Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

AV3Sb5 kagome superconductors

Abstract

The recent discovery of the AV3Sb5 (A = K, Rb, Cs) kagome superconductors launched a growing field of research investigating the interplay between superconductivity and charge-density wave order in kagome metals. Specifically, the AV3Sb5 family of materials naturally exhibits a Fermi level close to the Van Hove singularities associated with the saddle points formed from the prototypical kagome band structure. The charge-density wave and superconducting states that form within the kagome networks of these compounds exhibit a number of anomalous properties reminiscent of theoretical predictions of exotic states in kagome metals tuned close to their Van Hove fillings. In this Review, we discuss the key structural and electronic features of AV3Sb5 compounds and survey the status of investigations of their unconventional electronic phase transitions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal and electronic band structures of AV3Sb5 compounds.
Fig. 2: Elements of charge-density wave order in AV3Sb5 compounds.
Fig. 3: Intermediate electronic phase transitions and crossovers in AV3Sb5.
Fig. 4: Momentum-space contours of the Fermi surface and the corresponding nesting wave vectors for electronic order.
Fig. 5: Phase diagrams of AV3Sb5 compounds tuned by pressure and doping.
Fig. 6: Sublattice doping of CsV3Sb5 with various electronic, magnetic and isoelectronic dopants.

Similar content being viewed by others

References

  1. Syôzi, I. Statistics of kagomé lattice. Prog. Theor. Phys. 6, 306–308 (1951).

    Article  Google Scholar 

  2. Norman, M. Colloquium: Herbertsmithite and the search for the quantum spin liquid. Rev. Mod. Phys. 88, 041002 (2016).

    Article  Google Scholar 

  3. Bergman, D. L., Wu, C. & Balents, L. Band touching from real-space topology in frustrated hopping models. Phys. Rev. B 78, 125104 (2008).

    Article  Google Scholar 

  4. Kiesel, M. L. & Thomale, R. Sublattice interference in the kagome Hubbard model. Phys. Rev. B 86, 121105 (2012).

    Article  Google Scholar 

  5. Wang, W.-S., Li, Z.-Z., Xiang, Y.-Y. & Wang, Q.-H. Competing electronic orders on kagome lattices at Van Hove filling. Phys. Rev. B 87, 115135 (2013).

    Article  Google Scholar 

  6. Kiesel, M. L., Platt, C. & Thomale, R. Unconventional Fermi surface instabilities in the kagome Hubbard model. Phys. Rev. Lett. 110, 126405 (2013).

    Article  PubMed  Google Scholar 

  7. Wen, J., Rüegg, A., Wang, C.-C. J. & Fiete, G. A. Interaction-driven topological insulators on the kagome and the decorated honeycomb lattices. Phys. Rev. B 82, 075125 (2010).

    Article  Google Scholar 

  8. Nayak, C. Density-wave states of nonzero angular momentum. Phys. Rev. B 62, 4880–4889 (2000).

    Article  CAS  Google Scholar 

  9. Lin, Y.-P. & Nandkishore, R. M. Complex charge density waves at Van Hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals AV3Sb5 (A = K, Rb, Cs). Phys. Rev. B 104, 045122 (2021).

    Article  CAS  Google Scholar 

  10. Wu, Y.-M., Thomale, R. & Raghu, S. Sublattice interference promotes pair density wave order in kagome metals. Phys. Rev. B 108, L081117 (2023).

    Article  CAS  Google Scholar 

  11. Guo, H.-M. & Franz, M. Topological insulator on the kagome lattice. Phys. Rev. B 80, 113102 (2009).

    Article  Google Scholar 

  12. Yu, S.-L. & Li, J.-X. Chiral superconducting phase and chiral spin-density-wave phase in a Hubbard model on the kagome lattice. Phys. Rev. B 85, 144402 (2012).

    Article  Google Scholar 

  13. Wu, X. et al. Nature of unconventional pairing in the kagome superconductors AV3Sb5 (A = K,Rb,Cs). Phys. Rev. Lett. 127, 177001 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Lin, Y.-P. & Nandkishore, R. M. Multidome superconductivity in charge density wave kagome metals. Phys. Rev. B 106, L060507 (2022).

    Article  CAS  Google Scholar 

  15. Kang, M. et al. Topological flat bands in frustrated kagome lattice CoSn. Nat. Commun. 11, 4004 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ye, L. et al. Hopping frustration-induced flat band and strange metallicity in a kagome metal. Nat. Phys. 20, 610–614 (2024).

    Article  CAS  Google Scholar 

  17. Huang, H. et al. Flat-band-induced anomalous anisotropic charge transport and orbital magnetism in kagome metal CoSn. Phys. Rev. Lett. 128, 096601 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Martin, I. & Batista, C. D. Itinerant electron-driven chiral magnetic ordering and spontaneous quantum Hall effect in triangular lattice models. Phys. Rev. Lett. 101, 156402 (2008).

    Article  PubMed  Google Scholar 

  19. Nandkishore, R., Levitov, L. S. & Chubukov, A. V. Chiral superconductivity from repulsive interactions in doped graphene. Nat. Phys. 8, 158–163 (2012).

    Article  CAS  Google Scholar 

  20. Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019).

    Article  CAS  Google Scholar 

  21. Kenney, E. M., Ortiz, B. R., Wang, C., Wilson, S. D. & Graf, M. J. Absence of local moments in the kagome metal KV3Sb5 as determined by muon spin spectroscopy. J. Phys. Condens. Matter 33, 235801 (2021).

    Article  CAS  Google Scholar 

  22. Ortiz, B. R. et al. CsV3Sb5: a Z2 topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Feng, X., Zhang, Y., Jiang, K. & Hu, J. Low-energy effective theory and symmetry classification of flux phases on the kagome lattice. Phys. Rev. B 104, 165136 (2021).

    Article  CAS  Google Scholar 

  24. Denner, M. M., Thomale, R. & Neupert, T. Analysis of charge order in the kagome metal AV3Sb5 (A = K,Rb,Cs). Phys. Rev. Lett. 127, 217601 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Grandi, F., Consiglio, A., Sentef, M. A., Thomale, R. & Kennes, D. M. Theory of nematic charge orders in kagome metals. Phys. Rev. B 107, 155131 (2023).

    Article  CAS  Google Scholar 

  26. Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222–228 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Yu, X. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Xie, Y. et al. Spin excitations in metallic kagome lattice FeSn and CoSn. Commun. Phys. 4, 240 (2021).

    Article  CAS  Google Scholar 

  29. Bak, P. & Jensen, M. H. Theory of helical magnetic structures and phase transitions in MnSi and FeGe. J. Phys. C Solid State Phys. 13, L881 (1980).

    Article  CAS  Google Scholar 

  30. Kang, M. et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 19, 163–169 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Meier, W. R. et al. Flat bands in the CoSn-type compounds. Phys. Rev. B 102, 075148 (2020).

    Article  CAS  Google Scholar 

  32. Liu, Z. et al. Orbital-selective Dirac fermions and extremely flat bands in frustrated kagome-lattice metal CoSn. Nat. Commun. 11, 4002 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sales, B. et al. Tuning the flat bands of the kagome metal CoSn with Fe, In, or Ni doping. Phys. Rev. Mater. 5, 044202 (2021).

    Article  CAS  Google Scholar 

  34. Teng, X. et al. Magnetism and charge density wave order in kagome FeGe. Nat. Phys. 19, 814–822 (2023).

    Article  CAS  Google Scholar 

  35. Sales, B. C. et al. Electronic, magnetic, and thermodynamic properties of the kagome layer compound FeSn. Phys. Rev. Mater. 3, 114203 (2019).

    Article  CAS  Google Scholar 

  36. Arachchige, H. W. S. et al. Charge density wave in kagome lattice intermetallic ScV6Sn6. Phys. Rev. Lett. 129, 216402 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. El Idrissi, B. C., Venturini, G., Malaman, B. & Fruchart, D. Magnetic structures of TbMn6Sn6 and HoMn6Sn6 compounds from neutron diffraction study. J. Less Common Metals 175, 143–154 (1991).

    Article  Google Scholar 

  38. Ghimire, N. J. et al. Competing magnetic phases and fluctuation-driven scalar spin chirality in the kagome metal YMn6Sn6. Sci. Adv. 6, eabe2680 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, J. & Mun, E. Anisotropic magnetic property of single crystals RV6Sn6 (R = Y, Gd-Tm, Lu). Phys. Rev. Mater. 6, 083401 (2022).

    Article  CAS  Google Scholar 

  40. Peng, S. et al. Realizing kagome band structure in two-dimensional kagome surface states of RV6Sn6 (R = Gd, Ho). Phys. Rev. Lett. 127, 266401 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Pokharel, G. et al. Electronic properties of the topological kagome metals YV6Sn6 and GdV6Sn6. Phys. Rev. B 104, 235139 (2021).

    Article  CAS  Google Scholar 

  42. Pokharel, G. et al. Highly anisotropic magnetism in the vanadium-based kagome metal TbV6Sn6. Phys. Rev. Mater. 6, 104202 (2022).

    Article  CAS  Google Scholar 

  43. Wang, Q. et al. Field-induced topological Hall effect and double-fan spin structure with a c-axis component in the metallic kagome antiferromagnetic compound YMn6Sn6. Phys. Rev. B 103, 014416 (2021).

    Article  CAS  Google Scholar 

  44. Yin, J.-X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, X. et al. Electronic and magnetic properties of intermetallic kagome magnets RV6Sn6 (R = Tb-Tm). Phys. Rev. Mater. 6, 105001 (2022).

    Article  CAS  Google Scholar 

  46. Klepp, K. & Weithaler, C. The crystal structures of CsAu3S2, RbAu3Se2 and CsAu3Se2 and their relationship to the CsCu3S2 structure type. J. Alloys Compd. 243, 1–5 (1996).

    Article  CAS  Google Scholar 

  47. Burschka, C. CsCu4S3 und CsCu3S2: Sulfide mit tetraedrisch und linear koordiniertem Kupfer. Z. Anorg. Allg. Ohem. 483, 65–71 (1980).

    Article  Google Scholar 

  48. Savelsberg, G. & SCHAFER, H. Darstellung und Kristallstruktur von K3Cu3P2. Z. Naturforsch. B 33, 590–592 (1978).

    Article  Google Scholar 

  49. Bronger, W. & Huster, J. Cs2Pd3S4, ein neuer schichtenstrukturtyp. J. Less Common Metals 23, 67–72 (1971).

    Article  CAS  Google Scholar 

  50. Ortiz, B. R. et al. YbV3Sb4 and EuV3Sb4 vanadium-based kagome metals with Yb2+ and Eu2+ zigzag chains. Phys. Rev. Mater. 7, 064201 (2023).

    Article  CAS  Google Scholar 

  51. Ortiz, B. R. et al. Evolution of highly anisotropic magnetism in the titanium-based kagome metals LnTi3Bi4 (Ln: La Gd3+, Eu2+, Yb2+). Chem. Mater. 35, 9756–9773 (2023).

    Article  CAS  Google Scholar 

  52. Ovchinnikov, A. & Bobev, S. Synthesis, crystal and electronic structure of the titanium bismuthides Sr5Ti12Bi19+x, Ba5Ti12Bi19+x, and Sr5−δEuδTi12Bi19+x (x = 0.5–1.0; δ = 2.4, 4.0). Eur. J. Inorg. Chem. 2018, 1266–1274 (2018).

    Article  CAS  Google Scholar 

  53. Ovchinnikov, A. & Bobev, S. Bismuth as a reactive solvent in the synthesis of multicomponent transition-metal-bearing bismuthides. Inorg. Chem. 59, 3459–3470 (2019).

    Article  PubMed  Google Scholar 

  54. Motoyama, G. et al. Magnetic properties of new antiferromagnetic heavy-fermion compounds, Ce3TiBi5 and CeTi3Bi4. Phys. B Condens. 536, 142–144 (2018).

    Article  CAS  Google Scholar 

  55. Jovanovic, M. & Schoop, L. M. Simple chemical rules for predicting band structures of kagome materials. J. Am. Chem. Soc. 144, 10978–10991 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Song, B. et al. Anomalous enhancement of charge density wave in kagome superconductor CsV3Sb5 approaching the 2d limit. Nat. Commun. 14, 2492 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wei, X. et al. Linear nonsaturating magnetoresistance in kagome superconductor thin flakes. 2D Mater. 10, 015010 (2022).

    Article  Google Scholar 

  58. Wu, Y. et al. Nonreciprocal charge transport in topological kagome superconductor CsV3Sb5. npj Quantum Mater. 7, 105 (2022).

    Article  CAS  Google Scholar 

  59. Wang, T. et al. The interplay between anomalous metallic and superconducting states tuned by disorder in thin flakes of Kagome metal KV3Sb5. Supercond. Sci. Technol. 36, 125015 (2023).

    Article  Google Scholar 

  60. Kim, S.-W., Oh, H., Moon, E.-G. & Kim, Y. Monolayer kagome metals AV3Sb5. Nat. Commun. 14, 591 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Song, Y. et al. Competition of superconductivity and charge density wave in selective oxidized CsV3Sb5 thin flakes. Phys. Rev. Lett. 127, 237001 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Tan, H., Liu, Y., Wang, Z. & Yan, B. Charge density waves and electronic properties of superconducting kagome metals. Phys. Rev. Lett. 127, 046401 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Kang, M. et al. Twofold Van Hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Nat. Phys. 18, 301–308 (2022).

    Article  CAS  Google Scholar 

  64. Hu, Y. et al. Rich nature of Van Hove singularities in kagome superconductor CsV3Sb5. Nat. Commun. 13, 2220 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kato, T. et al. Three-dimensional energy gap and origin of charge-density wave in kagome superconductor KV3Sb5. Commun. Mater. 3, 30 (2022).

    Article  CAS  Google Scholar 

  66. Ece, U., Ortiz, B. R., Wilson, S. D., Dressel, M. & Tsirlin, A. A. Optical detection of the density-wave instability in the kagome metal KV3Sb5. npj Quantum Mater. 7, 16 (2022).

    Article  Google Scholar 

  67. Uykur, E. et al. Low-energy optical properties of the nonmagnetic kagome metal CsV3Sb5. Phys. Rev. B 104, 045130 (2021).

    Article  CAS  Google Scholar 

  68. Wenzel, M. et al. Optical study of RbV3Sb5: multiple density-wave gaps and phonon anomalies. Phys. Rev. B 105, 245123 (2022).

    Article  CAS  Google Scholar 

  69. Liang, Z. et al. Three-dimensional charge density wave and surface-dependent vortex-core states in a kagome superconductor CsV3Sb5. Phys. Rev. X 11, 031026 (2021).

    CAS  Google Scholar 

  70. Huai, L. et al. Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5. Chin. Phys. B 31, 057403 (2022).

    Article  CAS  Google Scholar 

  71. Nakayama, K. et al. Multiple energy scales and anisotropic energy gap in the charge-density-wave phase of the kagome superconductor CsV3Sb5. Phys. Rev. B 104, L161112 (2021).

    Article  CAS  Google Scholar 

  72. LaBollita, H. & Botana, A. S. Tuning the Van Hove singularities in AV3Sb5 (A = K, Rb, Cs) via pressure and doping. Phys. Rev. B 104, 205129 (2021).

    Article  CAS  Google Scholar 

  73. Kautzsch, L. et al. Structural evolution of the kagome superconductors AV3Sb5 (A = K, Rb, and Cs) through charge density wave order. Phys. Rev. Mater. 7, 024806 (2023).

    Article  CAS  Google Scholar 

  74. Luo, H. et al. Electronic nature of charge density wave and electron–phonon coupling in kagome superconductor KV3Sb5. Nat. Commun. 13, 273 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kaboudvand, F., Teicher, S. M., Wilson, S. D., Seshadri, R. & Johannes, M. D. Fermi surface nesting and the Lindhard response function in the kagome superconductor CsV3Sb5. Appl. Phys. Lett. 120, 111901 (2022).

    Article  CAS  Google Scholar 

  76. Xie, Y. et al. Electron–phonon coupling in the charge density wave state of CsV3Sb5. Phys. Rev. B 105, L140501 (2022).

    Article  CAS  Google Scholar 

  77. Ferrari, F., Becca, F. & Valentí, R. Charge density waves in kagome-lattice extended Hubbard models at the Van Hove filling. Phys. Rev. B 106, L081107 (2022).

    Article  CAS  Google Scholar 

  78. Wu, S. et al. Charge density wave order in the kagome metal AV3Sb5 (A = Cs, Rb, K). Phys. Rev. B 105, 155106 (2022).

    Article  CAS  Google Scholar 

  79. Azoury, D. et al. Direct observation of the collective modes of the charge density wave in the kagome metal CsV3Sb5. Proc. Natl Acad. Sci. USA 120, e2308588120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu, G. et al. Observation of anomalous amplitude modes in the kagome metal CsV3Sb5. Nat. Commun. 13, 3461 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jeong, M. Y. et al. Crucial role of out-of-plane Sb p orbitals in Van Hove singularity formation and electronic correlations in the superconducting kagome metal CsV3Sb5. Phys. Rev. B 105, 235145 (2022).

    Article  CAS  Google Scholar 

  82. Ritz, E. T., Fernandes, R. M. & Birol, T. Impact of Sb degrees of freedom on the charge density wave phase diagram of the kagome metal CsV3Sb5. Phys. Rev. B 107, 205131 (2023).

    Article  CAS  Google Scholar 

  83. Li, H., Liu, X., Kim, Y. B. & Kee, H.-Y. Origin of π-shifted three-dimensional charge density waves in the kagomé metal AV3Sb5 (A = Cs, Rb, K). Phys. Rev. B 108, 075102 (2023).

    Article  CAS  Google Scholar 

  84. Ortiz, B. R. et al. Fermi surface mapping and the nature of charge-density-wave order in the kagome superconductor CsV3Sb5. Phys. Rev. X 11, 041030 (2021).

    CAS  Google Scholar 

  85. Fu, Y. et al. Quantum transport evidence of topological band structures of kagome superconductor CsV3Sb5. Phys. Rev. Lett. 127, 207002 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Shrestha, K. et al. Nontrivial Fermi surface topology of the kagome superconductor CsV3Sb5 probed by de Haas–van Alphen oscillations. Phys. Rev. B 105, 024508 (2022).

    Article  CAS  Google Scholar 

  87. Shrestha, K. et al. High quantum oscillation frequencies and nontrivial topology in kagome superconductor KV3Sb5 probed by torque magnetometry up to 45 T. Phys. Rev. B 107, 155128 (2023).

    Article  CAS  Google Scholar 

  88. Shrestha, K. et al. Fermi surface mapping of the kagome superconductor RbV3Sb5 using de Haas–van Alphen oscillations. Phys. Rev. B 107, 075120 (2023).

    Article  CAS  Google Scholar 

  89. Huang, X. et al. Three-dimensional Fermi surfaces from charge order in layered CsV3Sb5. Phys. Rev. B 106, 064510 (2022).

    Article  CAS  Google Scholar 

  90. Broyles, C. et al. Effect of the interlayer ordering on the Fermi surface of kagome superconductor CsV3Sb5 revealed by quantum oscillations. Phys. Rev. Lett. 129, 157001 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Hu, Y. et al. Topological surface states and flat bands in the kagome superconductor CsV3Sb5. Sci. Bull. 67, 495–500 (2022).

    Article  CAS  Google Scholar 

  92. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  PubMed  Google Scholar 

  93. Li, H. et al. Observation of unconventional charge density wave without acoustic phonon anomaly in kagome superconductors AV3Sb5 (A = Rb, Cs). Phys. Rev. X 11, 031050 (2021).

    CAS  Google Scholar 

  94. Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Zhao, H. et al. Cascade of correlated electron states in the kagome superconductor CsV3Sb5. Nature 599, 216–221 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Shumiya, N. et al. Intrinsic nature of chiral charge order in the kagome superconductor RbV3Sb5. Phys. Rev. B 104, 035131 (2021).

    Article  CAS  Google Scholar 

  97. Christensen, M. H., Birol, T., Andersen, B. M. & Fernandes, R. M. Theory of the charge density wave in AV3Sb5 kagome metals. Phys. Rev. B 104, 214513 (2021).

    Article  CAS  Google Scholar 

  98. Subedi, A. Hexagonal-to-base-centered-orthorhombic 4Q charge density wave order in kagome metals KV3Sb5, RbV3Sb5 and CsV3Sb5. Phys. Rev. Mater. 6, 015001 (2022).

    Article  CAS  Google Scholar 

  99. Frassineti, J. et al. Microscopic nature of the charge-density wave in the kagome superconductor RbV3Sb5. Phys. Rev. Res. 5, L012017 (2023).

    Article  CAS  Google Scholar 

  100. Kang, M. et al. Charge order landscape and competition with superconductivity in kagome metals. Nat. Mater. 22, 186–193 (2023).

    CAS  PubMed  Google Scholar 

  101. Hu, Y. et al. Coexistence of trihexagonal and Star-of-David pattern in the charge density wave of the kagome superconductor AV3Sb5. Phys. Rev. B 106, L241106 (2022).

    Article  CAS  Google Scholar 

  102. Stahl, Q. et al. Temperature-driven reorganization of electronic order in CsV3Sb5. Phys. Rev. B 105, 195136 (2022).

    Article  CAS  Google Scholar 

  103. Xiao, Q. et al. Coexistence of multiple stacking charge density waves in kagome superconductor CsV3Sb5. Phys. Rev. Res. 5, L012032 (2023).

    Article  CAS  Google Scholar 

  104. Park, T., Ye, M. & Balents, L. Electronic instabilities of kagome metals: saddle points and Landau theory. Phys. Rev. B 104, 035142 (2021).

    Article  CAS  Google Scholar 

  105. Wang, Z. et al. Electronic nature of chiral charge order in the kagome superconductor CsV3Sb5. Phys. Rev. B 104, 075148 (2021).

    Article  CAS  Google Scholar 

  106. Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor KV3Sb5. Nat. Phys. 18, 265–270 (2022).

    Article  CAS  Google Scholar 

  107. Li, H. et al. Unidirectional coherent quasiparticles in the high-temperature rotational symmetry broken phase of AV3Sb5 kagome superconductors. Nat. Phys. 19, 637–643 (2023).

    Article  CAS  Google Scholar 

  108. Li, H. et al. No observation of chiral flux current in the topological kagome metal CsV3Sb5. Phys. Rev. B 105, 045102 (2022).

    Article  CAS  Google Scholar 

  109. Xu, Y. et al. Three-state nematicity and magneto-optical Kerr effect in the charge density waves in kagome superconductors. Nat. Phys. 18, 1470–1475 (2022).

    Article  CAS  Google Scholar 

  110. Saykin, D. R. et al. High resolution polar Kerr effect studies of CsV3Sb5: tests for time-reversal symmetry breaking below the charge-order transition. Phys. Rev. Lett. 131, 016901 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. Mielke, C. et al. Time-reversal symmetry-breaking charge order in a kagome superconductor. Nature 602, 245–250 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Khasanov, R. et al. Time-reversal symmetry broken by charge order in CsV3Sb5. Phys. Rev. Res. 4, 023244 (2022).

    Article  CAS  Google Scholar 

  113. Guguchia, Z. et al. Tunable unconventional kagome superconductivity in charge ordered RbV3Sb5 and KV3Sb5. Nat. Commun. 14, 153 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yu, L. et al. Evidence of a hidden flux phase in the topological kagome metal CsV3Sb5. Preprint at https://arXiv.org/abs/2107.10714 (2021).

  115. Shan, Z. et al. Muon spin relaxation study of the layered kagome superconductor CsV3Sb5. Phys. Rev. Res. 4, 033145 (2022).

    Article  CAS  Google Scholar 

  116. Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang, L. et al. Anomalous Hall effect and two-dimensional Fermi surfaces in the charge-density-wave state of kagome metal RbV3Sb5. J. Phys. Mater. 6, 02LT01 (2023).

    Article  Google Scholar 

  118. Yu, F. H. et al. Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal. Phys. Rev. B 104, L041103 (2021).

    Article  CAS  Google Scholar 

  119. Guo, C. et al. Switchable chiral transport in charge-ordered kagome metal CsV3Sb5. Nature 611, 461–466 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Asaba, T. et al. Evidence for an odd-parity nematic phase above the charge-density-wave transition in a kagome metal. Nat. Phys. 20, 40–46 (2024).

    Article  CAS  Google Scholar 

  121. Subires, D. et al. Order–disorder charge density wave instability in the kagome metal (Cs,Rb)V3Sb5. Nat. Commun. 14, 1015 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chen, Q., Chen, D., Schnelle, W., Felser, C. & Gaulin, B. D. Charge density wave order and fluctuations above TCDW and below superconducting Tc in the kagome metal CsV3Sb5. Phys. Rev. Lett. 129, 056401 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Chen, D. et al. Anomalous thermoelectric effects and quantum oscillations in the kagome metal CsV3Sb5. Phys. Rev. B 105, L201109 (2022).

    Article  CAS  Google Scholar 

  124. Zhu, C. C. et al. Double-dome superconductivity under pressure in the V-based kagome metals AV3Sb5 (A = Rb and K). Phys. Rev. B 105, 094507 (2022).

    Article  CAS  Google Scholar 

  125. Ratcliff, N., Hallett, L., Ortiz, B. R., Wilson, S. D. & Harter, J. W. Coherent phonon spectroscopy and interlayer modulation of charge density wave order in the kagome metal CsV3Sb5. Phys. Rev. Mater. 5, L111801 (2021).

    Article  CAS  Google Scholar 

  126. Wulferding, D. et al. Emergent nematicity and intrinsic versus extrinsic electronic scattering processes in the kagome metal CsV3Sb5. Phys. Rev. Res. 4, 023215 (2022).

    Article  CAS  Google Scholar 

  127. Song, D. et al. Orbital ordering and fluctuations in a kagome superconductor CsV3Sb5. Sci. China Phys. Mech. Astron. 65, 247462 (2022).

    Article  CAS  Google Scholar 

  128. Nie, L. et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature 604, 59–64 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Luo, J. et al. Possible Star-of-David pattern charge density wave with additional modulation in the kagome superconductor CsV3Sb5. npj Quantum Mater. 7, 30 (2022).

    Article  CAS  Google Scholar 

  130. Zhou, S. & Wang, Z. Chern Fermi pocket, topological pair density wave, and charge-4e and charge-6e superconductivity in kagomé superconductors. Nat. Commun. 13, 7288 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Li, H. et al. Small Fermi pockets intertwined with charge stripes and pair density wave order in a kagome superconductor. Phys. Rev. X 13, 031030 (2023).

    CAS  Google Scholar 

  132. Yin, Q. et al. Superconductivity and normal-state properties of kagome metal RbV3Sb5 single crystals. Chin. Phys. Lett. 38, 037403 (2021).

    Article  CAS  Google Scholar 

  133. Ortiz, B. R. et al. Superconductivity in the Z2 kagome metal KV3Sb5. Phys. Rev. Mater. 5, 034801 (2021).

    Article  CAS  Google Scholar 

  134. Duan, W. et al. Nodeless superconductivity in the kagome metal CsV3Sb5. Sci. China Phys. Mech. Astron. 64, 107462 (2021).

    Article  CAS  Google Scholar 

  135. Ni, S. et al. Anisotropic superconducting properties of kagome metal CsV3Sb5. Chin. Phys. Lett. 38, 057403 (2021).

    Article  CAS  Google Scholar 

  136. Zhong, Y. et al. Nodeless electron pairing in CsV3Sb5-derived kagome superconductors. Nature 617, 488–492 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Roppongi, M. et al. Bulk evidence of anisotropic s-wave pairing with no sign change in the kagome superconductor CsV3Sb5. Nat. Commun. 14, 667 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mu, C. et al. S-wave superconductivity in kagome metal CsV3Sb5 revealed by 121/123Sb NQR and 51V NMR measurements. Chin. Phys. Lett. 38, 077402 (2021).

    Article  CAS  Google Scholar 

  139. Yin, L. et al. Strain-sensitive superconductivity in the kagome metals KV3Sb5 and CsV3Sb5 probed by point-contact spectroscopy. Phys. Rev. B 104, 174507 (2021).

    Article  CAS  Google Scholar 

  140. Gupta, R. et al. Microscopic evidence for anisotropic multigap superconductivity in the CsV3Sb5 kagome superconductor. npj Quantum Mater. 7, 49 (2022).

    Article  CAS  Google Scholar 

  141. Holbæk, S. C., Christensen, M. H., Kreisel, A. & Andersen, B. M. Unconventional superconductivity protected from disorder on the kagome lattice. Phys. Rev. B 108, 144508 (2023).

    Article  Google Scholar 

  142. Zhang, X. et al. Vortex phase diagram of kagome superconductor CsV3Sb5. Phys. Rev. B 109, 144507 (2024).

    Article  Google Scholar 

  143. Varma, C. M. & Wang, Z. Extended superconducting fluctuation region and 6e and 4e flux-quantization in a kagome compound with a normal state of 3Q-order. Preprint at https://arxiv.org/abs/2307.00448 (2023).

  144. Ge, J. et al. Discovery of charge-4e and charge-6e superconductivity in kagome superconductor CsV3Sb5. Preprint at https://arxiv.org/abs/2201.10352 (2022).

  145. Wang, N. N. et al. Competition between charge-density-wave and superconductivity in the kagome metal RbV3Sb5. Phys. Rev. Res. 3, 043018 (2021).

    Article  CAS  Google Scholar 

  146. Du, F. et al. Pressure-induced double superconducting domes and charge instability in the kagome metal KV3Sb5. Phys. Rev. B 103, L220504 (2021).

    Article  CAS  Google Scholar 

  147. Chen, K. Y. et al. Double superconducting dome and triple enhancement of Tc in the kagome superconductor CsV3Sb5 under high pressure. Phys. Rev. Lett. 126, 247001 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Yu, F. H. et al. Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal. Nat. Commun. 12, 3645 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tsirlin, A. A. et al. Effect of nonhydrostatic pressure on the superconducting kagome metal CsV3Sb5. Phys. Rev. B 107, 174107 (2023).

    Article  CAS  Google Scholar 

  150. Feng, X. Y. et al. Commensurate-to-incommensurate transition of charge-density-wave order and a possible quantum critical point in pressurized kagome metal CsV3Sb5. npj Quantum Mater. 8, 23 (2023).

    Article  CAS  Google Scholar 

  151. Zheng, L. et al. Emergent charge order in pressurized kagome superconductor CsV3Sb5. Nature 611, 682–687 (2022).

    Article  CAS  PubMed  Google Scholar 

  152. Oey, Y. M. et al. Fermi level tuning and double-dome superconductivity in the kagome metal CsV3Sb5−xSnx. Phys. Rev. Mater. 6, L041801 (2022).

    Article  CAS  Google Scholar 

  153. Oey, Y. M., Kaboudvand, F., Ortiz, B. R., Seshadri, R. & Wilson, S. D. Tuning charge density wave order and superconductivity in the kagome metals KV3Sb5−xSnx and RbV3Sb5−xSnx. Phys. Rev. Mater. 6, 074802 (2022).

    Article  CAS  Google Scholar 

  154. Sur, Y., Kim, K.-T., Kim, S. & Kim, K. H. Optimized superconductivity in the vicinity of a nematic quantum critical point in the kagome superconductor Cs(V1−xTix)3Sb5. Nat. Commun. 14, 3899 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yang, H. et al. Titanium doped kagome superconductor CsV3−xTixSb5 and two distinct phases. Sci. Bull. 67, 2176–2185 (2022).

    Article  CAS  Google Scholar 

  156. Kautzsch, L. et al. Incommensurate charge-stripe correlations in the kagome superconductor CsV3Sb5−xSnx. npj Quantum Mater. 8, 37 (2023).

    Article  CAS  Google Scholar 

  157. Li, H. et al. Discovery of conjoined charge density waves in the kagome superconductor CsV3Sb5. Nat. Commun. 13, 6348 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ortiz, B. R. et al. Complete miscibility amongst the AV3Sb5 kagome superconductors: design of mixed A-site AV3Sb5 (A: K, Rb, Cs) alloys. Phys. Rev. Mater. 7, 014801 (2023).

    Article  CAS  Google Scholar 

  159. Liu, M. et al. Evolution of superconductivity and charge density wave through Ta and Mo doping in CsV3Sb5. Phys. Rev. B 106, L140501 (2022).

    Article  CAS  Google Scholar 

  160. Li, Y. et al. Tuning the competition between superconductivity and charge order in the kagome superconductor Cs(V1−xNbx)3Sb5. Phys. Rev. B 105, L180507 (2022).

    Article  CAS  Google Scholar 

  161. Zhou, X. et al. Effects of niobium doping on the charge density wave and electronic correlations in the kagome metal Cs(V1−xNbx)3Sb5. Phys. Rev. B 107, 125124 (2023).

    Article  CAS  Google Scholar 

  162. Xiao, Q. et al. Evolution of charge density waves from three-dimensional to quasi-two-dimensional in kagome superconductors Cs(V1−xMx)3Sb5 (M = Nb, Ta). Phys. Rev. Mater. 7, 074801 (2023).

    Article  CAS  Google Scholar 

  163. Li, J. et al. Strong-coupling superconductivity and weak vortex pinning in Ta-doped CsV3Sb5 single crystals. Phys. Rev. B 106, 214529 (2022).

    Article  CAS  Google Scholar 

  164. Liu, Y. et al. Doping evolution of superconductivity, charge order, and band topology in hole-doped topological kagome superconductors Cs (V1−xTix)3Sb5. Phys. Rev. Mater. 7, 064801 (2023).

    Article  CAS  Google Scholar 

  165. Hou, J. et al. Effect of hydrostatic pressure on the unconventional charge density wave and superconducting properties in two distinct phases of doped kagome superconductors CsV3−xTixSb5. Phys. Rev. B 107, 144502 (2023).

    Article  CAS  Google Scholar 

  166. Ding, G., Wo, H., Gu, Y., Gu, Y. & Zhao, J. Effect of chromium doping on superconductivity and charge density wave order in the kagome metal Cs(V1−xCrx)3Sb5. Phys. Rev. B 106, 235151 (2022).

    Article  CAS  Google Scholar 

  167. Liu, Y. et al. Enhancement of superconductivity and suppression of charge-density wave in As-doped CsV3Sb5. Phys. Rev. Mater. 6, 124803 (2022).

    Article  CAS  Google Scholar 

  168. Capa Salinas, A. N. et al. Electron–hole asymmetry in the phase diagram of carrier-tuned CsV3Sb5. Front. Electron. Mater. 3, 1257490 (2023).

    Article  Google Scholar 

  169. Lei, X. et al. Band splitting and enhanced charge density wave modulation in Mn-implanted CsV3Sb5. Nanoscale Adv. 5, 2785–2793 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Werhahn, D. et al. The kagomé metals RbTi3Bi5 and CsTi3Bi5. Z. Naturforsch. B. 77, 757–764 (2022).

    Article  CAS  Google Scholar 

  171. Liu, B. et al. Tunable Van Hove singularity without structural instability in kagome metal CsTi3Bi5. Phys. Rev. Lett. 131, 026701 (2023).

    Article  CAS  PubMed  Google Scholar 

  172. Wang, Y. et al. Flat band and Z2 topology of kagome metal CsTi3Bi5. Chin. Phys. Lett. 40, 037102 (2023).

    Article  Google Scholar 

  173. Li, H. et al. Electronic nematicity without charge density waves in titanium-based kagome metal. Nat. Phys. 19, 1591–1598 (2023).

    Article  CAS  Google Scholar 

  174. Yang, H. et al. Titanium-based kagome superconductor CsTi3Bi5 and topological states. Preprint at https://arxiv.org/abs/2209.03840 (2022).

  175. Liu, Y. et al. Superconductivity emerged from density-wave order in a kagome bad metal. Preprint at https://arxiv.org/abs/2309.13514 (2023).

  176. Ishikawa, H., Yajima, T., Kawamura, M., Mitamura, H. & Kindo, K. GdV6Sn6: a multi-carrier metal with non-magnetic 3d-electron kagome bands and 4f-electron magnetism. J. Phys. Soc. Japan 90, 124704 (2021).

    Article  Google Scholar 

  177. Qian, T. et al. Revealing the competition between charge density wave and superconductivity in CsV3Sb5 through uniaxial strain. Phys. Rev. B 104, 144506 (2021).

    Article  CAS  Google Scholar 

  178. Guo, C. et al. Correlated order at the tipping point in the kagome metal CsV3Sb5. Nat. Phys. 20, 579–584 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Xing, Y. et al. Optical manipulation of the charge density wave state in RbV3Sb5. Preprint at https://arxiv.org/abs/2308.04128 (2023).

  180. Christensen, M. H., Birol, T., Andersen, B. M. & Fernandes, R. M. Loop currents in AV3Sb5 kagome metals: multipolar and toroidal magnetic orders. Phys. Rev. B 106, 144504 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.D.W. gratefully acknowledges support from the UC Santa Barbara NSF Quantum Foundry funded via the Q-AMASE-i programme under award DMR-1906325 and the Eddleman Center for Quantum Innovation. B.R.O. gratefully acknowledges support from the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Stephen D. Wilson or Brenden R. Ortiz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Philip Moll and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, S.D., Ortiz, B.R. AV3Sb5 kagome superconductors. Nat Rev Mater (2024). https://doi.org/10.1038/s41578-024-00677-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-024-00677-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing