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SPADE: spatial deconvolution for domain
specific cell-type estimation
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Understanding gene expression in different cell types within their spatial context is a key goal in
genomics research. SPADE (SPAtial DEconvolution), our proposed method, addresses this by
integrating spatial patterns into the analysis of cell type composition. This approach uses a
combination of single-cell RNA sequencing, spatial transcriptomics, and histological data to
accurately estimate the proportions of cell types in various locations. Our analyses of synthetic data
have demonstrated SPADE’s capability to discern cell type-specific spatial patterns effectively. When
applied to real-life datasets, SPADE provides insights into cellular dynamics and the composition of
tumor tissues. This enhances our comprehension of complex biological systems and aids in exploring
cellular diversity. SPADE represents a significant advancement in deciphering spatial gene expression
patterns, offering a powerful tool for the detailed investigation of cell types in spatial transcriptomics.

Spatial transcriptomics is a cutting-edge technology that has fundamentally
transformed the field of transcriptomics by enabling studies of gene
expression with unprecedented resolution and specificity1. The ability to
identify the precise location of gene expression within a tissue represents a
game-changing development, as it provides fresh avenues for investigating
the complex interplay between gene expression and tissue architecture. By
profiling the transcriptome at a high resolution in a spatial context,
researchers can gain insights into the cellular heterogeneity that underlies
normal tissue function or disease states2, with significant implications for
addressing a broad range of biological andmedical questions. For example,
spatial transcriptomics has demonstrated great promise in elucidating the
cellular basis of brain function3, and in enabling precision treatments for
heart disease4 or cancer5. Moreover, spatial transcriptomics has shown
immense potential for studying the immune system6. Profiling the tran-
scriptome of immune cells in various tissues has yielded insights into how
the immune system responds to infection and disease7. This approach could
play a crucial role in shaping the future of immunotherapies for cancer and
other diseases, with spatial precision that is critical for effective treatment
with minimal non-specific side effects8.

Current spatial transcriptomics technologies face limitations in
yielding cell type-specific information within a tissue region, thereby
prohibiting the complete capture of gene expression patterns at single-cell
resolution in space9. For instance, imaging-based spatial transcriptomics
protocols provide detailed information at a single cell or subcellular level,
but they are unable tomeasure a large number of genes, making them less
suitable for exploratory investigations at the transcriptome level10. On the

other hand, sequencing-based approaches allow for the measurement of
gene expression for each spatial location across the entire transcriptome,
but this comes at the cost of single-cell resolution11. As the compositions of
cell types vary between different tissue locations, the data obtained from
sequencing may be inconsistent for subsequent analyses. Specifically,
when identifying differentially expressed genes across multiple spatial
locations, the observed gene expression variations may not solely be
influenced by spatial location, but also by differences in the categories or
proportions of cell types12. Hence, there is a growing need for meth-
odologies that accurately depict and describe the spatial patterns of gene
expression variations while accounting for the specificity of individual
cell types.

Single-cell RNA sequencing (scRNA-seq) has significantly advanced
our understanding of cell heterogeneity and gene expression patterns at an
individual cell level13. While scRNA-seq reveals intricate details of cellular
functions, its limitation lies in not capturing the spatial context of cells
within tissues9. Addressing this gap, computational deconvolution techni-
ques have emerged, focusing particularly on integrating spatial tran-
scriptomics with single-cell data. This integration is vital for understanding
tissue architecture and the spatial distribution of cell types. Several spatially
resolved cell type deconvolution techniques have been developed, including
SPOTlight14, spatialDWLS15, RCTD16, SpatialDecon17, and CARD12.
SPOTlight utilizes non-negativematrix factorization andnon-negative least
squares for cell type proportion calculation but neglects location correla-
tions. RCTD leverages single-cell RNA-Seq data for cell type composition
deconvolution while accounting for sequencing technology differences,
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but it does not model spatial patterns. SpatialDWLS extends DWLS18,
employing a modified weighted least square for cell type composition
estimation and uniquely using an enrichment test for cell type determina-
tion, but its enrichment score selection is arbitrary and spatial patterns are
not considered. SpatialDecon surpasses traditional least-squares methods
through log-normal regression and background modeling but overlooks
location relationships. CARD incorporates conditional autoregressive
modeling for spatial correlation structure consideration but disregards
varying cell type identities in spatial patterns. Notably, none of these
methods utilize valuable histological information. Overlooking spatial
structures can lead to misleading conclusions, as they significantly impact
biological functions.

To meet the challenge of cell type deconvolution in spatially resolved
transcriptomics data, we have developed SPADE, a deconvolution tool that
integrates cell type information derived from scRNA-seq data obtained
from corresponding samples to accurately estimate the proportions of
diverse cell types. Recognizing the unique characteristics of spatial tran-
scriptomics data, such as the association of particular cell typeswith specific
locations, the correlation between spatial positions and cell types, and the
similaritybetween adjacent locations,we incorporated a cutting-edge spatial
domain detection algorithm19 that capitalizes on gene expression patterns,
spatial coordinates, andhistological data. To accommodate variations in cell
type composition across distinct locations, we implemented an adaptive
cell type selection step that efficiently determines the presence of specific cell
typeswithin each spot.Ourfindings substantiate the effectiveness of SPADE
through rigorous simulations, wherein we benchmarked it against the
existing spatial deconvolution methodologies. Furthermore, we applied
SPADE to publicly available spatial transcriptomics studies across various
areas, underscoring its utility in deciphering cell type-specific gene expres-
sion profiles. The proposed approach constitutes a significant advancement
in thefield of spatial transcriptomics, facilitating comprehensive and precise
analyses of complex, heterogeneous tissue samples.

Results
Overview of SPADE
SPADE methodology involves a three-step approach to estimate the cell
type proportions within a spatial domain, as depicted in Fig. 1 and Sup-
plementary Fig. 1. In the first step, SPADE identifies the spatial domains
within a tissue by employing spaGCN19, a graph convolutional network
specifically designed for spatial transcriptomics data. This integration of
gene expression, spatial location, and histology data enables SPADE to
identify the spatial domains that spatially coherent in both gene expression
and histology. In the second phase, a cell type reference dataset is built from
scRNA-seq to guide cell type identification within each domain, employing
a Lasso regression algorithm20. This algorithm capitalizes on spatial gene
expression data and cell type information to determine the optimal number
of cell types present within each domain, which is subsequently employed
for deconvolution analysis in the ensuing step. Concurrently, scRNA-seq
data is adopted to create cell type-specific gene expression profiles, which
guide the deconvolution process. In the final step, SPADE calculates the
proportions of cell types within each spatial domain by utilizing cell type-
specific features. These features consist of genes that are differentially
expressed to each cell type. The SPADE analysis output provides the cal-
culated cell type proportions for every spatial location for a given tissue
region, which is an essential metric for investigating complex biological
systems.

Simulation studies
To simulate synthetic spatial gene expression data, we implemented a
simulation approach similar to theCARDmethodology12, leveraging single-
cell RNA-seq data. The synthetic data generation involved three steps: (1)
generating random proportions for each spatial location within domains
using a Dirichlet distribution and this proportion will be used as ground
truth, (2) selecting cells from single-cell RNA-seq data within each cell type
and summing these counts to produce cell type specific gene expression

Fig. 1 | Schematic overview of SPADE. SPADE leverages reference single-cell RNA
sequencing data to determine the cell type proportion at each location in the sample.
To achieve this, SPADE first uses a combination of histology, spatial location, and
gene expression information to identify spatial domains within a tissue. Subse-
quently, it performs a cell type selection for each domain by identifying the specific

cell types present. Once the cell type information is obtained, SPADE utilizes
scRNA-seq data to perform deconvolution, resulting in the estimation of cell type
proportions for every spatial location. The final outcome of SPADE is the calculated
cell type proportions for every spatial location. Part of this figure is created with
BioRender.com.
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data, and (3) aggregating gene expression across all cell types within each
location and constructing a gene by location matrix as the pseudo-spatial
transcriptomic data. More details can be found in Supplementary Fig. 2.
This approach produced synthetic spatial gene expression data similar to
real-world data. We conducted two separate simulation experiments that
were generated on different mouse tissues. We also compared the method
SPADE with existing spatial deconvolution methods, including CARD,
SPOTlight, RCTD, spatialDWLS, and SpatialDecon.

The first simulation involves using mouse olfactory bulb (MOB) data.
In this simulation study, we utilized three publicly available datasets to
generate spatial transcriptomicdata, including a single-cell RNA-seqdataset
consisting of 10 cell types of the mouse olfactory bulb21, a spatial gene
expression dataset for the same area, and corresponding hematoxylin and
eosin stain (H&E) image data (Fig. 2a)22. We employed SpaGCN and
detected four distinct spatial domains (Fig. 2b), assigning a dominant cell
type to each domain, along with varying numbers of minor cell types. To
assess the accuracy of cell type detection, we created a bar plot displaying the
true positive and false positive rates for each domain (Fig. 2c). This visua-
lization highlights SPADE’s capability to achieve the highest true positive
rates and lowest false positive rates across all domains. The scatter plot
(Fig. 2d) comparing the estimated and true proportions demonstrates that
the SPADEestimation closely alignswith the ground truth, achieving results
comparable to those of CARD. To represent the inferred cell type propor-
tions for each spatial location,we employed a spatial scatter pie plot (Fig. 2e),
in which SPADE generated an overall pattern that closely mirrored the true
patterns and outperformed competing methods. Finally, to account for the
stochastic nature of data generation, we evaluated SPADE and other
methods by repeating the simulation ten times with varying proportions.
The results are shown in a boxplot (Fig. 2f) in terms of mean absolute
deviation (mAD), root mean squared error (RMSE), and correlation (R).
Our results demonstrated that SPADE consistently outperformed other
methods, achieving the lowest mAD and RMSE and the highest correlation
across all simulations, followed by CARD.

To further investigate the performance of SPADE, we calculated the
mAD and RMSE for each cell type, with the stacked bar plot signifying the
least deviation in proportions inferred by SPADE (Supplementary Fig. 3a).
Owing to the effective cell type selection of SPADE, its mean absolute
deviation (Supplementary Fig. 3b) and correlation (Supplementary Fig. 3c)
displayed superior outcomes across all cell types and domains in compar-
ison to alternative methodologies. To visualize the estimation of dominant
cell types, we employed a half violin plot (Supplementary Fig. 3d). This plot
indicates that the distribution of dominant cell type proportions estimated
by SPADE is more closely aligned with the true proportions than those
obtained from other methods. We have also considered adding different
levels of noise when generating the synthetic data, and compared the per-
formance of SPADE with other methods on noisy data. From Supple-
mentary Fig. 4, the results indicate that SPADE not only performs well
under noisy conditions but also maintains its superior performance among
all the compared methods.

In the second simulation study, we generated additional synthetic data
from mouse kidney single-cell RNA-seq data23 and obtained the mouse
kidney spatial location and histology information from 10X Genomics to
assess the robustness of our algorithm further. Specifically, we applied
spaGCN and identified three spatial domains. SPADE was utilized to
accurately retrieve the spatial pattern (Fig. 3a, b) compared toothermethods
(Supplementary Fig. 5) by assigning the most precise proportions to the
dominant cell type within each spatial domain, as evidenced by Fig. 3c.
To evaluate the accuracy of SPADEwithin each cell type across all locations,
we compared themADandRMSEbetween true and inferredproportions to
those obtained with other methods. Our analysis revealed that SPADE had
the lowest error rate (Fig. 3d). Additionally, we created a scatter plot to
compare the estimated cell-type proportions against the true proportions
and found that SPADE displayed a close alignment to the 45-degree line
(Fig. 3e). Furthermore, we assessed the ability of SPADE to accurately
identify the correct cell typeswithin eachdomain.Our analysis indicated the

superior ability of SPADE to detect the correct cell types in spatial locations,
as evidencedby thehigh true positive rate and low false positive rate (Fig. 3f).
Finally, we assessed the stability of SPADE’s estimation by repeating the
simulation ten times. The consistently low deviations, as well as high cor-
relation (Fig. 3g), demonstrated that SPADE is a robust and accurate
method for spatial deconvolution, superior to existingmethods. To evaluate
the ability of SPADE in handling noise data, we introduced varying levels of
noise during the creation of synthetic data and compared its performance
with other methods. The results, as shown in Supplementary Fig. 6, reveal
that SPADE not only copes well with noisy conditions but also continues to
maintain low deviance and high correlation among all compared methods.

Application of real data on developmental chicken heart
The heart is the first organ to develop during embryogenesis, and interac-
tions among various cell populations play a pivotal role in driving cardiac
fate decision. The heterogeneity of cell types in heart development poses a
challenge to study by traditional methods. Therefore, it is important to
explore varied techniques for prediction of cell type heterogeneity during
heart development.

During early embryonic development, the heart initially forms as a
simple tube and undergoes a series of intricate morphological changes,
eventually developing into a fully functional four-chambered heart com-
plete with the blood vessels. In their previous research, Mantri, M. et al.
employed a combination of spatially resolved RNA sequencing and high-
throughput single-cell RNA sequencing to investigate the spatial and tem-
poral interactions as well as the regulatory mechanisms involved in the
development of the embryonic chicken heart24. Their research employed
chicken embryos to generate over 22,000 single-cell transcriptomes across
four pivotal developmental stages, in addition to spatially resolvedRNA-seq
on 12 heart tissue sections at the same stages, encompassing approximately
700 to nearly 2,000 tissue locations. These stages comprised day 4, an early
stage of chamber formation and the initiation of ventricular septation; day 7,
when the four-chamber cardiac morphology is initiated; day 10, repre-
senting the mid-stage of four-chambered heart development; and day 14,
denoting the late stage of four-chamber development.

The study of early embryonic development details the progression of
anatomical development across multiple temporal points by way of H&E
stained images, as presented in the Supplementary Fig. 7a. Upon applying
SPADE, spatial domains were defined for each timepoint, revealing the
emergence of ventricular separation by day 4, as illustrated in Fig. 4a. From
day 7 onwards, the clustering of diverse chamberswas readily discernible, as
evidenced by Fig. 4b, c, and d. The estimated cell type proportions for each
chamber over the four temporal points are illustrated in the bar plot in
Fig. 4e, which indicates a preponderance of immature myocardial and
fibroblast cells on day 4, with a decreasing trend as the heart matures. This
pattern is further verified by the scatter pie plot, as presented in the Sup-
plementary Fig. 7b. This phenomenon is attributed to the tube-like structure
of the chicken heart during early developmental stages, which necessitates
the presence and active participation of fibroblast cells in the creation of
connective tissue25. As the heart develops, fibroblast cells undergo pro-
liferation and differentiation into various types of connective tissue cells.
During later stages of development, the number of fibroblast cells in the
heart declines, coinciding with its maturation and specialization. However,
fibroblast cells continue to play a vital role in maintaining the heart’s
structure and function throughout the chicken’s lifespan26–29. Conversely,
the number of cardiomyocyte cells increases significantly during the
development of the chicken heart, with the highest rate of proliferation
occurring from day 4 to day 7, and slowing down from day 10 to day 14, as
shown in Fig. 4e.

The proliferation of cardiomyocytes is a pivotal process during
embryonic heart development, leading to a significant increase in their
numbers. Previous studies have demonstrated that the rate of cardiomyo-
cyte proliferation is highest during early developmental stages and gradually
decreases as the heart matures28,30–33. Our findings, obtained through the
application of SPADE, support this notion. Specifically, we observed that
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immature myocardial cells constitute a subset of cardiomyocytes that are
present only during days 4 to 7 of embryonic development (Fig. 4e). These
immature cells undergo differentiation to become mature cardiomyocytes,
which is a crucial step for the proper contractile function of the heart24.

We aimed to investigate the trends in proportions of various cell types,
including cardiomyocytes, vascular endothelial cells, fibroblasts, and
endocardial cells. To determine whether the observed changes in propor-
tions were statistically significant, we conducted a thorough analysis,

Fig. 2 | Simulation using mouse olfactory bulb. a H& E staining for the mouse
olfactory bulb downloaded from22. b Spatial domain detection c True positive and
false positive rate for detecting the correct cell types within each domain. d Scatter
plot for comparing the estimated proportion with the true proportion. Each dot
represents proportion at a location, with a color depicting a cell type. The color code
is consistent with the color assigned in e. A 45-degree line indicates the same value
for true and estimated proportion. e Spatial scatter pie plot shows the estimated cell-

type composition on each spatial location from different deconvolution methods,
compared to the true distribution. Colors represent cell types. f Boxplot of perfor-
mance metrics for 10 simulation replicates. The overall simulation results indicate
that SPADE outperformed other methods, achieving the lowest mean Absolute
Deviation (mAD), Root Mean Square Error (RMSE), and the highest R. Source data
can be found in Supplementary Data 1.
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comparing every pair of time points for each cell type using Fig. 4f. Our
results indicate that nearly all changes between any two days were statisti-
cally significant (from Wilcoxon test with p < 0.05). Furthermore, we
employed a spatial cell type map (Fig. 4g, h) to visually represent the pro-
portions of each cell type at Day 4 andDay 14. Results forDay 7 andDay 10
can be found in Supplementary Fig. 8a. As expected, at Day 4, both cardi-
omyocytes and vascular endothelial cells exhibited relatively low

proportions in Fig. 4g, while at Day 14 (Fig. 4h), their proportions increased
significantly. These findings highlight the dynamic changes in cell type
proportions over time, providing crucial insights into the development and
function of the studied tissues.

The heart, a vital organ composed of various cell types, including car-
diomyocytes, fibroblasts, endothelial cells, and smooth muscle cells, under-
goes intricate cellular interactions and network formation during its

Fig. 3 | Simulation using mouse kidney. a,b Scatter pie plot representing cell type
proportions within each location. Each location is depicted by a pie plot showing the
cell type composition denoted by distinct colors. c Violin-box plot displaying the
distribution of the predicted proportions of the dominant cell type within each
domain compared with true proportion. d Stacked barplot exhibiting the mean
absolute deviation and root mean square deviation between the true and predicted

proportions. e Scatter plot showing cell type proportions, where each dot represents
proportion at a location and the color corresponds to the cell type. f True positive
and false positive rates for cell type identification within each domain. g Boxplot of
performance metrics for 10 simulation replicates. Source data can be found in
Supplementary Data 2.
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Fig. 4 | SPADE application to developmental chicken heart. a–d Estimated spatial
domains for various time points during the experiment: (a) Day 4, (b) Day 7, (c) Day
10, and (d) Day 14. Colors indicate different domains, with an increasing number of
domains detected as time progresses. Specifically, 3 domains were detected onDay 4,
while 5 domains were identified on Day 7 and beyond. e Predicted cell type pro-
portions during heart development, with colors representing different cell types.
f Comparison of cell type proportions between time points, using a two-sided

Wilcoxon Rank Sum test to assess differences for pairs of cell types. Asterisks
indicate the significance level. g, h Scatter plots displaying the spatial locations of
four selected cell types on Day 4 and Day 10, respectively, with each location colored
according to the cell type proportion. i, jCorrelation plots for cell type colocalization
onDay 4 andDay 14, respectively. The size of the dot indicated themagnitude of the
absolute correlations. Source data can be found in Supplementary Data 3.
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developmental stages that are crucial for its proper functioning34–37. We uti-
lized cellular colocalization analysis, a key technique in spatial tran-
scriptomics, to quantitatively evaluate how different cell types are positioned
and interact within tissue. This approach provides insights into the spatial
dynamics of cellular environments, revealing potential interactions and
functional relationships between cells. By analyzing the spatial organization
andproximity of cell types, we aim tounderstand their roles in tissue function
and development, and how they contribute to the overall tissue architecture
and intercellular communication35,36. Our results revealed an increased
cohesion between cell types, particularly between cardiomyocytes and vas-
cular endothelial cells, in conjunction with heart development. This was
supported by our results, as illustrated in Fig. 4i, j for Day 4 and Day 14,
respectively, which showed stronger spatial coherence of organization during
development. The correlation plots for Day 7 and Day 10 are in the Sup-
plementaryFig. 8b.Collectively, our studyhighlights the significant variability
in the spatial organization of cell types across different developmental stages
and underscores the significance of dynamic interactions among various cell
types for a comprehensive understanding of heart development as compared
to the results from other methods (indicated in Supplementary Figs. 9–13).

Application of real data on human breast cancer
Breast cancer is a complex disease that arises from the uncontrolled growth
of malignant cells in the breast tissue, with varying molecular and cellular
characteristics among individual patients. The Luminal subtype, which
constitutes approximately 70%of all cases, is characterizedby the expression
of hormone receptors, namely estrogen receptor (ER) and progesterone
receptor (PR)38. The combination of spatial transcriptomics and single-cell
data is proving to be a valuable method for unraveling the complexities of
human breast cancer38. This method maps gene expression and analyzes
single-cell transcriptomes to identify cell types and their interactions in the
tumor environment, crucial for understanding cancer progression and
treatment effectiveness.

We retrieved the single-cell RNA-seq data as well as the spatial tran-
scriptomics data of primary pre-treatment breast tumor samples from a
human breast cancer study39. To create a reference for cell types in SPADE
analysis, we utilized scRNA-Seq data comprising 9 distinct cell types from
breast tumors. This reference was then employed to deconstruct a spatially
mapped tumor sample. In the SPADE results (Fig. 5a), a preponderance of
cancer epithelial cells is evident, with plasmablasts as the subsequent most

Fig. 5 | SPADE application to human breast cancer. a The estimated cell type
proportions are shown, with different cell types represented by different colors.
bCorrelation for every pair of cell type proportions across the spatial location. cThe
cell type proportion for cancer epithelial, cancer-associated fibroblast (CAFs), and B

cell is visualized in each location. dThemarker gene expression levels for these three
cell types are also displayed for each location respectively. Source data can be found
in Supplementary Data 4.
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abundant cell type. A comprehensive examination of cellular composition
across various spatial locations, depicted in Supplementary Fig. 14, further
corroborates the prevalence of cancer epithelial cells at themajority of these
sites. In Luminal breast cancer, the development of malignancy typically
stems fromepithelial cells, whichmay undergo geneticmutations leading to
uncontrolled growth and tumor formation. These malignant epithelial cells
often express high levels of hormone receptors, which facilitate response to
the growth-promoting effects of estrogen and progesterone40,41.

Plasmablasts are a type of immune cell that plays a crucial role in
humoral immune response, responsible for antibody production and
secretion. Recent evidence has shown that Luminal breast tumors with
higher levels of infiltratingplasmablasts have abetter prognosis compared to
the tumors with lower levels of plasmablasts, suggesting a potential pro-
tective role of these cells in Luminal breast cancer42,43. We observed the
colocalization of cancer epithelial cells and immune cells, such as plasma-
blasts,myeloid cells, andT/Bcells, in the tumormicroenvironment (Fig. 5b).
We noted strong negative correlations between cancer epithelial cells and
immune cells in these areas. The presence of tumor-infiltrating lymphocytes
(TILs) is an important aspect of cancer epithelial cell and immune cell
colocalization. TILs are immune cells that migrate into the tumor micro-
environment and are believed to play a crucial role in anti-tumor
immunity42. In several cancer types, including breast cancer, the presence
of TILs has been linked to improved outcomes43–45.Furthermore, We
investigated the cell type proportion within each location for cancer epi-
thelial cells, cancer-associated fibroblast cells (CAFs), and B cell (Fig. 5c),
along with their associated marker genes EPCAM (Epithelial), FAP(CAFs)
and CD55 (B cell) (Fig. 5d). The spatial distribution of cell types corre-
sponded with their marker gene expression, confirming the cell types
inferred by SPADE. The results displayed a similar pattern to those of
CARD and RCTD, as shown in Supplementary Fig. 15.

Application of real data on mouse visual cortex
Themouse brain, with itsmillions of neurons, is an idealmodel for studying
mammalian brain structure and function, especially in the visual cortex.
This region, crucial for processing visual information, is organized into
layers, each with specialized cell types, making it a good model for human
visual cognition research46–49. The visual cortex hosts various neuron types,
including excitatory neurons using glutamate and inhibitory neurons using
GABA, forming a network for interpreting visual stimuli50,51. Each neuron
type plays a specific role in visual processing, from detecting visual features
to integrating complex visual information52–54. Understanding these func-
tions and their disruptions can provide insights into neurological and
psychiatric disorders55

We implemented a single-cell analysis56 to identify 30 distinct cell types
in the mouse visual cortex. This analysis was used to deconstruct the adult
mouse brain, which had undergone spatial processing (see Fig. 6a). Initially,
we divided themouse brain into 19 different regions (illustrated in Fig. 6b). In
these regions,wewereable to identify specific layers that correlatewithvarious
brain functions. Compared to the other methods (results are in Supple-
mentary Fig. 16), SPADE successfully decomposed each brain region into its
constituent cell types. The predominant cell type in each location is shown in
Fig. 6c. Our focus was particularly on the visual cortex, where we found that
most areas were primarily composed of excitatory neurons, followed by
inhibitory neurons and oligodendrocytes, as detailed in Fig. 6d. Excitatory
neurons, which utilize the neurotransmitter glutamate to typically enhance
neuronal activity, are an integral part of themouse visual cortex, as well as all
mammalian brains. These neurons have a central role in transmitting and
processing visual data. They are found in all layers of themouse visual cortex
from the deeper layers (layers 5 and 6) to the superficial layers (layers 2 and 3)
(Fig. 6e). The genes expressed differently (Fig. 6f) for each subtypes of exci-
tatory neuron further confirmed the correspondingmultiple-layer structures.

Discussion
Spatial transcriptomics, essential for studying gene expression and tissue
diversity, ismore informative when combinedwith cell type deconvolution.

This computational method identifies cell types from gene expression data,
enhancing our understanding of biological processes at the cellular level
within tissues. Spatial transcriptomics is a critical tool for investigating gene
expression patterns and regional differences in a tissue, providing insight
into its biological significance. However, the interpretation of this data can
be challenging without knowledge of the specific cell types present in each
region. Cell type deconvolution is a computational approach that can
identify cell types based on gene expression data. By applying this technique
to spatial transcriptomics data, it becomes possible to contextualize gene
expression data and gain a deeper understanding of the biological processes
occurring within a tissue at the cellular level. While many existing cell type
deconvolution methods do not account for the spatial domain structure,
SPADEhas been developed to overcome this limitation.Ourmethod stands
out by integrating spatial structures and using a reliable approach for cell
type selection. Differing from other techniques, it employs lasso regression
and adaptive thresholding for more accurate and flexible cell type identifi-
cation. This effectiveness is evident in our results, notably in Fig. 2c,
enhancing SPADE’s robustness and precision in complex spatial tran-
scriptomics datasets.

The SPADE algorithm effectively predicts cell types and their dis-
tribution in tissues, as shown in tests on syntheticmousedatasets.Applied to
chicken heart development, human breast cancer, andmouse visual cortex,
SPADE revealed insights into cell type development and spatial patterns in
diseases. This has promising implications for clinical studies, especially in
understanding cancer cell type heterogeneity and informing treatment
strategies.

Although the SPADE algorithm has demonstrated superior accuracy,
one of its notable challenges is the accurate deconvolution of rare cell types.
Our analysis, especially with rare cell types like the Immature cells in the
mouse olfactory bulb data, indicated a tendency for underestimation, a
limitation common to current deconvolution methods. This under-
estimation issue is critical to address in order to improve SPADE’s
robustness and applicability, particularly in complex biological tissues
where rare cell types are are crucial for functional significance or dis-
ease state.

Moreover, it’s important to note that SPADE’s performance can be
further improved by incorporating better-designed reference datasets. In
our study, we utilized one single scRNA-seq dataset to construct the
reference, potentially limiting the algorithm’s overall efficacy. Advances in
scRNA-seq technologies have led to the generation of multiple reference
datasets fromdifferent platformsor samples obtained from the same tissues.
Integration of these diverse scRNA-seq datasets holds the potential to
provide a comprehensive and accurate reference set, thereby improving the
performance of the SPADE algorithm.

It should also bementioned that SPADE,while not themost efficient in
processing time and memory usage, involves a meticulous process of
identifying cell types within each domain before estimating proportions.
This methodological aspect, though extending processing time, sub-
stantially enhances the accuracy and robustness of our analyses, particularly
for complex datasets. This balance between processing efficiency and ana-
lytical precision is a key consideration,making SPADEavaluable tool for in-
depth spatial gene expression studies. Continuous methodological
improvements are necessary. Future studies should explore the use of
multiple reference datasets to improve the accuracy and efficacy of SPADE
in predicting cell types and their spatial distribution across different tissues.

Methods
Spatial domain detection
Spatial domain detection constitutes a critical aspect of spatial tran-
scriptomics, as evidenced by numerous studies19,57,58. A spatial domain
encompasses regions that demonstrate spatial coherence in both gene
expression and histology. Traditional approaches for identifying these
domains are dependent on clustering algorithms that solely consider gene
expression, neglecting spatial information and histology19. To address this
limitation, spaGCN19 incorporates gene expression, spatial location, and
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Fig. 6 | SPADE application to Mouse Visual Cortex. a Original image of Adult
Mouse Brain (Coronal) downloaded from 10x Visium. b Detected spatial domain.
Colors represent different domains c SPADE inferred the dominant cell type at each
location. d Estimated cell type in the mouse visual cortex. Each location is indicated

by a composition of several cell types. e 4 subtypes of the excitatory neurons at the
mouse visual cortex. f Genes displayed differences in expression within each exci-
tatory neuronal cell subtype at the mouse visual cortex. Source data can be found in
Supplementary Data 5.
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histology to construct a graph convolutional network, facilitating the
identification of spatial domains. The spaGCN algorithm unfolds in three
stages. Initially, information derived from physical location and histology is
employed to establish an undirected graph, reflecting the relationships
between all spots. Subsequently, a graph convolutional network is imple-
mented to integrate gene expression, spatial location and histological data.
Finally, an iterative unsupervised clustering algorithm is applied to segregate
spots into distinct spatial domains based on gene expression and histology
coherence. Importantly, spaGCN can be applied to the datasets where
histology images are absent. In these situations, it makes use of spatial gene
expression data to identify the spatial domains which is comparable to
methods used in other spatial domain detection approaches. For a com-
prehensive understanding, refer to the original publication19.

Determine the number of cell types for each domain
A crucial disparity between bulk deconvolution and spatial deconvolution is
that not all cell types are uniformly distributed across all regions. Conse-
quently, identifying thepresenceof specific cell types in individual locations is
crucial for efficacious cell type deconvolution. A key assumption underlying
this approach is that while different locations within the same domain are
closely related, they may not have exactly the same cell types. Instead, each
location is thought to contain a similar set of cell types, but the proportions of
these cell types can vary fromone location to another. To tackle this issue, we
leverage a Lasso-regularized generalized linear model20, which offers the
advantages of concurrent feature selection and regularization, enforcement
of sparsity, computational efficiency, resistance to multicollinearity, and
broad applicability across diverse domains. Employing Lasso, cell types are
selected for each domain through the subsequent methodology:

XM

i¼1

yi �
XK

j¼1

βjxij

 !2

þ λ
XK

j¼1

∣βj∣ ð1Þ

where yi is the gene expression for gene i, xij is the gene i expression for cell
type j, βj is the coefficient for cell type j. To perform cell type selection, we
estimate cell type coefficients, effectively eliminating a cell type from a given
location if its coefficient shrinks to 0. The tuning parameter, λ, is chosen via
10-fold cross-validation.

Upon obtaining the cell-type-associated coefficient matrix for each
location within the spatial domains, we transform it into a binary matrix,
where each entry holds a value of either 1 or 0. To achieve this, we employ an
adaptive thresholding technique59 that utilizes a 2D convolution with the
Fast Fourier Transform (FFT) to filter the coefficient matrix, thus enabling
the efficient identification of entries surpassing a specific threshold. In
particular, if a coefficient exceeds the filtered value, the corresponding entry
is set to 1, whereas entries falling below the threshold are assigned a value of
0. A comprehensive description of these steps can be found in Supple-
mentary Fig. 17.

Cell type proportion estimation for each location within
each domain
The deconvolution problem can be solved tofind the optimal estimation for
cell type proportion that minimize the difference between estimated spatial
gene expression and observed spatial gene expression for each location as
below:

argmin
P

XM

i¼1

yi �
X

j2S
pjxij

�����

�����

( )

ð2Þ

subject to pj ≥ 0 and∑j∈Spj = 1 where yi is the expression for gene i( = 1…
M). xij is the expression for gene i for cell type j that is extracted from
single-cell reference. pj is the proportion for cell type j. S is the set of cell
types determined for each domain. Here we select the absolute deviation
loss as the optimal choice due to its less sensitive to the extremevalues than

the commonly used quadratic loss function. The optimization problem is
solved using the Augmented Lagrange Minimization algorithm that is
implemented by auglag function in R package alabama60. Due to the
unique feature of proportion, we not only minimize the nonlinear
objective function, but also satisfy two constrains. The proportion for each
cell type has to be nonnegative, and the sum of all cell type within each
sample needs to be 1.

Construct reference
The accurate estimation of cell types is essential for understanding tissue
function and identifying cell type specific features. A well-designed cell type
reference is crucial for this purpose, and in this study, we utilize single-cell
RNA-seq data that contains tissue or samples with a similar phenotype to
the spatial transcriptomics data. The scRNA-seq data were first checked for
quality based on the commonly used pre-processing workflow from
Seurat61.

To extract cell type information, we followed the main idea from
MuSiC62 and applied several steps. Firstly, we calculated the cross-cell var-
iation for each gene of each cell typewithin an individual sample, taking into
account cell type and sample-specific library size. To achieve this, we subset
the expression data by removing redundant cell type annotations given by
the original single-cell study and by removing genes with zero counts. For
each sample within each cell type, we scaled the gene expression by their
library size, which is calculated by summing all gene counts for each cell.
Next, wefiltered genes by three criteria to keep genes that satisfy any of these
criteria: 1) the genes shared between single-cell data and bulk data, 2)
commonly used cell type biomarkers or highly cited markers, and 3) dif-
ferentially expressed genes (DEGs) by comparing each pair of cell types. To
detect DEGs, we used the FindAllMarkers function from Seurat. The
resulting table is a gene by cell type expression matrix that can be imple-
mented in the cell type deconvolution model. For a more in-depth step of
reference construction, please refer to the flowchart depicted in the Sup-
plementary Fig. 18 for more details.

Statistics and reproducibility
All single-cell and spatial transcriptomics data used for simulation and real
datasets are publicly available. The codes for othermethods are also publicly
accessible; we adhered to the online tutorials for running each method. For
ourmethod, we have developed an R package that enables the reproduction
of our results. The R package and tutorial for implement SPADE is freely
available on GitHub (https://github.com/anlingUA/SPADE).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The datasets utilized in this study are publicly available. The spatial MOB,
mousekidney, andmousebraindatasetswereobtained fromthe 10xVisium
dataset, which can be accessed at https://www.10xgenomics.com/resources/
datasets. The single cell RNA-seq data for the MOB and mouse kidney
samples are available through the GEO Series accession numbers
GSE162654 and GSE107585, respectively. The spatial transcriptomics data
for the developmental chicken heart were downloaded from https://github.
com/madhavmantri/chicken_heart/tree/master/data, while the corre-
sponding single cell data can be accessed via the GEO Series accession
numberGSE149457.Thehumanbreast cancer spatial transcriptomicdata is
available from the Zenodo data repository (https://doi.org/10.5281/zenodo.
4739739), and the single cell data can be obtained via the GEO Series
accession number GSE176078. Finally, the single cell data for the mouse
visual cortex can be accessed through GSE102827.
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