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Global patterns in river water storage 
dependent on residence time

Elyssa L. Collins    1,2,3 , Cédric H. David    1 , Ryan Riggs    4, 
George H. Allen    5, Tamlin M. Pavelsky3, Peirong Lin6, Ming Pan7, 
Dai Yamazaki    8, Ross K. Meentemeyer    2,9 & Georgina M. Sanchez    2

Accurate assessment of global river flows and stores is critical for informing 
water management practices, but current estimates of global river flows 
exhibit substantial spread and estimates of river stores remain sparse. 
Estimates of river flows and stores are hampered by uncertainties in 
land runoff, an unobserved quantity that provides water input to rivers. 
Here we leverage global river flow observations and an ensemble of 
land surface models to generate a globally gauge-corrected monthly 
river flow and storage dataset. We estimate a global river storage mean 
(± monthly variability) of 2,246 ± 505 km3 and a global continental flow 
of 37,411 ± 7,816 km3 yr−1. Our global river water storage time series 
demonstrates that flow wave residence time is a fundamental driver that can 
double or halve river water stores and their variability. We also reconcile the 
wide range in previous estimates of monthly variability in global river flows. 
We identify previously underappreciated freshwater sources to the ocean 
from the Maritime Continent (Indonesia, Malaysia and Papua New Guinea) 
amounting to 1.6 times the Congo River and illustrate our capability of 
detecting severe anthropogenic water withdrawals.

Rivers are considered the most renewable, most accessible and, hence, 
most sustainable source of freshwater. Accordingly, several studies 
have sought to quantify the water in our world’s rivers1–20. Yet, sur-
prisingly little is known about the average and temporal variability of 
global river water storage, as well as the temporal variability of global 
river flows. Nearly all estimates of global river water storage1–3,5–7,13,20 
trace back to a report published as part of the UNESCO International 
Hydrological Decade from 1965 to 1974 (ref. 2), and only one study quan-
tifies temporal variability20. Notably, to our knowledge, there are no 
previously published time series of global river storage. A recent study 
mentioned such computations, but it focused on their participation 

in total terrestrial water storage variability20. Meanwhile, estimates of 
average global river flows are ubiquitous1–19; however, the temporal vari-
ability of flows has received much less attention and reported values 
have considerable spread14,15,18,19. Consequently, our understanding of 
global river water storage and of temporal variability of global river 
flows has so far been limited. A more complete characterization of 
global historical river discharge and water storage is therefore critical 
to advancing our understanding of the world’s waters.

In situ stream gauges around the world provide key information 
on the spatial and temporal distribution of river discharge. However, 
the spatial and temporal coverage of in situ measurements are severely 
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directly measurable at the global scale, discharge observations from 
in situ stream gauge networks provide the closest proxy. Seeking to 
combine the strengths of models and in situ observations, one study 
leveraged runoff fields and observations at river outlets (that is, a 
‘hybrid’ approach) to generate global discharge estimates16. However, 
surprisingly, a global hybrid methodology has yet to be developed that 
leverages gauges beyond river outlets to produce high-resolution esti-
mates of river discharge that are spatially seamless and match average 
monthly observations where available. In this Article, we derive such a 
method and apply it to generate the first globally corrected monthly 
river flow and storage dataset, which we name Mean Discharge Runoff 
and Storage (MeanDRS). Using MeanDRS, we quantify total discharge to 
the ocean, reconciling the wide range in previous estimates of monthly 
variability in continental flow. Our study also identifies previously 
underappreciated freshwater sources to the ocean, and produces the 
first time series of global river water storage, demonstrating residence 
time as a fundamental driver of river water stores.

Global discharge aided by observations
We used a global database of monthly discharge observations at 998 
locations along with monthly runoff outputs from an ensemble of LSMs 

limited. Gauges are sparsely distributed globally, with placement bias 
towards specific environmental conditions (for example, large rivers21). 
Moreover, data sharing constraints across political boundaries, in 
combination with a worldwide decrease in stream gauge reporting, 
have further constrained the amount of river discharge observations 
available for scientific research22–26. Modelling approaches such as river 
network routing, which at global scales commonly uses gridded runoff 
from a land surface model (LSM) as input, can be used to seamlessly 
estimate river discharge and water storage around the world, including 
in ungauged basins27. Yet, the quality of river water estimates produced 
from these models is greatly influenced by the resolution of the under-
lying hydrography28 and by uncertainties present in the input runoff 
data29. For global river discharge and water storage estimates to be 
most useful, the uncertainties in these simulations must be constrained 
by observations28,29. Substantial progress has been made to correct 
for uncertainties and biases from runoff inputs that influence river 
discharge outputs in regional, continental and global river network 
routing28,30–33. However, the majority of past correction approaches 
are either computationally expensive31—limiting the geographic extent 
over which they can be applied—or rely on modelled reference data that 
contain errors28,30,32. Given that surface and subsurface runoff are not 
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Fig. 1 | Global 30-year mean river discharge, corrected using mean 
observations. a, Corrected global river discharge estimates. Black arrows 
point to locations that result in negative river discharges, which are indicative 
of the human footprint on the water cycle. b, The difference between corrected 
and uncorrected estimates. Green areas indicate positive differences and, 

therefore, locations where the corrected simulations resulted in greater 
discharge estimates than uncorrected. Brown areas indicate negative differences 
and, therefore, locations where the corrected simulations resulted in smaller 
discharge estimates than uncorrected. Crosshairs in Antarctica indicate no data. 
Maps created in QGIS, using graticules from Natural Earth.
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for 1980–2009 to bias-correct simulated runoff and route it through a 
recent high-resolution river network containing ~3 million reaches28,30. 
Our novel bias correction approach, called long-term inverse routing 
(LTIR; Methods), compares average discharge simulations and average 
observations to calculate temporally constant multiplicative correc-
tion factors for runoff in all river reaches located upstream of available 
discharge observations. These corrections are then applied at each 
time step to generate global 30-year (1980–2009) corrected monthly 
estimates of mean river discharge extrapolated from and consistent 
with in situ observations. We evaluated the geographic distribution 
of common discharge metrics (for example, normalized bias, Nash–
Sutcliffe efficiency (NSE)) at the monthly time scale (Extended Data 
Figs. 1–3) and found that the bias-corrected estimates provided a better 
statistical match to observed discharge at gauges than uncorrected 
estimates; 99% of the 998 gauges showed no normalized bias (the dif-
ference between simulated and observed temporal average, relative to 
the observed temporal average), as expected from bias correction (see 
‘Model validation’ section in Methods for an explanation of the remain-
ing 1%). Our corrections also led to improvements in other metrics: 55% 
of gauges showed improvements in normalized standard deviation of 
error (NSTDERR), 75% in normalized root mean square error (NRMSE) 
and 75% in NSE (a measure of how well the simulated time series matches 
the observed). The improvements in simulation metrics are further 
visually confirmed by discharge time series (see Extended Data Fig. 4 
for example hydrographs before and after correction). More details 
are provided in Methods and Supplementary Information, including 
independent validation results.

Evaluating the sign and magnitude of our corrections along with 
the spatial distribution of river discharge estimates globally enables us 
to understand and visualize the impact of our gauge-based corrections 
(Fig. 1). Global estimates of river discharge averaged across 30 years 
of monthly simulations ranged from 0 to 192,683 m3 s−1 across all river 
reaches for uncorrected simulations (Extended Data Fig. 5). Using 
our LTIR approach (Methods), we developed multiplicative runoff 
correction factors for 29% of river reaches globally. The remaining 
71% of river reaches were not located upstream of a gauge used in this 
analysis. Correction factors can be positive or negative. Positive fac-
tors between 0 and 1 lead to a decrease in discharge, and those greater 

than 1 lead to an increase in discharge. Negative correction factors are 
indicative of hydrological inconsistencies in the gauge network where 
upstream discharge is greater than downstream discharge, that is, a 
distinct fingerprint of anthropogenic water withdrawals. Note that the 
magnitude of hydrological inconsistencies, and therefore withdrawals, 
is a direct result of gauge observations and can therefore be trusted. Of 
the correction factors developed, 95% were positive (51% of which led 
to a decrease in discharge and the remaining 49% to an increase) and 
5% were negative. After applying LTIR and then propagating correc-
tions downstream via routing through the river network, 31% of river 
reaches were impacted globally, which is 918 times more river reaches 
than gauges (the 998 gauges used in this analysis cover 0.03% of global 
river reaches). Our average corrected discharge estimates ranged 
from −12,064 to 195,849 m3 s−1 (Fig. 1a), with negative discharges due 
to the aforementioned hydrological inconsistencies. These seemingly 
erroneous negative discharge values are not only justifiable from the 
mass conservation (that is, water balance) perspective, they also spe-
cifically highlight regions of the world characterized by intense water 
management34–37, including water withdrawals: the south-western 
United States, south-eastern Australia and countries in South America 
(for example, Brazil, Peru and Colombia) and Africa (South Africa, 
Botswana and Namibia; Fig. 1a). Our methodology can therefore be 
used to detect severe anthropogenic water withdrawals.

Differences in 30-year average river discharge between corrected 
and uncorrected simulations ranged from −20,432 to 63,694 m3 s−1 
(Fig. 1b). Positive differences indicate that the average corrected 
estimates are higher than the average uncorrected estimates, while 
negative differences indicate that corrected estimates are lower than 
uncorrected. Most of the world’s river reaches (69%) display no dif-
ference between average corrected and uncorrected simulations, 
largely due to the lack of available gauge data in those locations. Posi-
tive differences (15% of river reaches) are located in northern Europe, 
north-eastern and north-western United States (including Alaska), 
Canada, Russia, Peru, Bolivia and portions of western Brazil, Argentina, 
Chile, India, Australia, Japan and New Zealand. Negative differences 
(16% of river reaches) are located across the southern and central 
United States, central Canada, eastern Brazil, Argentina, Paraguay, 
various countries in Africa (for example, South Africa and Democratic 
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Fig. 2 | Monthly variability in total discharge to the global ocean (except for 
Antarctica and endorheic basins). Uncorrected and corrected global monthly 
discharge accumulated into the ocean for 1980–2009. The estimated average 
is indicated as horizontal coloured dotted (uncorrected) and solid (corrected) 
lines. An arrow in proportion to the plot units on the left interior of the plot 

indicates temporal variability (that is, one standard deviation). Previous long-
term estimates in the literature (2009 and after) are indicated with a grey line and 
associated reference on the right exterior. Additional previous estimates in the 
literature before 2009 are included in Extended Data Table 1.
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Republic of the Congo) and Europe (for example, Spain and Poland), 
Iran, Australia and India. Note that using even just a few gauges (for 
example, Africa and Australia; Extended Data Fig. 1) can lead to large dif-
ferences in our estimates of basin-level discharge (Fig. 1b). Further visu-
alization of our corrections as a percentage of average river discharge 
confirms spatial consistency in our correction factors for each gauge 
subbasin, while also highlighting inland subbasins that underwent 
large positive and negative corrections (for example, south-western 
United States and Russia; Supplementary Fig. 1).

We expect that the spatial information gained from our correc-
tions will be important for the land surface modelling community to 
evaluate and calibrate simulated runoff outputs, an otherwise unob-
servable quantity. The corrected discharge can also provide an estimate 
of the state-of-the-art in global river discharge, offering future oppor-
tunities for comparison with the Surface Water and Ocean Topography 
(SWOT) mission that has begun such retrievals from space22. SWOT may 
also show similar evidence of severe water withdrawals—the spatial 
coverage of space-based estimates from SWOT and sparser ground 
observations used with LTIR can together be leveraged to document 
and quantify the human footprint on the water cycle.

Total discharge to the global ocean
Given that continental river discharge into oceans is a key feature of 
Earth’s water cycle, we summed all discharge values at coastal river 

termini globally (with the exception of Antarctica) and plotted the 
monthly time series for 1980–2009 (Fig. 2). After confirming that the 
ensemble of LSMs outperforms simulations from any single LSM, 
we found that the temporal average and monthly variability (that 
is, standard deviation) of water discharged into the ocean from riv-
ers is 37,808 ± 6,704 km3 yr−1 (average ± variability) for uncorrected 
and 37,411 ± 7,816 km3 yr−1 for corrected simulations. While the LTIR 
approach results in large differences in discharge at the river reach scale 
(Fig. 1b), uncorrected and corrected estimates produce similar results 
when globally summed at the coast (positive and negative differences 
cancel each other out on spatial aggregate), hence building confidence 
in the global sum even if some regions did not benefit from corrections 
due to lacking observations. Both uncorrected and corrected aver-
ages of total ocean discharge in our study are consistent with previous 
estimates in the literature, which range from 29,485 to 45,900 km3 yr−1 
(Extended Data Table 1)1–19. These values are also encompassed within 
our simulated monthly variability (Fig. 2). The topic of monthly vari-
ability in total discharge to the ocean has received much less attention, 
and reported values range from 4,800 to 16,164 km3 yr−1 (refs. 15,18). 
Other studies did not report variability but include graphical time series 
that allow making an inference (1,116 km3 yr−1 (ref. 19) and 3,606 km3 yr−1  
(ref. 14)). The previously reported and inferred estimates are equivalent 
to a monthly variability that is between 3% and 45% of the corresponding 
reported temporal average (Extended Data Table 1). Our own estimates 
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of monthly standard deviations for uncorrected (6,704 km3 yr−1) and 
corrected (7,816 km3 yr−1) are equivalent to 18% (uncorrected) and 21% 
(corrected) of the temporal average and therefore are in the middle of 
the limited number of prior studies. Yet, our comparison of coefficients 
of variations between our simulations and observations (Extended 
Data Fig. 3 and Methods) suggests that the magnitude of our discharge 
variability generally matches observations (where available) and can 
hence help reconcile the sizable range in temporal variability among 
prior values.

We also estimated which hydrologic regions contribute most to 
global discharge and variability (Fig. 3). Our findings are mostly con-
sistent with previous knowledge (Methods); however, we found that 
the Maritime Continent (Indonesia, Malaysia and Papua New Guinea) 
discharges 8% of the global total, that is, the equivalent of 1.6 times the 
Congo River (5%). Little attention has been given to Maritime Continent 
basins11,16,19 in previous global discharge studies; however, one study 
found that the islands of Oceania and Southeast Asia are important 
contributors of ocean discharge, thus supporting our finding16. We 
suspect the region might have escaped prior scrutiny in part because its 
largest rivers and streams (including Mahakam, Kapuas, Sepik and Fly) 
are poorly observed (for example, Fly River is one of the largest rivers 
in the world, yet it is ungauged). Accounting for these large aggregate 
water fluxes from the Maritime Continent could impact ocean circula-
tion models and change our understanding of carbon/sediment/solute 
delivery to the ocean. Note that, in our analysis, the Maritime Continent 
did not benefit from corrections, and therefore the simulations were 
not constrained by observations, which may influence the accuracy of 
estimates. However, additional analysis further supports our finding 
(Supplementary Text 5)38,39.

Implications for river water storage
To provide a global assessment of the spatial and temporal variations 
of river water storage, we produced monthly estimates for each river 
reach (including those in endorheic basins), which we summed spa-
tially (Fig. 4) and averaged temporally (Fig. 5). Our estimates of storage 
depend on river flow wave residence time and on the monthly discharge 

at each river reach (see equation (15) in Methods). Residence time is 
computed as river length divided by the speed (that is, celerity) of 
river flow waves. Wave celerity—despite being unobserved—is per-
haps the most fundamental parameter of global river routing models, 
and a range of values tends to be used at such scale40. We used three 
characteristic values for propagation speed (that is, celerity) for each 
river reach with resulting residence times (short, medium and long) to 
calculate a range of possible storage estimates. Note that our analysis 
assumes spatial consistency in short, medium and long residence times, 
while the world’s rivers and streams are likely to include a distribu-
tion thereof. This conscious assumption allows drawing lower and 
upper bounds for potential storage and its temporal variability and, 
hence, constrain expected values. We found that the global average 
and monthly variability (standard deviation) of river water storage is 
1,246 ± 225 km3 (short residence time), 2,181 ± 394 km3 (medium) and 
3,116 ± 564 km3 (long) for uncorrected simulations (Fig. 4). For cor-
rected simulations (also in Fig. 4), storage average and variability are 
1,283 ± 288 km3 (short), 2,246 ± 505 km3 (medium) and 3,208 ± 721 km3 
(long). Both uncorrected and corrected estimates of average water stor-
age are in the same order of magnitude relative to previous estimates in 
the literature, which range from 1,200 to 2,858 km3 (refs. 1–3,5–7,13,20). 
Our storage estimates by basin (Fig. 5) are also commensurate with the 
limited number of prior studies. For further evaluation of our estimates, 
see Supplementary Text 7 (refs. 20,41).

The impact of wave celerity on discharge computations has long 
been known40. However, given the considerable range we found in 
mean water storage across residence times (Fig. 4), we suggest that 
knowledge of flow wave propagation celerity is as critical as river dis-
charge to accurately estimating global river water storage, which has 
so far not been appreciated. Longer residence times (that is, slower 
flow wave celerity) lead to larger estimates of mean global river water 
storage, but also to greater temporal variability (Fig. 4). One of the 
future challenges in global river water science is therefore bound to 
be the accurate estimation of residence times, a globally unobserved 
quantity that is currently determined from empirical equations42. 
Ongoing satellite measurements of changes in surface water storage22 
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can be expected to narrow the likely range of variability, thus helping 
refine understanding of wave propagation in Earth’s rivers, an unantici-
pated benefit beyond SWOT mission requirements43. In turn, accurate 
estimates of wave celerity may help support flood warning systems42.
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Methods
Hydrography
Several hydrography datasets are available as the river network for 
global routing. Here, we used the vector-based river network called 
Multi-Error-Removed Improved Terrain (MERIT) Hydro (v0.7) Basins 
(v1.0) due to the high spatial resolution of its underlying digital ele-
vation model (~90 m) and to the geographic coverage above 60° N  
(refs. 28,30,44). MERIT Hydro Basins was derived from the MERIT Hydro 
digital elevation model by using a 25 km2 channelization threshold, 
which resulted in ~3 million river reaches and catchments globally, as 
well as 61 hydrologic regions. The MERIT Hydro Basins dataset also 
contains derived attributes for each individual reach polyline and each 
associated catchment polygon (for example, reach length, downstream 
reach and catchment contributing area).

Runoff estimates
The primary dynamic (that is, time variable) input file for our monthly 
routing was the lateral inflow into each river reach. To partially allevi-
ate uncertainty in the runoff outputs from different LSMs, we used 
an ensemble of three LSMs from version 2.0 of the Global Land Data 
Assimilation System (GLDAS; Supplementary Text 1)45. Specifically, we 
averaged the sum of monthly surface and subsurface runoff outputs 
from Variable Infiltration Capacity46,47, Catchment Land Surface Model48 
and Noah49–51, all of which have a spatial resolution of 1°. The gridded 
runoff was converted into lateral inflow to each river reach using a 
centroid-based approach—the centroid of each catchment is used to 
identify the corresponding LSM grid cell52 before multiplying the runoff 
by the area of the catchment. The three-model ensemble average inflow 
was calculated on a monthly time step across the 30-year period of inter-
est for this study, which is January 1980 to December 2009.

Discharge observations
We compiled an extensive global database of in situ gauges (for bias 
correction and model evaluation) by collecting daily gauge data from 
a combination of international and national organizations (Supple-
mentary Table 1)53–65. We removed gauges located within ~100 m of each 
other, on the basis that the same exact gauge from the same organization 
can be included in multiple independent databases, hence filtering for 
duplicates66. In total, 45,837 daily gauge records were collected. We 
subset the database to only those gauges that had 95% daily availability 
for the 1980–2009 study period and to those with an average discharge 
greater than or equal to 100 m3 s−1 (based on the 1980–2009 average; 
n = 1,148). To identify the locations of river gauges along the MERIT 
Hydro river network, we mapped the gauges using a distance buffer, as 
well as order of magnitude and duplicate gauge checks (Supplementary 
Text 2). The mapping process resulted in a final dataset of 1,001 gauges, 
three of which did not benefit our corrections due to limitations in our 
method (see ‘Discharge corrections’ section). Since we are modelling at a 
monthly temporal resolution, we calculated monthly average discharge 
for each gauge across the 1980–2009 time period (360 time steps).

Given that potential temporal trends in discharge observations 
cannot be explicitly accounted for in our long-term correction method 
(see ‘Discharge corrections’ section), we performed a trend analysis and 
identified that 39% of the gauges had a statistically significant trend, 
although of minimal magnitude (Supplementary Text 3). We note that 
this is a limitation of the methodology.

Discharge estimates
Lateral inflow can be used with the monthly mass conservation 
equation to determine monthly average flows throughout a river net-
work with r river reaches with limited negative impact of neglecting 
horizontal transfer times29, as traditionally done through lumped 
river models as

(I − N ) ×Q = Qe, (1)

where I is the r × r identity matrix, N is the r × r river network matrix (for 
example, ref. 27), Qe is an r-sized vector of external lateral inflows (e) 
entering each river reach, and Q is an r-sized vector of river discharge 
outflows exiting each reach. Given that lumped river models accu-
mulate runoff from upstream to downstream without accounting for 
horizontal travel time from land to rivers or within the river system, 
we applied the model on a monthly time step. Lumped routing at this 
time scale can produce a fair approximation of discharge except for 
the largest basins of the world; however, it is fair even at the scale of 
the Colorado and Columbia river basins29. The monthly ensemble 
average inflow was used as input to the lumped routing model to 
generate uncorrected ensemble river discharge estimates across the 
30 year period.

Discharge corrections
To generate corrected estimates of river discharge, we developed 
a novel inverse routing algorithm called LTIR that is capable of cor-
recting bias in long-term mean lateral inflow and long-term mean 
discharge together. Our approach allows for corrections of lateral 
inflows upstream of gauges while matching observed discharge values, 
with impacts on discharge estimates both upstream and downstream 
of gauges.

Extended Data Fig. 6 shows a schematic that summarizes much of  
our notation for an example river network containing five reaches and 
two gauges and illustrates the mathematical derivation that follows. 
We use a river network with r river reaches and g gauges (with g < r),  
S the g × r observation selector matrix (for example, ref. 45), t for time, 
Qe (t) an r-sized vector of simulated monthly external lateral water 
inflows (e) entering upstream of each river reach, Q(t) an r-sized vector 
of simulated monthly water outflows exiting each reach and q(t)  
a g-sized vector of monthly discharge observations. Vinculum symbols 
are used to indicate long-term means; for example, Qe  is the long- 
term mean of Qe (t). Double-struck symbols are used to indicated  
corrected quantities; for example, ℚ is the corrected equivalent to 
discharge Q.

The long-term continuity equation enforces equality between the 
downstream outflows Q  and the upstream inflows Qe + N ×Q  (that is, 
the sum of lateral inflows Qe  and inflows from upstream reaches N ×Q). 
This is traditionally done through lumped river models, and can be 
described in matrix–vector form (for example, ref. 29) for both simu-
lated and corrected states as

{
(I − N )−1 ×Qe = Q

(I − N )−1 × ℚe = ℚ
. (2)

Enforcing that long-term corrected discharge equals observations 
at gauges leads to

S × ℚ = q. (3)

Equations (2) and (3) together give rise to an ‘inverse routing’ 
problem for which an r-sized vector of corrected lateral inflow ℚe  is the 
unknown as

S ⋅ (I − N )−1 × ℚe = q. (4)

Equation (4) is a g × r linear system with r unknowns, that is, an 
underdetermined problem with an infinite number of solutions, and 
one must therefore narrow the mathematical problem down. Because 
the number of equations is the same as the number of gauges (g), one 
might first focus on the individual subbasins associated with each one 
of the gauges. Let qe  be a g-sized array with long-term means of total 
lateral inflows for these individual subbasins. As a preliminary step, let 
ℚeα  be one of the infinite number of solutions to equation (4) that 
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crudely applies the total lateral inflow of each subbasin solely at river 
reaches that are home to a gauge such that

ℚeα = St × qe, (5)

where St is the transpose of S and the Greek letter superscript is  
used for incremental versions of corrected estimates for ℚe ,  
with α being the first such estimate. Combining equations (4) and (5) 
leads to

(S × (I − N)−1 × St) × qe = q. (6)

Equation (6) is now a g × g linear system with the g unknowns of 
qe , and can therefore be solved. Using n, the g × g matrix describing 
connectivity among gauges, equation (6) can also be seen as a continu-
ity equation that relates the total lateral inflow within each subbasin 
to the outflow of each subbasin as

(I − n)−1 × qe = q. (7)

As a result, and while the shape of ℚeα  was based on a crude 
assumption, it reveals that the inverse routing problem of equation (4) 
can be reduced to solve for qe , the total lateral inflows of each subbasin. 
This in turn offers multiple avenues for constructing valid options for 
ℚe  from qe  at the subbasin level. To do so, one must first understand 
how the various elements of Qe  get accumulated downstream of a river 
network for which the connection between subbasins were removed, 
creating the ‘disconnected’ discharge QD , valid for both simulated and 
corrected states as

{
QD = (I − [N − N × St × S])−1 ×Qe

ℚD = (I − [N − N × St × S])−1 × ℚe
(8)

ℚD  can be seen as the long-term mean of discharge at every reach 
of a river network where the connectivity downstream of each gauge 
was removed and with long-term mean inflow ℚe . Provided adequate 
corrections are made, S × ℚD  (that is, the values of ℚD  at river reaches 
that have a gauge) should be equal to qe  (that is, the total lateral inflows 
for these individual subbasins), thus

S × ℚD = qe. (9)

We can now look for multiplicative scalars, one per subbasin, 
stored in a g-sized vector λ and allowing to correct S ×QD  into S × ℚD  
as

λ⊗ (S ×QD) = S × ℚD, (10)

where ⊗ is elementwise multiplication. Equations (9) and (10) together 
allow the computation of λ as

λ = qe ⊘ (S ×QD) , (11)

where ⊘ is elementwise division. The multiplicative scalars stored for 
each subbasin in λ can then be applied for each river reach of the rel-
evant subbasin and stored in an r-sized vector Λ by applying the follow-
ing transformation:

Λ⊖ 1 = [S × (I − [N − N × St × S])−1]
t
× (λ⊖ 1), (12)

where ⊝ is elementwise subtraction and used here to ensure that places 
with no gauge retain their initial value. We can then build a corrected 
lateral inflow vector ℚeβ , with β being the second version of the  

corrected estimates, such that the lateral inflow values of each subbasin 
are proportional to the initial values of Qe  thus

ℚeβ = Λ⊗Qe. (13)

Equation (13) is a linear transformation that can equally be applied 
at the monthly time step as

ℚeβ(t) = Λ⊗Qe(t). (14)

Overall, our inverse routing methodology can hence be summa-
rized in six implementation steps (Extended Data Fig. 7): (1) determine 
qe  from q  using equation (6), (2) determine S ×QD  from Qe  using  
equation (8), (3) determine λ from qe  and QD  using equation (11), (4) 
determine Λ from λ using equation (12), (5) computing ℚeβ(t) from Λ 
and Qe(t) for all monthly time steps using equation (14) and (6) deter-
mine ℚ(t) from ℚeβ(t) using equation (2).

Note that the design of this methodology is flawed in the cases in 
which occasional elements of S × ℚD  are null, that is, when the total 
lateral inflow within given subbasins is zero, in which case a multiplica-
tive scaling correction is bound to fail. Such a challenge was encoun-
tered for three subbasins when using the full 1,001 gauge dataset for 
correction; three gauges were dropped from the analysis, resulting in 
a final correction gauge dataset of size 998.

Discharge evaluation metrics
To evaluate the performance of bias correction, we calculated test sta-
tistics to compare uncorrected and corrected simulations with obser-
vations where in situ observations exist. Before applying the correction 
to our full gauge dataset, we first ensured independent evaluation by 
splitting the gauge observation dataset into 70% for calibration (that 
is, correction; n = 702) and 30% for validation (n = 299; Supplementary 
Text 4). For each of the calibration, validation and full gauge datasets, 
we used monthly observations and simulations to calculate normalized 
absolute bias (NBIAS; absolute value of observed minus simulated; 
normalized using the mean of the observations), NSTDERR, NRMSE 
and NSE (a measure of how well the simulated time series matches the 
observed)67. For the final correction with the full gauge dataset, we 
also calculate coefficient of variation (CV) for monthly observations, 
uncorrected simulations and corrected simulations.

Model validation
After validating our correction algorithm with the independent dataset 
(Supplementary Text 4), we performed the correction with the full gauge 
dataset (n = 998; see ‘Discharge corrections’ section), and evaluated the 
model performance at each of the 998 gauges (Extended Data Table 2). 
The mean/median NBIAS decreased from 0.45/0.28 for uncorrected 
simulations to 0.00/0.00 for corrected simulations, and 99% of the 998 
gauges showed an improvement in NBIAS (Extended Data Fig. 1a). Note 
that four gauges worsened minimally in NBIAS after correction, which is 
due to using all simulated monthly discharge values and only available 
monthly observed discharge to calculate our correction factors but 
then calculating NBIAS only at time steps in which observations were 
available. We confirmed that bias went to 0.00 at these gauges when 
using all time steps to calculate NBIAS rather than only time steps in 
which observations were available. Reduction in normalized bias led to 
improvements in the other model test statistics. The mean/median NST-
DERR changed from 0.84/0.61 for uncorrected simulations to 0.68/0.63 
for corrected simulations (Extended Data Fig. 1b), hence showing very 
limited impacts of our bias correction on the temporal variability of flow 
errors. The mean/median NRMSE decreased from 0.99/0.73 for uncor-
rected simulations to 0.68/0.63 for corrected simulations (Extended 
Data Fig. 2a), indicating that all of NRMSE was composed of NSTDERR. 
The mean/median NSE increased from −3.74/0.07 for uncorrected 
simulations to −0.79/0.38 for corrected simulations (Extended Data 
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Fig. 2b), which indicates that corrected simulations better matched 
observations than uncorrected simulations; 55% of gauges showed 
improvements in NSTDERR, 75% in NRMSE and 75% in NSE. Improve-
ments in test statistics can be seen across most of the world, except for 
portions of north-western and north-eastern United States, western 
and south-eastern Canada, western Brazil, western Argentina, northern 
Australia and northern Europe. Deteriorations in NSTDERR were also 
present in central Europe and New Zealand.

For each gauge location, we calculated the CV and found that the 
mean/median was 0.76/0.73 for observations, 0.86/0.79 for uncor-
rected simulations and 0.87/0.79 for corrected simulations. Based on  
mean/median values, simulations showed slightly greater variability  
than observations, with minimally greater variability in corrected 
simu lations. After fitting a linear regression enforcing a zero-intercept 
between simulated CV and observed CV, we found slopes of 0.98 (uncor-
rected) and 0.99 (corrected) and R2 of 0.84 (uncorrected) and 0.83 (cor-
rected; Extended Data Fig. 3), showing that observed and simulated 
CV were close to the line of unity (that is, observed CV = simulated CV) 
and that ~83% of the variance was explained. However, the regression 
residuals failed the Shapiro–Wilks normality test (uncorrected P value  
of 1.43 × 10−12; corrected P value <2.2 × 10−16), hence limiting valid inference.

Future studies might consider correcting for NSTDERR in addition 
to bias, which can be expected to have a positive impact on NRMSE, and 
probably also on NSE. The broad improvement in bias, NSE and NRMSE 
reported here—with limited impacts on NSTDERR and on CV—are there-
fore sufficient for the stated purpose of our study, which is correcting 
bias and evaluating global discharge and storage in rivers.

Estimates of discharge into the ocean
The uncorrected and corrected river discharge estimates at coastal 
river termini were used to calculate the global total discharge into the 
ocean, along with its variability. Coastal river termini were identified 
by extracting all river reaches with no downstream river reach and then 
selecting all river reaches within 200 m of the coastline. Using a buffer 
from the coastline was necessary to remove river termini located in the 
middle of continents. Global discharge into the ocean was calculated 
on a monthly time step by summing the discharge for all coastal river 
termini (n = 48,200). Variability was calculated as the standard devia-
tion of total discharge into the ocean across the time series.

Across the globe, average discharge into the ocean is highest 
for the Amazon (18% of global discharge for uncorrected and 18% 
for corrected simulations), South America north of the Amazon (for 
example, Orinoco, Catatumbo; 6%, 6%), the Congo (6%, 5%) and Ganges– 
Brahmaputra (5%, 5%) basins (Fig. 3a). Variability in discharge to the 
ocean is highest in the Amazon, Nile, La Plata and Congo basins (Fig. 3b).

Water storage estimates
Each of Earth’s river reaches can fundamentally be reduced to an indi-
vidual control volume. At steady state, assuming that water is incom-
pressible and neglecting friction by viscous forces, this control volume 
follows Bernoulli’s principle. In turn, the river reach becomes ruled by a 
linear relationship between water storage and water flow, and involving 
residence time. Assuming that residence times are much shorter than 
1 month, such a relationship can be applied at the monthly time scale. 
Under the same steady-state assumption, the Muskingum method68 for 
river routing also reduces to a linear storage–discharge relationship:

V = k ×Q, (15)

where V is the storage volume and k is the Muskingum time para meter  
that is known to be related to the celerity—or speed—of flow wave pro-
pagation69 (Supplementary Text 6). To calculate Muskingum k, we 
divided the length of each river reach by a reference celerity for the 
flow wave of 1 km h−1, and then multiplied that quantity by a scaling  
factor λ specific to the Muskingum k (λk)—generating a unique value  

for each reach and for each residence time characterization. Based 
on our experience with automated parameter estimation for the 
Muskingum method (Extended Data Table 3) and that all used  
the same reference value27,29,52,70–72, we used a low (0.20), medium (0.35) 
and high (0.50) value of λk to calculate three different possible sets of 
Muskingum k values (for short, medium and long flow wave residence  
times) associated to each river reach. After confirming that our resi-
dence times are indeed much shorter than 1 month (mean/median  
values are 1.87 h/1.37 h, 3.27 h/2.39 h and 4.67 h/3.41 h for short, medium 
and long experiments, respectively), we calculated global water stor-
age using each Muskingum k on a monthly time step by summing the 
storage for all river reaches. Variability was calculated as the standard 
deviation of river water storage across the monthly time series.

On average, the majority of river water is stored in the Amazon (34% 
of global river water storage for uncorrected and 38% for corrected simu-
lations), Congo (8%, 6%), Nile (5%, 5%) and South America north of the 
Amazon (for example, Orinoco, Catatumbo; 5%, 5%) basins (Fig. 5a). Water 
storage variability is the highest in the Amazon, Nile, Ganges–Brahma-
putra, La Plata and South America north of the Amazon basins (Fig. 5b).

Methodological limitations
We believe that there are several avenues for future research and refine-
ment. First, in this study, we focus on the impacts of observations and 
parameters (that is, flow wave propagation celerity) on estimates of 
global water storage; however, future work could explore the impacts 
of multi-model runoff uncertainty by using more LSMs and atmospheric 
forcings. Second, the correction algorithm creates a multiplicative fac-
tor based on the average discharge across the 30-year study period and 
therefore does not incorporate a constraint on river discharge extremes 
(high and low flows) or on variability. Future work could focus on cor-
recting the amplitude in addition to the average. Third, an assumption 
of our approach is that errors in river discharge are attributed solely to 
errors in runoff. Such errors could also be due to lack of representation 
of other components of the water cycle (for example, lakes and wet-
lands) in our routing model; future work could further explore potential 
errors, particularly with the release of SWOT data. Lastly, human influ-
ences on the water cycle (for example, water withdrawals, dams and 
reservoirs) are not directly incorporated into the routing model, as the 
only aspect of anthropogenic influence we are looking at is observed 
water balance. While the gauge observations used for correction and 
the range of celerity that we use to calculate global river water storage 
(which were optimized from real case studies) indirectly inform the 
model of some anthropogenic activities, explicit incorporation of such 
activities may improve river discharge and storage estimates73.

Data availability
Global river discharge and water storage data (‘MeanDRS’) are 
made publicly available via Zenodo at https://doi.org/10.5281/
zenodo.8248069 (ref. 74). We follow the guidelines (https://doi.
org/10.5281/zenodo.10161527) of NASA’s Transform to OPen Science 
(TOPS) mission for our open science practices.

Code availability
Our software is publicly available via Zenodo at https://doi.org/ 
10.5281/zenodo.3236649 (ref. 75) and via GitHub at https://github.
com/c-h-david/rrr (ref. 76). We follow the guidelines (https://doi.org/ 
10.5281/zenodo.10161527) of NASA’s Transform to OPen Science (TOPS) 
mission for our open science practices.
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Extended Data Fig. 1 | Difference between corrected and uncorrected river discharge test statistics. (a) normalized bias (NBIAS) and (b) normalized root mean 
square error (NRMSE). Blue indicates an improvement in the metric, and red a deterioration in the metric. Crosshairs in Antarctica indicate no data. Maps created in 
QGIS, using graticules from Natural Earth.
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Extended Data Fig. 2 | Difference between corrected and uncorrected river discharge test statistics. (a) normalized standard error (NSTDERR) and (b) Nash-
Sutcliffe efficiency (NSE). Blue indicates an improvement in the metric, and red a deterioration in the metric. Crosshairs in Antarctica indicate no data. Maps created in 
QGIS, using graticules from Natural Earth.
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Extended Data Fig. 3 | Coefficient of variation (CV). CV is shown for observations vs. simulations for both uncorrected and corrected simulations. We fit a linear 
regression to both simulation types—the equations and R2 are displayed on the figure.
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Extended Data Fig. 4 | Example hydrographs for six rivers. Hydrographs show observations, uncorrected simulations, and corrected simulations for six rivers: (a) 
Amazon, (b) Congo, (c) Paraná, (d) Yenesei, (e) Mississippi, and (f) Lena. Each plot is labeled with the river ID (top left), and uncorrected and corrected Nash-Sutcliffe 
efficiency (NSE; top middle and right).
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Extended Data Fig. 5 | Global 30-year mean river discharge, uncorrected. Ensemble 30-yr average uncorrected global river discharge estimates. Crosshairs in 
Antarctica indicate no data. Map created in QGIS, using graticules from Natural Earth.
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Extended Data Fig. 6 | Schematic of the correction algorithm. Schematic summarizing and illustrating our mathematical notation and derivation for our correction 
algorithm for an example river network containing five reaches and two gauges.
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Extended Data Fig. 7 | Illustration of the implementation of the correction algorithm. Illustration of the six implementation steps of our correction algorithm for 
an example river network containing five reaches and two gauges.
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Extended Data Table 1 | Prior estimates of ocean discharge and water storage

Previous estimates of the temporal average (column 1) and monthly variability (column 2) of global discharge into the ocean and storage by literature reference.
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Extended Data Table 2 | Model evaluation for the validation, calibration, and full gauge datasets

The second column indicates if the row is displaying the mean/median for each metric for uncorrected or corrected simulations, or the % of gauges that improved in each metric after 
correction. Columns 3–6 indicate the mean/median for normalized bias (NBIAS), normalized standard deviation of errors (NSTDERR), normalized root mean square error (NRMSE), and 
Nash-Sutcliffe efficiency (NSE).
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Extended Data Table 3 | Literature references for λk values used for the estimation of Muskingum k parameter

Here, c0 is 1 km/hr and LSM refers to land surface model.
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