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Multiplexed bulk and single-cell RNA-seq
hybrid enables cost-efficient disease
modeling with chimeric organoids

Chen Cheng1,2,3,4, Gang Wang 2,5,6, Yuqing Zhu4,7, Hangdi Wu5,6, Li Zhang4,
Zhihong Liu 2,5,6 , Yuanhua Huang 1,3,8 & Jin Zhang 2,4,9

Disease modeling with isogenic Induced Pluripotent Stem Cell (iPSC)-differ-
entiated organoids serves as a powerful technique for studying disease
mechanisms. Multiplexed coculture is crucial to mitigate batch effects when
studying the genetic effects of disease-causing variants in differentiated iPSCs
or organoids, and demultiplexing at the single-cell level can be conveniently
achieved by assessing natural genetic barcodes. Here, to enable cost-efficient
time-series experimental designs via multiplexed bulk and single-cell RNA-seq
of hybrids, we introduce a computational method in our Vireo Suite, Vireo-
bulk, to effectively deconvolve pooled bulk RNA-seq data by genotype refer-
ence, and therebyquantify donor abundanceover the course of differentiation
and identify differentially expressed genes among donors. Furthermore, with
multiplexed scRNA-seq and bulk RNA-seq, we demonstrate the usefulness and
necessity of a pooled design to reveal donor iPSC line heterogeneity during
macrophage cell differentiation and to model rare WT1 mutation-driven kid-
ney disease with chimeric organoids. Our work provides an experimental and
analytic pipeline for dissecting disease mechanisms with chimeric organoids.

Organoids are important tools for disease modeling and mechanistic
studies. They can be derived from adult tissues or differentiated from
pluripotent stem cells such as iPSCs1. One of the key confounders for
applying organoids in disease modeling is technical variability2.
Reproducibility research with large-scale validation has revealed that
experimental differences exist not only across protocols but also
between batches and cell lines3–5. The effect of technical bias on
reproducibility varies by condition, especially in disease modeling, in
which the aim is to establish a system to study the effects of genetic
differences via organoids. For instance, in diseasemodeling, organoids

may be derived from patient iPSCs, healthy controls, or genetically
modified isogenic cell lines. The states of these different cell lines vary
subtly, and technical differences among batches and vials amplify
the error.

To control for this issue in single-cell RNA-seq results, various
computational methods have been introduced for post-correction of
batch effects in sequencing data. The basic premise of the batch effect
correction algorithm is to assume that a static artifact exists and
should be removed to reveal the true biological difference. However,
there is a risk that real differences between compared samples might
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be masked by overcorrection6. In organoid-based disease modeling,
the difference between samples is emphasized to indicate the gain or
loss of function of disease-causing factors; thus, a superior experi-
mental pipeline is needed to eliminate these computational risks.

Multiplexed design is one way to mark different cell sources and
mitigate batcheffects causedbymixing and coculturing compared cell
lines throughout the differentiation process or upon certain
treatments7. With gene expression data from single-cell RNA-seq as a
phenotypic readout, researchers can obtain natural genetic variant
information from RNA-seq and leverage SNPs to deconvolve the
sequencing reads and assign donor barcodes to single cells by using
genotyping-based approaches such as Demuxlet, or reference-free
methods such as Vireo and Souporcell8,9. However, in time series
experiments such as those investigating organoid development,
sequencing at single-cell resolution is not sufficiently economically
feasible for sequencing all batches with dense sampling at each time
point. In differentiation experiments, we aimed to investigate both the
differentiated intermediate cells and the final products. It is more cost-
efficient to combine single-cell and bulk RNA sequencing in this set-
ting, for instance, performing bulk RNA-seq formultiple time points to
dissect differentiation dynamics such as donor proportion change and
identifying differentially expressed genes and performing single-cell
RNA-seq for final differentiated organoids to acquire a high-resolution
atlas for specific cell type profiles. However, no available computa-
tional method has been tailored to deconvolving donor abundance
and detecting differentially expressed genes in such hybrid multi-
plexed settings.

Here, we introduced a computation method, Vireo-bulk, that can
effectively deconvolve bulk RNA-seq data from multiplexed experi-
mental designs and demonstrated the effectiveness of a combination
scRNA-seq and bulk RNA-seq strategy for studying time-series differ-
entiation dynamics of cell proportions and individual gene expression.
By applying these methods to studies of iPSC-to-macrophage differ-
entiation and iPSC-to-kidney organoid differentiation, we illustrated
the phenomenon of iPSC line heterogeneity and revealed the
mechanisms of nephric syndrome caused by a WT1 mutation.

Results
The Vireo suite enables a hybrid time-series strategy for multi-
plexed experiments to reveal fine-grained organoid
differentiation
Multiplexed experimental design with cocultivation is essential to
mitigate batch effects when investigating how disease-related geno-
types influence phenotypes at the molecular level, especially during
organoid differentiation. With single-cell sequencing, these pooled
cells can be effectively deconvolved to the donor of origin by lever-
aging genetic variants as natural barcodes and study the phenotype at
the molecular level, such as pluripotency and proliferation10. To
address the limitations of high cost or low temporal resolution of
experiments relying exclusively on scRNA-seq, we introduced a hybrid
time-series sequencing strategy by combining both scRNA-seq and
bulk RNA-seq at different time points, all in multiplexed settings
(Fig. 1a). Therefore, within a lower input of resource, the hetero-
geneous cell population can be dissected with scRNA-seq, while the
high-resolution organoid differentiation dynamics are revealed by
bulk RNA-seq.

Despite the success in demultiplexing scRNA-seq, less attentionhas
been given to pooled bulk RNA-seq data. To fill this gap, we extend our
Vireo suite by introducing Vireo-bulk, a statistical model that can
accurately estimate the donor composition in a multiplexed bulk RNA-
seq sample. Briefly, Vireo-bulk uses the genotypes of each donor (e.g.,
probed by SNP arrays or NGS sequencing; Methods) and models the
expressed allele counts (reference or alternative alleles) in the pooled
bulk RNA-seq as a result of the donor-specific allelic expression weigh-
tedby theunknownproportionof cells in eachdonor (Fig. 1b;Methods).

Briefly, this model predefined allele frequencies of alternative
allele for AA, AB, BB genotypes (e.g., [0.01, 0.5, 0.99]) or automatically
learn an adaptive allele frequency vector by default. Admittedly, the
pooled allelic proportion is a combined effect of both the number of
cells of each donor and the relative expression levels of the genes
averaged across all SNPs. However, by considering many SNPs from
expressed genes across the whole genome, the overall relative
expression levels can be kept comparable among donors on average;
hence, the estimated reads composition closely reflects the number of
cells in each donor and can be considered to indicate global donor
abundance. This model aims to estimate the donor proportion in the
pooled RNA-seq sample; therefore, we introduce an Expectation-
Maximization (EM) algorithm to obtain a maximum likelihood esti-
mate (see “Methods” and Supp. Algorithm 1).

Furthermore, we can zoom into one gene (or certain gene set) and
use only the sequenced SNPs to estimate the abundance of a particular
gene (set), which, as mentioned above, is a product of both the gen-
uine donor abundance and the corresponding gene expression level.
Therefore, differentially expressed genes (DEGs) between donors can
be detected by performing a likelihood ratio test that uses either
donor-level abundance (H0 null model: all donors have the same
expression) or gene-level abundance (H1 alternative model: donors
have different expression causing deviant allelic proportion; Fig. 1c
and Methods). Compared to conventional DEG analysis, this multi-
plexed design offers benefits on both the technical side, by eliminating
the batch effects from library preparation to different sequencing
batches, and the biological side, by reducing the biological variability
through cocultivation.

Taken together with our Vireo-bulk method implemented in the
Vireo suite, researchers can seamlessly demultiplex both scRNA-seq
and bulk RNA-seq data, making it possible to perform a hybrid time-
series experiment. Therefore, we can both minimize batch effects
through multiplexing and enable cost-efficient time-series experi-
ments through this hybrid sequencing strategy.

Evaluation of Vireo-bulk for demultiplexing bulk RNA-seq
To evaluate the accuracy of Vireo-bulk for estimating donor abun-
dance, we performed accuracy validation experiments with published
and in-house experimental datasets and various synthetic datasets.
First, we performedmultiplexed scRNA-seq on PBMCs from 10 donors
(Fig. 2a) from a family affected by epilepsy symptoms. In total, 7,247
cells were obtained with the 10X Genomics scRNA-seq platform and
clustered into 6 major immune cell types by using a standard analysis
pipeline and annotated with known cell type markers (Fig. 2b and
Supplementary Fig. 1a; Methods). We further leveraged Vireo to assign
these single cells to the 10 pooled donors by their genotypes probed
by whole-genome sequencing (Fig. 2c and Supplementary Fig. 1b,1c).

Then, we used this sample to evaluate the performance of Vireo-
bulk by treating it as pseudo-bulk RNA-seq data and keeping only the
UMI-tagged reads to achieve precise transcript counting. We found
that the donor abundance estimated by Vireo-bulk is perfectly mat-
ched with the cell numbers obtained at single-cell resolution
(R2 = 0.997, Fig. 2d). Similar high consistency was also observed when
performing the same analysis on an even larger donor pool (n = 18)
where iPS cells were differentiated toward neurons (Fig. 2e)11. To test
whether the accuracy of Vireo-bulk demultiplexing will be influenced
by cell types and their composition, we further performed synthetic
analyses by keeping or removing a certain cell type from the PBMC
scRNA-seq data that was used in Fig. 2b-c. Specifically, we first
extracted the reads in scRNA data for each cell type and performed
Vireo-bulk for demultiplexing the donor mixture; we found the cor-
relation was perfectly high for all cell types (R2 = 0.993, Fig. 2f). Simi-
larly high performancewas also observedwhen dropping one cell type
(monocytes) for all donors (Fig. 2g; test 2). Furthermore, we examined
the impact of cell type composition change between donors by
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dropping monocyte on two major donors. The correlation remains
high (R2 = 0.905, Fig. 2g; test 1) with a slight decrease in this extreme
scenario compared to the regular setting, suggesting the robustness of
our model.

Furthermore, this high accuracy is robustly retained in Vireo-bulk
even when down sampling the sequencing coverage to as low as 1%
(equivalent to the typical bulk RNA-Seq sample), while single-cell-level
analysis generally requires high coverage to achieve both good-quality
cells and reasonable assignability (Fig. 2h, Supplementary Fig. 1d).
Additionally, we assessed the effects of the doublet rate on the donor
abundance estimation by manually synthesizing 5% to 40% doublets.
Unsurprisingly, we found that the scRNA-seq-based estimation suffers
remarkably when doublet rates are high, whereas bulk RNA-seq-based
estimation is largely resistant to doublets (Fig. 2i).

In addition to deconvolving the donor proportions in bulk RNA-
seq, by focusing on gene-specific SNPs, the sameVireo-bulkmodel can
also be applied to quantify the expression level of each donor for a

certain gene (set) and consequently identify differentially expressed
genes among donors. In a pseudo-bulk manner, Vireo-bulk identified
9,365 genes in the PBMC sample on the basis of SNPs to predict the
associated donor abundance, and we used the likelihood ratio test to
evaluate the significance of whether these genes are differentially
expressed across the donors. Similar to the case for donor propor-
tions, for a given gene (set) in the Vireo-bulk algorithm, we took the
total reads assigned to donors as the prediction. For each gene we
sequenced, we were able not only to calculate the Jensen–Shannon
divergence (JSD) between the true donor abundance vector and the
predicted vector but also to perform a likelihood ratio test to deter-
mine whether the gene-level expression abundances significantly
deviate from the global donor proportions (Fig. 2j, k). Generally, genes
with higher total reads, due to higher expression or the presence of
more SNPs, produced more accurate gene-level quantitation (i.e.,
lower JSD values; Fig. 2j). When there were more than 32 reads, the
gene-level quantification was reasonably accurate (55.3%, 5179 genes

SNP as donor specific barcodes
Reprograming

iPSC 

Mixture

Differentiation

Chimera organoids

Bulk RNA-seq

Single cell RNA-seq

Determine donor composition

a

Donor 1 Donor 2

T1 T2 T3 T4 T1 T2 T3 T4
High-resolution expression profile

Fig. 1 | Vireo-bulk: demultiplexing bulk RNA-seq data via natural genetic bar-
codes. a A schematic illustration of the experimental pipeline as applied to chi-
meric organoids. b The computational model Vireo-bulk for demultiplexing mixed
donors in bulk RNA-Seq by using expressed allelic reads and the known genotypes.
c The illustration of detecting differentially expressed genes by a likelihood ratio

test. It compares the null model that the donors have the same expression by using
the global donor abundance to fit the data, and the alternative model that donors
have different abundance by fitting a gene-specific allelic abundance. Image cre-
ated with BioRender.com and inkscape, with permission.
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with JSD <0.2; Fig. 2j). Interestingly, the statistical power of detecting
genes with differential expression between donors also has a positive
correlation with the total reads covering a gene (Fig. 2k).

Viero-bulk reveals cell line-specific differential dynamics of
multiplexed iPSC differentiated toward macrophages
After validating the performance on synthetic data, we next applied
our hybrid strategy to a real 2D differentiation case. Six isolated PBMC
samples collected from the above-described family with epilepsy were
reprogrammed to iPSCs, mixed in the same pool for passaging, and
induced to differentiate toward a macrophage fate with a stepwise
induction protocol12-. To study the differential dynamics of the indi-
vidual cell lines, we performed single-cell RNA-seq with the initial
mixture of iPSCs. We found that the donor label presents the major
proportion of the variability, especially for sex and disease conditions,
which are further confirmed by the distinct expression levels of sex- or
disease-related genes, e.g., RPS4Y1 and MT1G, and numerous genes
with high proportion of variance explained by sex or disease (Fig. 3a,
Supplementary Fig. 2a–f).

By leveraging the pooled single-cell data (iPSC-P2) as a pseudo-
bulk sample, we further examined the effectiveness of Vireo-bulk by
comparing it to its single-cell level quantification.we alsoevaluated the
gene-level donor abundance that reflects the gene expression level on
top of donor abundance and found a reasonable correlation (Pearson’s
R^2 = 0.22 for 8930 genes with >= 32 reads; Fig. 3b). Of note, the gene-
level quantification is challenging as the number of SNPs is relatively
small for a single gene. Third, we also evidenced that Vireo-bulk has a
reasonably high concordance in detecting differentially expressed
genes between donors compared to the single-cell manner. For 8,930
geneswith >=32 total reads, Vireo-bulkdetects 2371DEGs (FDR <0.05),
whereas the single-cell approach in Seurat calls 1,878 DEGs (FDR <
0.05). Interestingly, 750 genes were detected by both methods, indi-
cating a significant overlap (Fig. 3c; p < 10^−7 Fisher’s exact test).
Noticeably, this significant overlap between these two strategies is
robust to the cutoff used in the DEG analysis (FDR <0.05 in Fig. 3c or
FDR <0.01 in Supp. Fig. S2c).

To further track the transcriptome differences, we passaged the
pooled iPSCs and performed bulk RNA-seq on iPSCs from passage 2
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genotyped byWGSdata as references.bTheUMAPplot for 10-donor pooled PBMC
single-cell transcriptomes clustered by cell type. c UMAP plot for single-cell RNA-
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Pearson correlation were shown in the title. Experiments include accuracy valida-
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(e), and by synthetically using subsets of cell types in the 10-donor pool with one
individual cell type at a time (f) and dropping monocyte in all donors or in the two
major donors (g). h, i Effects of technical factors on demultiplexing in both bulk
and single-cell data,where the x-axis is sequencing coverage (h) anddoublet rate (i)
and the y-axis is -log10(JSD) of donor compositional abundance between the syn-
thetic setting and original setting (treated as ground truth). The error bar denotes
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sampling. (j) A scatter plot at the gene level for Vireo-bulk prediction. Each dot
represents the JSD and total reads of one gene in all donors between bulk predic-
tion and single-cell reference (treated as pseudo-bulk). Genes are colored in blue if
there is a significant change between donors detected Vireo-bulk (p <0.05, two-
sided likelihood ratio test) otherwise, red. (k) The proportion of significant DE
genes varies with the log2(total reads). The DEGs are shown in (j). Source data are
provided as a Source Data file.
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(P2) to passage 3 (P3), as well as samples at day 7, day 18, and day 28 of
differentiation. Interestingly, by applying Vireo-bulk to deconvolve the
proportion of different donors at each time point, we observed a dis-
proportionate change in individual lines over time (Fig. 3d), even
during the passaging process, and ultimately leading to dominant
proportions of samples 9, 5 and 4 in the final population.

To identify the possible reasons for disproportionate differentia-
tion, we further demultiplexed the gene expression levels in bulk RNA-
seq transcriptome during differentiation. Interestingly, we found
meaningful genes with significantly differential expression between
donors at the 5-time points, specifically, genes related to pluripotency
and proliferation. For instance, the expression of the pluripotency
genes NANOG and POU5F1 remained high in iPSCs and decreased as
soon as differentiation started for all donors. On the other hand, sev-
eral lines with high expression levels of proliferation-related genes,
such as MKI67 and the DNA replication-related gene TOP2A, also
showed dominant proportions (samples 5 and 9). In addition, the
expression of macrophagemarkers (CD14, CSF1R) increased at days 18

and 28 of differentiation (Fig. 3e). This analysis revealed intrinsic gene
expression differences among iPSC lines that could have a significant
impact on their proliferation and differentiation potential.

The hybrid strategy in a kidney organoid disease model
To further demonstrate the power of the hybrid strategy, we applied
it to a kidney organoid disease model constructed by pooling cells
from a healthy donor and a patient donor. The patient was diagnosed
with nephrotic syndrome at 13 years old, and the patient had a family
history of renal inherited disease. The father and grandmother of the
patient were already in End-Stage Renal Disease (ESRD). The
sequencing analysis identified heterozygous, single-base-pair WT1
variants at c.1306A >G (p.R436G, NM_024426.6) (Supplementary
Fig. 3a). The periodic-acid silver methenamine–stained sections of
kidney biopsy material from the proband demonstrate segmental
sclerosis of glomeruli characteristic of FSGS (Supplementary Fig. 3a).
We established a kidney organoid differentiation protocol based on
previous studies (Fig. 4a)13. We performed bulk RNA-seq at multiple
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entiation, iPSC-P3: iPSCs at passage #3 or iPSCs immediately before differentiation.
e Donor-specific gene expression changes in marker genes during differentiation
demultiplexed by Vireo-bulk (3 repeats for each pooled sample). The box indicates
the average expression level of total pooled samples. The exact P values are cal-
culated by the likelihood ratio test (one side) and provided in the Source Data,
which indicates the reliability of the demultiplexing results. Source data are pro-
vided as a Source Data file.
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time points and scRNA-seq at the final time point of day 25. After
demultiplexing the bulk RNA-seq transcriptome data by Vireo-bulk,
we discovered that in the mixed sample, the proportion of cells
contributed by the WT1 mutant donor increased rapidly, and con-
sequently, this donor became dominant during differentiation
(95%:5%; Fig. 4b). This dominance was also observed from the single-

cell counts in the scRNA-seq from the chimeric organoid on day 25
demultiplexed by Vireo (93%:7%; Fig. 4c).

To further evaluate the performance of Vireo-bulk in detecting
DEGs, patient and healthy control iPSC lines were separately cultured
but pooled with joint sequencing on day 7. Meanwhile, the isolated
reference samples were also sequenced separately with bulk RNA-seq,
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Fig. 4 | Thehybrid strategy inakidneyorganoiddiseasemodel. aThepipeline of
the chimeric organoid experiment using the hybrid strategy of single cell and bulk
RNA-seq. Representative microscopic pictures and sequencing strategies are illu-
strated. WT1: iPSCs from a kidney disease donor carrying aWT1mutation. Control:
iPSCs from a healthy individual without kidney disease. Image created with BioR-
ender.com and inkscape, with permission. b Donor composition changes in chi-
meric organoid differentiation demultiplexed by Vireo-bulk. c Single-cell
demultiplexed results of chimeric organoids at day 25. d Design and results of
Vireo-bulk validation experiments. The heatmap shows the pooled bulk

demultiplexed results onday 7. Labeledgenes are genes considered tobe related to
the WT1 gene. Image created with BioRender.com and inkscape, with permission.
e A Venn plot of differentially expressed genes (DEGs) on day 7 in 1:1 mixed,
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separately sequenced samples. The adj.p is the cutoff of selected genes, and the P
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by DEseq2’s Wald test. Source data are provided as a Source Data file.
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and Vireo-bulk was applied to the mixed sample to identify the DEGs
(Fig. 4e, f). The expression of WT1-related genes in the mixed and
demultiplexed samples showed the same tendency of change as in the
separately sequenced samples (Fig. 4d). Moreover, a comparison of
the overlappingDEGs from the separated samples (byDESeq2) and the
mixed sample (by our Vireo-bulk) showed that the predicted DEGs
from the mixed and demultiplexed samples were bona fide DEGs,
indicating that our method is capable of effectively capturing DEGs.
Among the total 7,898 genes with >=32SNPs analyzed by both strate-
gies, 2717 and 1457 genes were detected as DEGs by isolated bulk
sequencing and multiplexed bulk sequencing strategies, respectively,
with a significant overlap (718 genes; p < 1e-7; Fig. 4e, f).

Chimera kidney organoids provide amodel for studying genetic
diseases
Next, we collectedmature chimeric organoids and isolated samples to
explore whether this model can be used to study kidney genetic dis-
ease via a multiplexed strategy. Four batches, specifically, one isolated
control, one isolated patient, and two mixed pooled samples, were
sequenced at the single-cell level, yielding data for 30,294 effective
cells in total after quality control (Methods). Pooled samples were
demultiplexed with Vireo and labeled with donor source and batch
information. Even though here we did not perform the bulk RNA-seq
and apply the Vireo-bulk, the principle of the method should work as
well. We observed a significant batch effect across the four different
batches in the UMAP cell embeddings (Fig. 5a), even for the same
donors in the mixed and isolated batches, which further supports the
necessity of cocultivation in the organoid model. Therefore, we
applied in silico batch correction to integrate these four batches for
joint analysis with Harmony (Supplementary Fig. 3b and c; Methods).
Furthermore, we performed clustering and manual cell type annota-
tion. The cell type marker genes supported that the major subgroups
of cells exist in the kidney organoids (Fig. 5e). Surprisingly, when
comparing the cell type proportions, the samples in the same batch
returned a higher Pearson’s correlation (R =0.993 for batch 1 &
R =0.995 for batch 2) than those from the same donor (R =0.927 for
patient & R =0.931 for control; Fig. 5d), again suggesting that the
culture batch may introduce obvious noise.

Previous research showed that WT1 mutation leads to dysregu-
lation of podocyte differentiation and proliferation and that these
phenotypes are associated with podocyte-related kidney
diseases14–16. Due to the mutation of WT1, the corresponding pro-
genitor cells could exhibit abnormally elevated proliferation, which
might cause an increased proportion of podocytes with mutantWT1
gene expression. In our single-cell sequencing results above, the
percentage of podocyte and nephron cells from the WT1 mutation-
carrying patient was significantly higher than that from the healthy
control (Fig. 5b, c).

Then, we asked whether we could use the organoid system to
reveal the differentially expressed genes caused by the WT1 mutation
to help us to study the disease. We divided the cells into three major
groups (Supplementary Fig. 3d), and variance-decomposition analysis
showed the potential factors existed in the separated sample leads to
gene expression variance. suggests the necessity of pooled analysis
and (Supplementary Fig. 3f and 3g). Many WT1-related genes showed
differential expression in mutants compared to healthy controls
(Fig. 5f), and these genes were related to kidney diseases (Supple-
mentary Fig. 3e). Specifically in the podocyte cluster,WT1mutation led
to a significantly decreased expression of NPHS1, NPHS2, and SYNPO,
which maintain the specific cellular structure of podocytes. WT1
mutation also led to a decrease in proliferation-related gene TOB1 and
BTG2 expression in the nephron, nephron progenitor, and podocyte
cell clusters. Besides, in the podocyte clusterWT1mutation also led to
an increase in podocyte differentiation-related gene PAX2 expression,

which inhibits podocytematuration. Further, the immunofluorescence
assays also showed that nephron development markers SALL1/PAX8
protein expression level was increased in the patient kidney organoids,
and podocyte-related markers WT1/NPHS1 protein expression level
was up-regulated in the control kidney organoids (Supplementary
Fig. 4a and 4b). These results support that the WT1 mutation causes
abnormalities in podocyte differentiation andproliferation in the FSGS
patient17–19.

In summary, we showed the chimeric organoids combined with
the demultiplexing methods can be applied in studies of disease
models.

Discussion
The iPSC-differentiated organoid is a powerful platform for disease
modeling, but its application is hindered by poor batch-to-batch
reproducibility in organoid production. Here, we developed a multi-
plexed batch-free experimental design and a demultiplexing compu-
tational pipeline based on both single-cell and bulk RNA sequencing to
overcome the above challenges. This method can be used to reveal
donor/clone dynamics during iPSC differentiation, identify differen-
tially expressed genes/pathways in chimeric organoids, and establish
genotype–phenotype relationships of modeled diseases.

The method can be applied to other chimeric donor contexts,
such as allogeneic transplantation. Currently, short tandem repeat
(STR) analysis is used to determine chimerism after allogeneic hema-
topoietic stem cell transplantation (HSCT) for patients with various
hematologic malignancies. However, the sensitivity of STR is moder-
ate, as there are only a small number of STRs included in the panel. The
method above can be theoretically applied to this context with much
higher sensitivity, as the number of donor-specific SNPs or SNP-
containing genes is much larger. Along these lines, the method might
be applied to emerging “off-the-shelf” or universal allogeneic immune
cell therapies to determine donor cell persistence and fraction and
evaluate donor–recipient cell interactions.

There are also limitations to ourmethod. First, although genotype
information for each donor is not necessary for demultiplexing in
single-cell data by Vireo, it is required for Vireo-bulk to deconvolve
bulk RNA-seq data. Even though we can obtain SNP-coded genotype
information from single-cell RNA-seq or bulk RNA-seq, for better
sensitivity in certain experimental models, DNA-based genotype chips
or genome sequencing results are still needed for genotyping infor-
mation. Second, Vireo-bulk detects differentially expressed genes
between donors based on allelic reads, which eliminates the require-
ment of library size normalization in conventional bulk RNA-seq
samples. However, as there are fewer SNPs in certain genes, the sen-
sitivity for distinguishing their donor-specific expression might be
affected, especially as the number of donors increases. Third, with
simulations we demonstrated that our method is relatively robust to
the cell type composition change for estimating the donor proportion.
On the other hand, for the donor specific gene expression estimation,
it is tightly coupled with cell type composition, hence one should
interpret the gene expression change with the potential reason of cell
type composition change.

Methods
Ethics statement
Written informed consent was obtained from the patient, and the
study was approved by the Human Subjects Committee of Jinling
Hospital, Nanjing University (2021DZGZR-YBB-109). The participants
of the experiment of PBMC, iPSC, and iMac: samples 1-4 are from60-70
years old donors, and samples 5–10 are from 10–40 years old donors.
Sample 1/3/5/8/9/10 are male, and sample 2/4/6/7 are female. The
participant of the experiment of kidney organoid: WT1 mutation
sample was from a 20–30 years old male donor.
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Vireo-bulk algorithm
In multiplexed bulk RNA-seq samples in which multiple donors are
pooled in one experiment, our deconvolution method, Vireo-bulk,
aims to estimate the proportions of read counts coming from each of
the K donors through modeling of the expressed alleles governed by
the distinct genotypes of each donor. Here, we consider N effective
biallelic variants (or SNPs) sequenced that have different genotypes in
at least two donors in the pool and sufficient read counts sequenced,
for example, at 100 reads or UMIs and >5% from minor alleles, which
can be obtained by probing with SNP arrays or high-throughput
sequencing platforms (see genotyping section below). For a certain
variant i in donor k, its genotype can be written as gi,k,t 2 f0, 1g, where
t 2 f0,1,2g refers to the category of the genotype for homozygous
reference BB, heterozygous AB, and homozygous alternative AA. In
theory, the corresponding expressed allele frequency of alternative
allele A in genotypes BB, AB, and AA should be θ = {θ0,θ1,θ2}={0, 0.5, 1},
though deviation may occur due to technical noise, e.g., sequencing
errors and genotyping errors, or allele-specific expression (ASE)
effects. Nonetheless, these parameters θ = {θ0,θ1,θ2}, which are glob-
ally shared across all variants and donors, can be estimated adaptively
in our model (see below). By taking the known genotypes while
ignoring this deviance, the allelic expression of variant i for each donor
k in the mixture can be obtained as follows:

μi,k =
X2

t =0
gi,k,tθt , t 2 f0,1,2g ð1Þ

Meanwhile, for variant i in the multiplex bulk sample, for each A
andB allele sequenced, the readcount supporting the alternative allele
is ai and reference allele is bi out of the di =ai +bi total reads. For a
certain read j, the observation of its allele rj 2 fA,Bg follows a Bernoulli
distributionwith genotype specific parameter θT given the genotype is
T (i.e., gi,k,T = 1), as follows:

P rj =BjθT

� �
=θT

P rj =AjθT
� �

= 1� θT

8
><

>:
ð2Þ

Given the donor proportion ϕ= fϕ1,ϕ2:::ϕK g with
PK

k = 1ϕk = 1. For
a specific variant i, the likelihood of observing total ai reads from the A
allele andbi =di � ai reads fromtheBallele canbeexpressedas follows:

p ai,bijμi,ϕ
� �

=
Qai

j = 1

PK
k = 1P rj =Ajμi,k

� �
P Ij = kjϕ
� �

×
Qbi

j = 1

PK
k = 1P rj =Bjμi,k

� �
P Ij = kjϕ
� �

= μiϕ
� �ai 1�μi

� �
ϕ

� �bi = μiϕ
� �ai 1�μiϕ

� �bi

ð3Þ

This likelihood is in the same form as the binomial distribution by
taking the averaged allele rate across donors μiϕ. With conditional
independence, the joint likelihood of N variants can be written by
taking their product as follows:

L θ,ϕð Þ=
YN

i = 1
P ai,bijμi,ϕ
� �

=
YN

i = 1
μiϕ
� �ai 1� μiϕ

� �bi ð4Þ

By introducing an Expectation-Maximization algorithm (Algorithm
1; below”)we obtain a maximum-likelihood estimation of ϕ and θ.
Alternatively, the genotype-specific allelic expression parameter θ can
be set to a fixed value, e.g., θ= θ0,θ1,θ2

� �
= 0:01, 0:5, 0:99f g as default.

Detection of differential gene expression between donors with
Vireo-bulk
In addition to quantifying the donor abundance by using genome-wide
SNPs, Vireo-bulk can alsobeused to focus on a certain gene g (or a gene
set with similar functions) and its SNPs. Therefore, the estimated value
from this subset of SNPs reflects the product of the number of cells

from each donor and their mean expression. If the expression levels of
gene g are highly similar between donors, the estimatedϕg is expected
to be close to the global donor abundance. In other words, aϕg that is
substantially different from the global donor abundanceϕ implies that
significant differential expression exists in at least one donor.

Therefore, we introduced a likelihood ratio test to detect the dif-
ferential gene expression between donors. Specifically, we compare the
likelihood of observing the read counts for a certain gene g when using
the global donor abundance ϕ (null hypothesis with no differential
expression) and when using the specific estimated gene abundanceϕg

(alternative hypothesis with differential expression) as follows:

H0 : L0 ag jdg ,ϕ,θ
� �

=P ag jdg ,ϕ,θ
� �

=
YNg

i = 1
p aijdi,μi,ϕ
� � ð5Þ

H1 : L1 ag jdg ,ϕ,θ
� �

= P ag jdg ,ϕ,θ
� �

=
YNg

i= 1
p aijdi,μi,ϕg

� �
ð6Þ

Then, we calculate the likelihood ratio test statistic λ= �
2 log L0=L1

� �
and assume that it follows a Chi-square distribution with

K-1 degrees of freedom to obtain a one-tailed p value.
Generally, gene-level abundance and differential expression tests

require a sufficient number of SNPs with distinct genotypes between
donors. In this study, we focused on 4000 genes covering 20,000
SNPs in total.

Genotyping calling
Different samples in different experiments are genotyped via different
pipelines. For epilepsy family samples, rawWGS results were aligned to
GRCh38 (Ensembl 93) via Sentieon ® bwa and joint calling was per-
formed by the standard Sentieon® pipeline20. The genotype calling
result was validated with the same parameter in the GATK pipeline21.
For organoid donors, their genotype reference was called according to
the RNA-seq results. For day 0 to day 14 organoid samples, isolated
individual bulk RNA-seq sampleswere aligned toGRCh38byHISAT2.0,
and bam files were processed by cellSNP-lite bulk mode to call donor-
specific genotypes22. For samples collected after day 14, genotypes are
called from isolated single-cell transcriptomes. Processed bam files
given by the cellranger default pipeline were piled up via cellSNP-lite
bulk mode and used as the reference for samples after day 1423.

RNA-seq data processing and analysis
Raw RNA-seq reads generated by Illumina in fastq format were first
trimmed with the Trimmomatic tool and then aligned to the human
genome (hg38 from GENCODE) by HISAT2 with default parameters24.
Multimapped reads and PCR duplicates were masked for subsequent
quantification and genotyping with RepeatMask. After the gene
expression count was qualified by FeatureCounts, the edgeR package
was used for count normalization and differential expression analysis.
The FDR cutoff for DEGs was 0.125,26.

For the kidney organoid data, sample-separated bulk RNA-seq
datasets are available; hence, the aligned bam files were used for
genotyping through FreeBayes with the parameter -min-alternate-
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fraction 0.227. Then, the generated VCF file was filtered with -minQ 30
by BCFtools.

Single-cell expression matrix generation and stimulating data
preprocessing
For reads produced by the 10X-ChromiumV3 protocol, including both
repeats and coding genes, single-cell RNA-seq was generated by 10X
Genomics Chromium (chemical v2). The sequencing reads in fastq
format were trimmed and then mapped to the hg38 genome index by
the default cell ranger-3.0.2 pipeline. We used the cells called by cell
ranger in the default setting. Bam files were genotyped at given known
SNPs (FreeBayes called before) by CellSNP-lite 1.2.1 and demultiplexed
by Vireo 0.2.3. Only cell barcodes predicted as singlets by Vireo were
kept for generating simulated data by subsampling.

Analysis of scRNA-seq data
After inputting theUMI count sparsematrix from the cell ranger 3.0.2.,
DGE was normalized by log2(TPM)28. The Seurat R package (v4.0) was
used for downstream analysis of single-cell transcriptome data from
the cell ranger cell-by-gene UMI count matrix29. The top 2000 variable
genes in the cleaned DGE were detected via VST methods by the
FindVariableFeatures function. Then, the top 20 PCs were selected
using the Jackstraw function, and their coordinates were used for
uniformmanifold approximation (UMAP) to generate low-dimensional
cell embedding and SNN clustering (resolution=0.4).

Single-cell organoid atlas mapping and batch effect correction
The kidney organoid atlas was preprocessed by the Seurat R package
(v4.0) with annotated cell type metadata. Query data were mapped to
the atlas throughTransferData (aweight.reduction = “cca”, dims= 1:30)
after anchored reference FindTransferAnchors (1:30, reference.assay,
normalization.method = “LogNormalize”, reduction = “cca”). The
batch effect was calculated by the Jensen–Shannon divergence
between proportions of cell types. For batch effect removal methods
in the embedding plot, Harmony with default parameters was used to
generate the dimensionally reduced matrix.

Reprogramming of donor PBMCs to iPSCs
Freshwhole bloodwas obtained fromconsenting donors, and then the
PBMC Isolation Kit (Solarbio P8610) was used to isolate PBMCs from
the samples. The PBMCs were cultured in H3000 (STEMCELL Tech-
nologies, Catalog # 100-0073) with CC100 (STEMCELL Technologies,
Catalog # 02690). Subsequently, these PBMCs were electroporated
with OriP/EBNA-1-based episomal plasmids expressing the repro-
gramming factors OCT3/4, SOX2, KLF-4, L-MYC, and LIN2830.

Generation of kidney organoids
iPSCs were induced to differentiate toward the primitive streak by
treating cells with 7μM CHIR99021(STEMCELL Technologies, Catalog
# 72052) in TeSR-E6(STEMCELL Technologies, Catalog # 05946)
medium for 4 days. Next, 200ng/ml FGF9(MCE, Catalog # HY-P7177),
1μg/ml heparin(STEMCELL Technologies, Catalog # 07980) and 1μM
CHIR99021 were added to induce the iPSCs to differentiate toward
intermediate mesoderm (IM) for 3 days. The IM cells were digested
into single cells, resuspended in 200ng/ml FGF9, 1μg/ml heparin,
1μM CHIR99021, 0.1% PVA, 0.1% MC, and 10μM ROCK inhibitor(-
STEMCELL Technologies, Catalog # 72308) medium, and cultured in a
horizontal shaker. After 24 hours, the ROCK inhibitor was removed
from the medium. On the next five days, all cytokines were removed
and maintained in TeSR-E6 medium. Organoids were spontaneously
formed in the following 13 days.

Immunofluorescence staining
Kidney organoids were fixed with 2% PFA for 20min and incubated
with primary antibodies overnight at 4 °C. The kidney organoids were

then washed five times with PBS and incubated with secondary anti-
bodies with fluorescent labels. After staining, the kidney organoids
were dehydrated using a 25%, 50%, 75%, and 100% methanol series for
5min, followed by clearing using benzyl alcohol and benzyl benzoate
(BABB, 1:2 ratio). The clear kidney organoids weremounted on a glass-
bottom dish (NEST Corporation). The stained cells and kidney orga-
noids were observed via confocal microscopy (Nikon). The primary
antibodies: WT1 (1:100, abcam, cat. no. ab89901), SALL1 (1:100,
Thermo, cat. no. PA5-62057), PAX8 (1:100, Proteintech, cat. no. 10336-
1-AP), NPHS1 (1:100, R&D System, cat. no. AF4269). The secondary
antibodies: Donkey Anti-Rabbit IgG H&L Alexa Fluor® 488(1:200,
abcam,ab150073), Donkey Anti-Rabbit IgG H&L Alexa Fluor®
647(1:200, abcam,ab150075), Donkey Anti-Rabbit IgG H&L Alexa
Fluor® 568(1:200, abcam, ab175470), Donkey Anti-Sheep IgG H&L
Alexa Fluor® 647 (1:200, abcam, ab150179), Donkey Anti-Sheep IgG
H&L Alexa Fluor® 488(1:200, abcam, ab150177).

Statistics & Reproducibility
Statistical analyses were conducted utilizing R statistical software
(version 3.6.1) and Python (version 3.10). In Vireo-bulk, Differentially
Expressed Genes (DEGs) between donors were identified through
the execution of a likelihood ratio test. For the significance test in
the Venn diagram, Fisher’s exact test was employed. For isolated
sample’s DEGs significance testing, p-values were calculated using
the Wald test from the DEseq2 package. For significance testing in
the violin plot, a one-sided t-test was performed. All correlations
were assessed using Spearman’s rank correlation coefficient. A
p-value of less than 0.05 was considered statistically significant in all
analyses.

No statistical method was used to predetermine the sample size.
No data were excluded from the analysis. The experiments were not
randomized, and the investigators were not blinded to allocation
during experiments and outcome assessment.

To ensure reproducibility, all methods and experimental proto-
cols were meticulously described in the Methods section. The data
and code utilized for the analyses are readily available in the Supple-
mentary Information and have also been deposited in a public
repository.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The multi-
plexed neuron differentiation data (18-donor pool; used in our Fig. 2e-
g) was previously published and available on EGA under the dataset
EGAD00001006157. All datasets generated by this study (Macrophage
differentiation scRNA-seq, chimera kidney organoid bulk RNA-Seq and
scRNA-seq datasets) are publicly available on National Genomics Data
Center (NGDC) with project number PRJCA024329. Source data are
provided in this paper.

Code availability
The source codes are publicly available at https://github.com/
chengarthur/Vireobulk_analysis, and the documentation can be
found at: https://vireobulk-analysis.readthedocs.io. DOI for theGitHub
repository, https://doi.org/10.5281/zenodo.1082371131.
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