSN2 as a complete opposite of the rewards
of MSN1 (labeled differential rewards below) is a theoretical situation and
therefore unlikely to occur. Generally, MSN2 may also be rewarded in
response to a pattern rewarded for MSN1 or be indifferent. We tested
learning accuracy when both MSNs were rewarded or not for the same
patterns (same rewards), and found that only the differential rewards
scheme was yielding a significant improvement in accuracy (Fig. S4).

We also tested this network when learning spatio-temporal patterns
(Task 1, Fig. 7c). Collateral inhibition led to a significantly higher perfor-
mance for all parameters tested. The conclusions were strongly significant
for a small numberof patternsNp, but the significance tended todecrease for
a higher number of patterns.

These results were confirmed for different sets of P neurons (Fig. S5a),
various maximum number of spikes by patternNstim (Fig. S5b) or different
values of collateral inhibition (Fig. S5c).

Overall, asymmetric Hebbian STDP, for both tasks, still leads to poor
performances, while asymmetric anti-Hebbian STDP reaches high accu-
racy. The two biologically documented and relevant MSN properties that
have been added, spiking latency and collateral inhibition, both lead,
through their specific mechanisms, to significant increases in accuracy.

We finally tested the ability of our different neuronal networks to learn
more complex inputs, without having a fixed delay between spikes. We
either tested the learning of patterns with jittered delays (Task 3) or Poisson
structures (Task 4, Material and Methods).

We present the classification results for jittered delay patterns (Task 3,
Fig. 8a) andPoissonpatterns (Task4, Fig. 8bandFig. S6), for different values
of number of patterns Np. We observed that even with complex inputs,
global performances were consistent with what was observed for spatio-
temporal patterns with fixed delays (Task 1), in particular with collateral
inhibition leading to higher accuracies than logistic regression. These
observations depend on the duration of the pattern, and as expected accu-
racy decreases, albeit remaining above chance, when considering increasing
long patterns (Fig. S6).

Discussion
The biologicalmechanisms involved in the learning of sequences are largely
elusive and likely multifarious. To lift part of the veil on this complex
phenomenon, we developed simple models of corticostriatal networks and
explored their ability to learn and identify sequences. Notably, we studied
the possible role of the synaptic plasticity observed experimentally at the
level of MSNs28, spike latency51,52,68 and collateral inhibition58–62, at the level
of one MSN integrating spikes from a population of cortical neurons. We
designed a simple learning task as a mock-up of procedural learning to test
this ability. In this task, theMSNlearns to correctly classify patterns of spikes
(precisely timed sequences of cortical spikes) by spiking at the end of the
pattern for a specific subset of patterns, and not spiking for others. Our
simulation results show that even the simplest striatal network models,
endowed with two types of synaptic plasticity, anti-Hebbian learning rules
(either symmetric LTD or asymmetric anti-Hebbian STDP) and non-
associative reward-LTP, perform well in this task. However, we also
observed that some types of combinations of patterns are harder to learn
simultaneously by the simplest networks, in particularwhen learningnested
patterns of spikes. This is where we showed that spike latency, a prominent
electrophysiological property of MSNs51,52,68, solved the problem of early
spiking during a sub-pattern, and networks of neurons with spike latency
were shown to achieve similar performance as classical logistic regression.
However, in that case again, a difficulty ariseswhen learningnestedpatterns,
whereby the full pattern is not rewarded but a subpattern is rewarded. We
observed that the addition of a second MSN that learns the reverse asso-
ciations of patterns and that inhibits thefirstMSN through lateral inhibition
fully solved the problem. In the latter situation, the striatal network in fact
outperformed classical algorithms.

Our contribution is thus fourfold. We (i) developed a conceptual fra-
mework to test for sequence learning, (ii) showed that anti-Hebbian
learning rules as observed in cortico-striatal synapses naturally endow
simple models with the ability to learn sequences, (iii) observed that spike
latency, as widely evidenced in MSN51,52,68, enhances sequence learning and
(iv) observed that striatal networks with collateral inhibition58–62 further
improve learning of sequences that can even outperform artificial algo-
rithms in learning sequence.

Our choice was to use models as simple as possible to specifically
identify the impact of individual properties for biological learning rules,
MSN spike latency property and lateral inhibition in small networks. Of
course, this model does not encompass the full complexity of striatal
function. In particular, several recent contributions have questioned the
relevanceof simple, pair-based STDP rules in learning15, in specific contexts.
Evolutions of classical Hebbian learning rules including some models
encompassing a dependence of LTP and LTD upon voltage and frequency
were developed74, triplet rules75, three-factor learning rules76 or even novel
paradigms77 could be explored. Notwithstanding its shortcomings, pair-
based STDP rules are shown here to be sufficient to endow the system with
the ability to detect sequences. An interesting avenue would be to explore

Fig. 7 | Lateral inhibition facilitates the learning of complex pattern sequences.
a Lateral inhibition in the striatal network. Schematic representation of the striatal
network (right) with P = 2 cortical neurons (green), and three different models for
MSN activity: (i) one striatal neuron (MSN) modeled as a non-linear integrate-and-
fire neuron (M2), (ii) two striatal neurons (MSN1 in brown, and MSN2 in purple)
without collateral inhibition, (iii) two striatal neurons with collateral inhibition from
MSN2 to MSN1. Two mechanisms of synaptic plasticity are considered in the
dynamics of the synaptic weight W (blue): STDP and LTP related to the reward
signal (reward-LTP) (red). Reward-LTP is presented for rewarded patterns atMSN1

and for non-rewarded patterns atMSN2. Example of the learning task (left), with test
sessions and the training protocol (middle).Np = 2 patternsA and B are presented to
the network, withA being rewarded (+) and B non-rewarded (−) (forMSN1). In the
test sessions, below the MSN potential, are represented accuracy results (correct
classification in green, wrong classification in red). Spiking activity of the cortical
neurons (green) is represented along with the MSN membrane potential V of the
output neuron(s). b Lateral inhibition improves learning all possible patterns for a

small number of neurons. [Task 2] MaxAccuracy when learning all possible
sequences for P neurons, for asymmetric Hebbian and anti-Hebbian STDP, com-
paring linear integrate-and-fire (M1) and non-linear Izhikevich (M2) models, in the
absence (J = 0) or presence (J =− 0.5) of lateral inhibition. c Consequence of lateral
inhibition when learning sequences of cortical inputs [Task 1] MaxAccuracy as a
function of the number of presented patternsNp, for asymmetric Hebbian and anti-
Hebbian STDP, comparing linear integrate-and-fire (M1) and non-linear Izhikevich
(M2)models, in the absence (J = 0) or presence (J =− 0.5) of lateral inhibition. [Task
2] Training performed for 2000 patterns iterations, with test sessions every five
iterations. [Task 1] Training performed for 500 patterns iterations, with test sessions
every Np iterations. Boxplot descriptions include N = 250 simulations. Statistical t
test from scipy.stats Python library; *: p < 0.05, **: p < 0.005, ***: p < 0.0005. (below)
(H0): networks without supervision (Areward = 0), compared with networks with
supervision (Areward = 0.9). (above) (H0): (M2) neurons without collateral inhibition
(J = 0) for asymmetric Hebbian STDP (green) and asymmetric anti-Hebbian
STDP (brown).
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how more realistic plasticity models, either based on complex
patterns15,74,75,77 or even more biophysically realistic models of the
synapse78–80, of neurons81,82 or of rewards and neuro-modulation83,84 would
enhance the ability of networks to learn and if regimes of efficient sequence
learning correspond to biophysically realistic parameter ranges. Moreover,
the task considered here is too elementary and the number of MSNs too
modest to draw any firm conclusion on the physiological function of the
cortico-striatal axis. However, this simplicity also comes as an advantage for
deciphering the role of a plasticity rule devoid of network effects. The results
indeed show that MSNs, mainly because of the anti-Hebbian STDP, can
decode a full sequence of cortical/thalamic activity (which is already asso-
ciative) to extract from this distributed and complex firing a simple com-
mand to execute. Of course, this is not a biological claim or limiting in any
form, and we expect that the striatum will not be limited to a collection of
neurons firing one spike after complete sequences; we in fact expect the
striatum to extract other types of information, but the combination of
intrinsic and network properties allows the striatum such sequential activity
pattern optimized reading. Some biological observations argue in favor of
this possibility at cortico/thalamo-striatal synapses where associative inputs
have a strong temporal organization. Indeed, such sequential activity pat-
terns were reported in the cerebral cortex and thalamic nuclei in non-
human primates and rodents during the completion of behavioral tasks.
Striatum receives monosynaptic inputs from the whole cortical areas and
from some thalamic nuclei24,85–88. TheMSNs act as coincidence detectors of
distributed patterns of cortical and thalamic activity, because of specific
intrinsic properties (mainly due to voltage-gated potassium conductances,
iH and iR) such as a very hyperpolarized resting membrane potential, I-R

bell-shape relationship, inward recitifying I–V relationship, delayed first
action potential51,52,68. Because of these basic intrinsic properties, associated
with anti-Hebbian plasticity expression together with the existence of
inhibitory collaterals, we argue that MSNs can decode cortico/thalamo-
striatal activity patterns organized in temporal sequences.

This work presents a proof of concept that anti-Hebbian STDP allows
for the learning of spike sequences. It is deeply rooted in ample biological
observations of the presence of sequential activity in the cerebral
cortex2,10,29,46–50 and in the striatum7,29–31,89, and on the anti-Hebbian type of
plasticity observed at cortico-striatal synapses in vitro32–36 or in vivo37,38. In
parallel, striatum plays a crucial role in procedural learning 27,28. The dorsal
striatum, the main input structure of the basal ganglia, receives excitatory
inputs from all cortical areas and from thalamic nuclei and has been shown
to play a major role in action selection25–27 and to be a prominent site for
memory formation and procedural learning28. In this variety of tasks, it
could be expected that the striatum uses information from sequences of
evidence to take a decision27,30,31. However, the link between these two
biological observations was never established and seems difficult to isolate
experimentally. And in fact, direct evidence of the implication of STDP on
function has been certainly hard to acquire in all domains of plasticity and
learning. In theparticular domainofprocedural and sequence learning, how
sequences can be decoded biologically is still unclear. Based on previous
findings that anti-Hebbian STDP is expressed in dorsal striatum36 and
specific properties of MSNs (very hyperpolarized resting membrane
potential, I-R bell-shape relationship, delayed first action potential, inhibi-
tory collaterals), our simulations point toward an optimized decoding of
sequential activity patterns thank to anti-Hebbian plasticity. Here, we
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Fig. 8 | Striatal learning ofmore realistic patterns. a Learning patterns with jittered
inputs [Task 3] MaxAccuracy as a function of the number of presented patterns Np,
for asymmetric Hebbian and anti-Hebbian STDP, comparing linear integrate-and-
fire (M1) and non-linear Izhikevich (M2) models, in the absence (J = 0) or presence
(J =− 0.5) of lateral inhibition. b Learning patterns of Poisson spike trains [Task 4]
MaxAccuracy as a function of the number of presented patterns Np, for asymmetric
Hebbian and anti-Hebbian STDP, comparing linear integrate-and-fire (M1) and
non-linear Izhikevich (M2) models, in the absence (J = 0) or presence (J =− 0.5) of

lateral inhibition. Training was performed for 500 pattern iterations, with test ses-
sions every Np iterations. Boxplot descriptions include N = 250 simulations. Statis-
tical t test from scipy.stats Python library; *: p < 0.05, **: p < 0.005, ***: p < 0.0005.
(below) (H0): networks without supervision (Areward = 0), compared with networks
with supervision (Areward = 0.9). (above) (H0): (M2) neurons without collateral
inhibition (J = 0) for asymmetric Hebbian STDP (green) and asymmetric anti-
Hebbian STDP (brown).
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propose a cellular basis for learning sequential cortical and/or thalamic
activity patterns in the dorsal striatum thanks to anti-Hebbian plasticity
rules. To this day, there is a lack of experimental evidence regarding the
occurrence of “natural” cortico/thalamo-striatal STDP-like patterns in
behaving animals. This remains to be investigated with for example the rise
of the Neuropixel multi-unit in vivo recordings.

Of course, the networks studied are toy models and provide a sim-
plified view of biology. More realistic models, including multiple striatal
neurons belonging to various populations emulating for instance DLS and
dorsomedial (DMS) striata that have been shown to display distinct types of
anti-Hebbian plasticities (symmetric LTD and asymmetric STDP)36, mul-
tiple pathways, downstream neurons, possible feedback loops and precise
neuromodulation systems, will allow assessingwhether realisticmodels also
show similar abilities. Incorporating the direct and indirect pathways can
also be interesting when considering the influence of striatal plasticity in the
process of action selection, which heavily rely on the distinctive dynamics
specific to each pathway90. A similar dichotomy exists when comparing the
DMS and DLS. Both regions are reportedly involved in distinct steps of
procedural learning, specifically goal-directed behavior and habits25–27,91.
Differences in corticostriatal STDP have been shown to exist experimen-
tally, and a similar striatal network was developed in ref. 36 to study the
influence of the different types of anti-Hebbian STDP on the flexibility and
maintenance of learning. Another advantage of these models would be to
providemore realisticmodels of collateral inhibition. Indeed, one particular
assumptionmade in ourmodel of two-cell systemwith collateral inhibition
required us to assume that all the collateral inhibition received by the MSN
arose from a single sister cell, which does not capture all the complexity of
the network, and required to assume that the sister MSN learned a negative
image of the first MSN. This assumption will likely no more be required in
larger scale models of the striatum, whereby multiple cells could contribute
to the inhibition of different patterns. This type of larger-scale model will
also allow investigating the ability of networks to learn multiple tasks and
better appreciate the learning capacity of striatal networks, and delineating
more finely the respective roles of the different compartments involved in
striatal function in the learning of sequences.

Feedforward inhibition, through GABAergic interneurons, was not
modeledhere, andwould likely have a different impact on learning.Cortico-
striatal synapses on fast-spiking parvalbumin interneurons displayHebbian
plasticity 92, which would lead to new behaviors when coupled with anti-
Hebbian STDPatMSNs.More generally, the striatum is composed ofmany
micro-circuits, different compartments that display a great variety of
STDPs, and a global model of this system, including different inputs (from
the cortex and the thalamus), anatomo-functional compartments of the
striatum (DMS/DLS) and types of neurons (MSNs, GABAergic inter-
neurons, dopaminergic neurons, cholinergic neurons) could lead to a
general theory of striatal learning.

The reward signalingused in thepresentmodelwas restricted to simple
supervision through the potentiation of synaptic weights associated with
presynaptic spikes during rewarded patterns. Detailedmodels, in particular
three-factor learning rules93–95 could also be used in this context, and in
particular by proposing more realistic models of how rewards can be
implemented through, e.g., dopaminergic signaling, for instance along the
lines of the model of 57 developed for Hebbian STDP.

Such models require to identify triggers of dopamine. Such models
could further integrate the fact that dopaminergic neurons are not only
modulated by the value of rewards (or of the reward-prediction error).
Indeed, dopaminergic neurons of the substantia nigra pars-compacta,
which are responsible for dopamine in the dorsal striatum, are known to be
also directly stimulated by MSNs originating from striosomes96. The inte-
gration of the dopaminergic circuit could therefore lead to more realistic
studies of the influence of reward on learning in the striatum.

Altogether, this study provides another view into the functional role of
anti-Hebbian STDP in the striatum in relationship with episodic memory
and learning of temporal sequences. This STDP rule is fully pairwise and
thus allows for efficient algorithmic implementations. It is quite remarkable

to note that other artificial models for learning temporal sequences have
used anti-Hebbian STDP16. As observed here, this ability to learn sequences
seems to be in the very nature of the anti-Hebbian learning.When learning
sequences, the network is required to sit on a narrow region where it
develops the ability to spike in response to a sequence,which in turnalters its
ability to further spike in response to this same sequence. Such learning rules
appear to allow the network to self-organize near this critical transition
between spiking and non-spiking97. (Self-organized) critical systems are
notorious for showing rich properties98,99; it is likely that these phenomena
also shape the distribution of synaptic weights according to some prescribed
input statistics or patterns, the study of which would be an interesting
question that could be also compared to data. Anti-Hebbian spiking net-
works with LTD provide an example of self-organization to criticality, the
theoretical study of which constitutes a potentially rich and fascinating
perspective of this work.

Materials and methods
We used two integrate-and-fire models to represent the MSN dynamics, a
simple leaky integrate-and-fire model (M1) and a slightly more realistic
adaptive nonlinear model (M2).

Leaky integrate-and-fire model of the MSN (model M1)
For model M1, the MSN was modeled as a linear leaky integrate-and-fire
neuron56,73,100. In this model, the voltage of the MSN evolves according to a
linear equation as its cortical and external inputs, and fires when the voltage
exceeds a fixed threshold. In detail, between two spikes, the membrane
potential V of the neuron satisfied a linear differential equation:

τ
dV
dt

¼ �ðVðtÞ � VeqÞ þ RIðtÞ þ ffiffiffi
τ

p
VnoiseðtÞ ð1Þ

Spikes were emitted when the voltage exceeded a threshold Vth, at
which time theMSN’s voltage was instantaneously reset toVr and resumed
input integration after a delay τrefractory = 10ms. Noise and neural activity
external to the considered network were summarized in a Gaussian white
noise term Vnoise(t) with standard deviation ηnoise = 0.5mV.

To fit the model, we used electrophysiological recordings of MSNs
(n = 16) performed in acute brain slices of the dorsolateral striatum (DLS)
(Fig. S1a1, data collected by Elodie Perrin in Venance’s lab). Whole-cell
patch-clamp recordings were performed in acute horizontal brain slices
containing the DLS as previously described34,36. Briefly, borosilicate glass
pipettes of 6–8MΩ resistancewerefilledwith (inmM): 122K-gluconate, 13
KCl, 10 HEPES, 10 phosphocreatine, 4 Mg-ATP, 0.3 Na-GTP, 0.3 EGTA
(adjusted to pH 7.35 with KOH). The composition of the extracellular
solution was (mM): 125 NaCl, 2.5 KCl, 25 glucose, 25 NaHCO3, 1.25
NaH2PO4, 2 CaCl2, 1 MgCl2, 10 μM pyruvic acid through which 95% O2

and 5%CO2was bubbled. Signals were amplified using EPC10-2 amplifiers
(HEKA Elektronik, Lambrecht, Germany). Recordings were performed at
34 ∘C and signals were sampled at 10 kHz, using the Patchmaster v2 × 32
program (HEKA Elektronik). All experiments were performed in accor-
dance with the guidelines of the local animal welfare committee and the EU
(directive 2010/63/EU).

We extracted from each of these recordings the resting membrane
potentialVeq, the spike thresholdVth and the reset volageVr. The the change
in membrane potential as a function of input current intensity (I–V curve)
was used to estimate the parameter R by fitting a linear curve to the
experimental data (Fig. S1a2). The timescale parameter τwas fitted directly
on the electrophysiological traces. The model obtained was able to accu-
rately reproduce spikes and the I–V curves used for thefit (Fig. S1a 3), butwe
noted that it did not scale properly for high input currents and did not
accurately reproduce the variation of firing rates as a function of input
intensity (F–I curve, Fig. S1a 4).

Each of the 16MSNs recorded experimentally provided uswith a fitted
Veq, Vth, Vr, R and τ and C = τ/R. These quantities are represented in
Fig. S1b, along with their averaged value and, for comparison, the values

https://doi.org/10.1038/s42003-024-06203-8 Article

Communications Biology |           (2024) 7:555 15



reported in previous studies (ref. 56 for a leaky integrate-and-fire neuron
and ref. 53 for a non-linear model). The values inferred from experimental
data were consistent with canonical models, except for the reset potentialVr

which has sometimes been taken as equal to the restingmembrane potential
Veq (e.g., in ref. 53) but was allowed to be different in our model of MSN to
account for the fact that electrophysiological traces display reset potentials
that are more depolarized than the resting potential, a phenomenon pos-
sibility associated with higher excitability immediately after a spike.

Cortical inputs
The cortical input received by the MSN (term I(t) in equation (1)) was
modeled as the superposition of spikes received from P cortical neurons
(noted IstimðtÞ) and a Poisson input (Iext(t)) with rate noted λext:

IðtÞ ¼ IstimðtÞ þ IextðtÞ:

Unless specified otherwise, each spike induces an instantaneous jump
in theMSNmembrane potential, with a constant amplitudeWext = 1 nA for
external spikes and synapticweightsWðtÞ ¼ ðWiðtÞÞ1≤ i≤ P for each of theP
cortical neuron considered, that varied through plasticity mechanisms.

IstimðtÞ ¼τ
X

1≤ i ≤P

X
tki ≤ t

Wiðtki�Þφðt � tki Þ;

IextðtÞ ¼τWext

X
tkext ≤ t

φðt � tkextÞ;

where we noted, for a function f being potentially discontinuous at time t,
f(t−) the value reached immediately before the jump, ðtki Þk ≥ 0 is the
sequence of spikes of neuron i and ðtkextÞk≥ 0 the sequence of external spike
times, that have exponentially distributed inter-spike intervals, and φ a
Dirac impulse function. The factor τ allowed appropriate scaling ofweights
for direct comparison with experimentally measured excitatory post-
synaptic currents (EPSCs).

When testing the role of synaptic timescale on learning (Fig. 6), we
considered more realistic EPSC with exponential or alpha profiles:

φðtÞ ¼
1
Ts

e�
t
Ts ðexponential synapsesÞ

1
T2
s
t e�

t
Ts (alpha synapses)

8<
: ð2Þ

where Ts is the synaptic time constant and the normalization coefficients
chosen to normalize the synaptic currents (this coefficient ensures that the
integrated current is equal to 1 for any Ts chosen). These functions are
represented in Fig. 6a together with the superposition of these currents in
response to one given spike train.

Our model did not differentiate direct and indirect trans-striatal
pathways MSNs for two reasons: (i) we did not aim to model post-striatal
processing, and (ii) did not consider the difference between both types of
MSNs in their excitability which, considering the simplemodels of neurons
used, would not have led to any difference in performance between both
populations, but only to a different scaling of the synaptic weights.

Non-linear integrate-and-fire neuron model (M2)
We also considered a non-linear neuron model (labeled model M2) intro-
duced in ref. 53, where the the voltageV is coupled to an adaptation variable
U through the equations:

C dV
dt ¼ kðVðtÞ � VcÞðVðtÞ � VeqÞ � UðtÞ þ IðtÞ

dU
dt ¼ a bðVðtÞ � VeqÞ � UðtÞ

� �
:

8<
:

In thismodel, the voltage typically has sharp excursions (and divergences
in finite-time), and spikes were considered to be emitted when the voltage
exceeds a threshold Vth. At these times, the neuron’s voltage was

instantaneously reset to Vr, and the adaptation variable is updated to U(t
−)→U(t−)+ d. Thesemodels are very versatile dependingon theparameter
set101,102. Theywere used here in a regime that produces dynamics comparable
toMSN,asproposed in ref. 53 (Table1).Theparameterswere compared to the
integrate-and-fire model (M1) ones in Fig. S1b. To appropriately scale the
currents in the case ofDirac impulses, the currents Istim and Iext defined above
are multiplied by RC, with R a scaling factor set as R= 100MΩ.

Two-neuron network with inhibition
When considering a system composed of two neurons, we modeled each
MSN (MSN1 andMSN2) using the non-linear integrate-and-firemodelM2
and assumed that they integrated the same cortical activity through two
different weight matrices W1 and W2 (Fig. 7a). In addition to this input,
MSN1 was inhibited by MSN2 through an additional current:

I2ðtÞ ¼ RCJ
X

tkMSN2
≤ t

δðt � tkMSN2
Þ;

where ðtkMSN2
Þwere the spike times ofMSN2, and J =− 0.5 nA (control with

no inhibition corresponded to J = 0). Rewards differed between the two
neurons, which were assumed to learn opposite tasks (i.e., MSN2 was
rewarded for non-rewarded patterns of MSN1, Fig. 7a). The accuracy was
read out on MSN1 only.

Corticostriatal synaptic plasticity
Synaptic weights from the P cortical neurons to the MSN were subject to
pair-based STDP14, modeled as synaptic weight updates arising after each
spike according to the spike timing relative to all previous spikes of the other
neuron (all-to-all implementation in the parlance of ref. 103). In detail:
– If the MSN spiked at time tpost (post-synaptic spike), then all weights

were updated. Noting tpre;i the previous spikes of cortical neuron i, the
synaptic weightWi was updated according to:

WiðtpostÞ ¼ Wiðtpost�Þ þ ε
X

tpre;i<tpost

Φðtpost � tpre;iÞ

where ε denotes the plasticity rate, chosen in our simulations
as ε = 0.02.

– If presynaptic cortical neuron i∈ {1,⋯ , P} spiked at time tpre;i, noting
tpost the times of the MSN spikes, then the synaptic weight Wi was
updated as:

Wiðtpre;iÞ ¼ Wiðtpre;i�Þ þ ε
X

tpost<tpre;i

Φðtpost � tpre;iÞ:

Denoting Δt ¼ tpost � tpre the timing between the presynaptic spike
and the post-synaptic spike, we used an exponential STDP kernel103:

ΦðΔtÞ ¼
Apost�pre exp

Δt
τs

� �
if Δt < 0

Apre�post exp � Δt
τs

� �
if Δt > 0

8><
>:

with τs = 20 ms (Fig. 1a).
Anti-Hebbian plasticity (i.e., plasticity with post-pre LTP and pre-post

LTD, andplasticitywith post-pre andpre-post LTD) and the prominence of
LTD associated was often combined with non-associative LTP to prevent
neurons from becoming silent altogether42,104,105. Indeed, synaptic weights
involved in the post-synaptic firing are reduced by anti-Hebbian STDP,
leading to their decrease, a process that may persist until spike extinction.
Beyond this practical observation, non-associative rewards rely on the
notion of temporal credit-assignment problem (or distal reward problem)
that has ample biological support. In the central nervous system, it has been
reported various complex relationships and effects between reward
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(dopamine) and STDP polarity and shapes depending on dopamine con-
centration, dopaminergic subtype receptor activated (D1-like vs D2-like),
temporality of dopamine delivery relative to STDP induction and also
dopamine interactions with other neuromodulators such as acetylcholine94.
We thus opted to decorrelate reward and STDP to be as generic as possible
without favoring any complex interaction. The temporal credit-assignment
problem questions the temporal link between the reward and the preceding
action to allow reinforcement learning106. The temporal credit-assignment
problem can be solved with the notion of eligibility trace, a synaptic tag
induced by learning that can be transformed into synaptic plasticity by the
retroactive effect of various neuromodulators, such as dopamine. Impor-
tantly, the eligibility trace allows keeping a synaptic trace from the learning
sequence but does not induce synaptic plasticity unless the reward occurs
before the extinction of the eligibility trace. Experimentally, this has been
demonstrated for example by monitoring the structural plasticity, which
was shown to occur when dopamine striatal was released up to 2 s after
STDP107. In these papers, no evidence of a gradual dependenceon the timing
of the induced plasticity was reported, so we did not assume any.

We chose non-associative LTP to model reward signals, leading to the
following synaptic update rule, where at each presynaptic spike of cortical
neuron i, the associated synaptic weightWi was updated by,

ΔWi ¼ εAreward:

where Areward is either null (absence of LTP) or positive (non-associative
LTP of active presynaptic neurons).

Synaptic weights were clipped within a realist range
[wmin,wmax] = [0., 2.] nA. An example of simple synaptic weight dynamics
with P = 2 cortical neurons, with andwithout reward is presented in Fig. 1b.

Pattern recognition in the striatum
Striatal learning is based on the detection of correlated sequences of cortical
inputs29–31. We emulated learning through different tasks, whereNp spiking
patterns of cortical activity were presented to the MSN.

Patterns represent a sequence of cortical activity with duration
tduration = 50ms, andcombined (i) a specific spatio-temporalpatternofactivity
involving a subset of cortical neurons (always present at each presentation of
the pattern) and (ii) random spiking activity from all cortical neurons.

In Fig. 1c, a simple learning task is detailedwith two patterns: patternA
which corresponds to a spike from cortical neuron 4 at time toffset; pattern B
where cortical neuron 1 spikes at toffset, followed after a delay tdelay by a spike
of cortical neuron 3.

During learning, the network was presented with patterns, chosen
randomly fromthe set ofNppatterns.Among thepatterns, afixed subsetwas
chosen to be rewarded with a probability of 1/2. Accordingly, the other
remaining patterns were defined as non-rewarded patterns. In the example
illustrated in Fig. 1c, pattern A was chosen to not be rewarded (−) and
pattern B was rewarded (+). During training, rewarded patterns were
subject to a positive potentiation signal (Areward > 0) while non-rewarded
patterns did not (Areward = 0). For all patterns, STDP rules were also applied
at the synapticweightmatrixWdependingonpre- andpost-synaptic spikes.

Learning accuracy quantification
The accuracy of the learning process was estimated through the averaged
numbers of correct responses:

Accuracy ¼ 1
Np

X
1≤ k ≤Np

rkσk þ ð1� rkÞð1� νkÞ; ð3Þ

where rk = 1 if kwas a rewarded pattern and 0 otherwise, σk = 1 if the MSN
spiked after the correlated cortical activity and 0 otherwise, and νk = 1 if the
neuron spiked, and 0 otherwise.

To correctly classify a rewarded pattern, the MSN should not spike
during the cortical pattern but only be elicited after the end of the sequence,

to model the capacity of the striatum to make decisions based on whole
sequences of cortical activity, and not only on the first spikes.

To avoid spurious fluctuations of accuracy due to the structure of
learning responses (namely, unavoidable alternations of successes and
failures as studied in Fig. 3) and thus to evaluate accurate learning of
sequences, we also defined:

MaxAccuracy ðtÞ ¼ max½t�T1 ;tþT1 � Accuracy ðtÞ� �

where Accuracy(t) represented the value of accuracy computed at time t,
following Eq. (3), and [t− T1, t+ T1] represented an interval of pattern
iterations (T1 taken as 10 test iterations).

For each set of parameters simulations were performed with,
– Areward = 0 for all patterns, which served as a control task where no

supervision was given to the network to distinguish rewarded patterns.
– Areward = 0.9 for rewarded patterns and Areward = 0 for non-rewarded

ones, to emulate supervised learning using the rewarding signal.

Algorithm benchmark
Accuracy and MaxAccuracy were computed for both systems and
compared to the classification accuracy of more classical algorithms. In
detail, we defined an equivalent optimization problem, where the cor-
rect classification was learned using logistic regression, implemented
with the lmfit package. We trained the network by taking as inputs a
binary version of the P ×Np matrix (Mp,n), with mp,n = 1 if cortical
neuron n was spiking during pattern p, andmp,n = 0 if neuron n did not
spike during pattern p. The linear matrix in the logistic regression W
was constrained to only have positive coefficients, thus enforcing the
constraints associated with learning in excitatory networks. Compar-
isons of results obtained using our task with other algorithms from
sequential learning appeared not feasible. Indeed, either these algo-
rithms aim at reproducing a target spike train (e.g., Chronotron20), and
therefore integrate the target into their update rules, or they classify
patterns (e.g., Tempotron21) without any constraints on the timing of
the output spike trains. Our task differed both in what is given in the
update rules and the conditions of classification, rendering most com-
parisons irrelevant. Logistic regression, with positive weights, provides
us with a simple way to efficiently compare our task to a baseline of
interest.

Learning tasks
We define four tasks to characterize various dimensions of the learning
ability of the network.

Task 1: Learning spatio-temporal sequences of cortical spikes with a
fixed delay. Patterns were constructed randomly as follows:
a. The number n of cortical spikes involved in the pattern was chosen

uniformly at random between 1 and Nstim.
b. The ordered identity of neurons involved in a pattern was chosen

uniformly at random among ordered sets of n neurons (without
replacement) in {1, P}.

c. The temporal sequence was defined with the first spike at time toffset,
and the following ones presented with a fixed delay tdelay = 1ms.

d. Finally, each pattern was chosen to be rewarded with probability 1/2.

Task 2: Learning nested sequences of spikes:We tested the ability of
the network to discriminate a full sequence of P nested patterns, (1),
(1, 2), ..., (1, 2, . . . , P), when considering all possible combinations of
rewarded/non-rewarded patterns (2P situations). For example, for P = 2,
the network was tested on 4 different sets of 2 patterns, (1) and (1, 2),
with each pattern being either rewarded (+) or non-rewarded (−) (as
illustrated in Fig. 1 c). For this task only, we chose a delay between spikes
of tdelay = 0.5 ms.

Tasks 3: Robustness to noise This task considers patterns formed as in
Task 1 but where the times of the spikes within the spatio-temporal pattern
are shifted by a uniform random variable (jitter).
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Tasks 4: Poisson patterns Patterns learned in Task 4 are generated we
considered patterns of cortical activity defined throughPoisson processes of
intensity λpoisson = 1 kHz, on a duration tpoisson = 2ms, conditioned to have
at least two spikes.

Statistics and reproducibility
The learning accuracy and other network properties were estimated on a
fixed network with synaptic weights frozen (i.e., devoid of plasticity) and in
the absence of noise. All patterns were presented, responses were recorded
for each pattern presentation, and theMSNmembrane potential reset to its
resting value between each pattern.

Simulations were performed on a custom code developed in Python
3.X, using the Anaconda suite (Anaconda Software Distribution, Computer
software Version 2-2.4.0. Anaconda, Nov. 2016. Web. https://anaconda.
com.) and the numeric calculus numpy and plottingmatplotlib libraries. All
the code to generate the figures is freely accessible at https://github.com/
Touboul-Lab/SequenceLearning. Running the code will allow reproducing
the results (with possibly a different random seed). Simulations were run on
the INRIA CLEPS cluster and HPC resources from GENCI-IDRIS (Grant
2022-A0100612385), using GNU parallel (Tange, O. (2020, May 22). GNU
Parallel 20200522 (“Kraftwerk”), accessed from Zenodo at the link https://
doi.org/10.5281/zenodo.3841377). We used an Euler scheme to simulate
our network and Poisson processes, with a fixed time-step dt = 0.1ms. An
independent code was developed in Matlab to confirm some of the results
associated with model M1 in simple situations. It was in particular used to
generate Fig. 3.

We used the statistical t-test from scipy.stats Python library or the
Matlabttest2 function (*p < 0.05,**p < 0.005, ***p < 0.0005). Box plots
were generated bymatplotlib. They represent a box containing the first and
third quartiles of the data with a line at the median and whiskers extending
from the box to the farthest data point lying within 1.5 times the inter-
quartile range (i.e., the length of the box). Flier points are those past the end
of the whiskers.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All dataused toproduce thefigureswas generatedvianumerical simulations
of the freely available code. The extensive data generated by these codes that
we used to produce Figures 2, 4–8 as well as Supplementary Figs. S3–S6 is
available on Figshare at the link https://doi.org/10.6084/m9.figshare.
25355848.v1. Figures 3 and S2 are generated directly by running the asso-
ciated code.

Code availability
The code used in this paper is freely accessible at https://github.com/Touboul-
Lab/SequenceLearning (https://doi.org/10.5281/zenodo.10794811). It contains
Python andMatlab code. Python codewas developed in Python 3.X, using the
Anacondasuite (AnacondaSoftwareDistribution,Computer softwareVersion
2-2.4.0. Anaconda, Nov. 2016. Web. https://anaconda.com.) and the numeric
calculus numpy and plotting matplotlib libraries. Matlab code was developed
on Matlab version R2021a.
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