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Genetic regulation of human brain proteome reveals proteins
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Psychiatric disorders are highly heritable yet polygenic, potentially involving hundreds of risk genes. Genome-wide association
studies have identified hundreds of genomic susceptibility loci with susceptibility to psychiatric disorders; however, the
contribution of these loci to the underlying psychopathology and etiology remains elusive. Here we generated deep human brain
proteomics data by quantifying 11,608 proteins across 268 subjects using 11-plex tandem mass tag coupled with two-dimensional
liquid chromatography-tandem mass spectrometry. Our analysis revealed 788 cis-acting protein quantitative trait loci associated
with the expression of 883 proteins at a genome-wide false discovery rate <5%. In contrast to expression at the transcript level and
complex diseases that are found to be mainly influenced by noncoding variants, we found protein expression level tends to be
regulated by non-synonymous variants. We also provided evidence of 76 shared regulatory signals between gene expression and
protein abundance. Mediation analysis revealed that for most (88%) of the colocalized genes, the expression levels of their
corresponding proteins are regulated by cis-pQTLs via gene transcription. Using summary data-based Mendelian randomization
analysis, we identified 4 proteins and 19 genes that are causally associated with schizophrenia. We further integrated multiple
omics data with network analysis to prioritize candidate genes for schizophrenia risk loci. Collectively, our findings underscore the
potential of proteome-wide linkage analysis in gaining mechanistic insights into the pathogenesis of psychiatric disorders.
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INTRODUCTION
Psychiatric disorders are complex polygenic diseases that are
influenced by both genetic and environmental factors [1, 2].
Schizophrenia (SCZ) and bipolar disorder (BP) are two of the most
prevalent psychiatric disorders, with 12-month prevalence of
~0.4−0.72% [3] and ~1.9% worldwide [4, 5], respectively. The two
disorders share neurobiological alterations and genetic vulner-
ability [1, 6–9]. The Psychiatric Genomics Consortium (PGC)
estimated a 68% genetic correlation between BP and SCZ using
genome-wide single nucleotide polymorphisms (SNPs) [10]. The
heritability of both disorders is very high, with 81% for SCZ [11, 12]
and 85% for BP [13–16]. Psychiatric disorders impose a consider-
able economic burden on society due to the early age of onset,
chronicity, and lack of efficient treatments or prevention strategies
[17, 18]. Current treatments, such as antidepressants, antipsycho-
tics, and neurostimulation, are only partially effective [19], and the

development of better treatments is hindered by limited under-
standing of the underlying molecular mechanisms of psychiatric
disorders.
Over the past decade, genome-wide association studies (GWAS)

have successfully identified hundreds of genomic loci associated
with psychiatric disorders [20–23]. However, we have little
understanding of molecular mechanisms affecting the disorders
for most of these genomic loci. Gene expression quantitative trait
locus (i.e., eQTL) has been used to study the genetic regulation of
molecular phenotypes to identify targets implicated in psychiatric
disorders [24–26], and other endophenotypes (e.g., methylation
and chromatin activity) are also used to understand the complex
genetic basis of psychiatric disorders [26, 27]. Recently, multi-omic
[28] and cell-type-specific data [29] were employed to dissect the
molecular mechanisms underlying the disorders. Proteins are
essential players in a diverse range of biological processes and
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changes in mRNA and protein levels are often not correlated
[30, 31]. Protein expression is regulated at multiple levels,
including transcriptional and post-transcriptional regulations that
affect RNA stability, protein translation, and protein turnover and
degradation. Each of these regulations can be influenced by
genetic variation. However, the genetic landscape of proteome-
wide regulation in psychiatric disorders remains largely
unexplored.
Liquid chromatography coupled with tandem mass spectro-

metry (LC-MS/MS) technology has become a powerful platform for
identifying and quantifying proteins [32]. Several attempts have
recently been made to proteome-wide define genomic loci
associated with protein expression in human cell lines [33],
plasma [34, 35] and post-mortem brain tissues [36, 37] from
Alzheimer’s disease (AD). The combination of proteomics and
genetics studies has yielded valuable insights into how genetic
variants are mechanistically linked to diseases [38]. However, little
is known regarding the impact of genetic variants on psychiatric
disorders by modulating protein expression in the human brain.
To gain a better understanding of how genetic variation

influences protein expression in the human brain and ultimately
impacts psychiatric disorders, we perform a deep proteome and
transcriptome profiling of the post-mortem frontal cortex of a
human cohort (Fig. 1A, B), followed by genetic analysis to identify
genomic loci associated with gene expression (i.e., eQTL) and
protein expression (i.e., pQTL) (Fig. 1C) and colocalization analysis
of pQTL and eQTL signals (Fig. 1D). To understand how these
pQTLs and eQTLs contribute to the pathogenesis of psychiatric
disorders, we further integrate pQTLs and eQTLs with GWAS loci

to identify risk genes that are involved in the pathology of SCZ
and BP (Fig. 1E). We finally integrate multi-omic bulk and single-
cell transcriptomic data to prioritize risk genes/proteins for SCZ
GWAS loci (Fig. 1F).

RESULTS
Profiling and analysis of human brain proteome and
transcriptome
To explore how genetic regulation of protein expression in the
brain is implicated in psychiatric disorders, we generated deep
proteomic data from the frontal cortex tissue of post-mortem
human brains. These samples were analyzed by extensive
fractionation (two-dimensional LC) and high-resolution, accurate-
mass, tandem mass spectrometry (LC/LC-MS/MS) (Fig. 2A). We
identified and quantified a total of 19,272 proteins (14,221 genes)
in at least one sample at the protein FDR < 1% across 29 batches
of 11-plex tandem mass tags (TMT) experiments. After extensive
quality control measures [39], we focused on 11,608 proteins
(8321 genes) from 268 samples, including 198 normal, 25 BP and
45 SCZ samples of high quality for the subsequent proteome-wide
genetic regulation analysis (Fig. 2B, Table S1A, B; Table S2). The
vast majority of proteins (78.07%; 15,045/19,272) were detected in
more than 25 batches (Fig. 2C). To the best of our knowledge, this
is the deepest human proteome data to date available for
studying the genetic regulation of protein expression in the brain.
We next compared our proteomic to transcriptomic data

generated from the matched 264 samples (Table S3). The
quantified proteins across all samples cover ~70% of the range

Fig. 1 Schematic diagram showing the experimental design and analysis pipeline used in this study. A Postmortem brain samples from a
human cohort with 268 participants were used, including 198 normal individuals (CTR), 45 patients with schizophrenia (SCZ), and 25 patients
with bipolar (BP). B Deep brain proteome was profiled by 11-plex TMT-based proteomics, followed by extensive quality control and data
analysis. Brain proteomic data and comparable genotype data were prepared for subsequent linkage analysis. C Genome-wide association
analysis to identify genetic regulations of protein expression and gene expression. D Co-localization analysis to investigate the same variant
underlying cis-eQTLs and cis-pQTLs. E Mediation analysis to identify transcript-dependent and -independent regulations and causality analysis
to link eGenes and pGenes to SCZ GWAS loci. F Prioritization of proteins for SCZ GWAS loci.
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of mRNA expression detected by RNA-seq, indicating a deep
coverage of our proteomic data (Fig. 2D). Those undetected
proteins, whose corresponding RNAs also had low expression
signals, are likely due to either not being translated into proteins
in the brain or at concentration under the detection limit by the
mass spectrometer. A moderate positive correlation (r= 0.43) was
observed between expression levels of mRNAs and proteins
(Fig. 2E), which is consistent with previous findings [30, 31, 33]. A
subset of proteins showed high variability in expression (Fig. 2F),
which were mainly enriched in functional terms related to
extracellular matrix (ECM) organization, blood microparticle,
plasma lipoprotein particle, and integrin binding (Supplementary
Fig. 1A), whereas proteins with low variability were enriched in
terms associated with the housekeeping functions, such as
proteasome complex, regulation of mRNA stability, and regulation
of cell cycle (Supplementary Fig. 1B).

Human brain proteome and transcriptome reveal the genetic
architecture of expression regulation
To characterize genetic variants influencing expression level of
genes and proteins, we performed proteome-wide and
transcriptome-wide association analyses. To increase statistical
power and reduce false positives [40, 41], we removed variously
measured and unmeasured confounding factors, such as

experimental and technical batch effects. By using the probabilistic
estimation of expression residuals (PEER) program [42], we captured
99% of the hidden variance in proteomic data with 13 controlling
factors. Further correlation analysis indicated that the effects of
various covariates on protein expression variation have been well-
controlled (Supplementary Information; Supplementary Fig. 2A–D).
We first performed genome-wide association analysis (Supple-

mentary Fig. 3) of the expression levels of 11,608 proteins using
the QTLtools program [43], identifying 788 cis-acting (or local
acting) genomic loci (i.e., cis-pQTLs; within ±1 Mb from the
transcriptional start site for each tested protein) that modulate
the expression of 883 proteins (i.e., pGenes) at the genome-wide
FDR < 5% using the Storey q value method (Fig. 3A; Table S4A). We
will use the terms FDR and “q-value” interchangeably for the
linkage analysis hereafter. Many significant cis-pQTLs (10.8%) are
associated with more than one protein as opposed to 3.1% of the
cis-eQTLs, suggesting that cis-pQTLs tend to be more pleiotropic
than cis-eQTLs. Of these, 42 cis-pQTLs have a relatively large effect
size (β > 0.5). We found that a trend for alleles with lower
frequency has a stronger effect on cis-pQTLs (Fig. 3B). We
also detected 256 trans-acting (or distal-acting) loci that reg-
ulate 511 proteins at the genome-wide FDR < 5% (Table S4B;
p < 2.33 × 10−11; Bonferroni Correction), of which 19 (3.9%) loci
harbor both cis- and trans-pQTLs.

Fig. 2 Deep profiling of human brain proteome. A Workflow of 11-plex TMT-based proteome analysis. A total of 10 samples and 1 internal
standard (i.e., 10 pooled samples) were analyzed by LC/LC-MS/MS. MS raw data were analyzed using JUMP software. B Stacked Venn diagram
showing the numbers of proteins identified in all 268 samples. C Histogram showing the coverage of quantified proteins across 29 batches of
TMT experiments. D Histogram showing the coverage of proteomic data compared to RNA-seq data. The open bar represents the distribution
of protein-coding genes detected by RNA-seq, the light blue bar indicates the distribution of protein-coding genes from proteomic data, and
the navy bar indicates the distribution of protein-coding genes from no missing value proteomic data. Protein coverage is defined as the
determination of whether a transcript is expressed in one or more samples. E Scatter plot showing a comparison of gene expression levels and
protein abundance. Expression levels are averaged across all samples. F Distribution of coefficient of variation (CV) for all proteins across all
samples.
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We next performed genome-wide association analysis for gene
expression (i.e., eQTL) in 416 frontal cortex samples that include
nearly all of the samples (264/268; Table S1C, D; Table S3) used for
proteome-wide analysis. Similarly, we removed hidden confound-
ing factors for 17,160 expressed genes using the PEER program
(Supplementary Information; Supplementary Fig. 4A–D). We
identified 9791 significant cis-eQTLs that modulate expression
levels of 9960 genes (i.e., eGenes) at the genome-wide FDR < 5%
(Supplementary Fig. 5A; Table S5A), including 560 cis-eQTLs with
large effect size (β > 0.5; Supplementary Fig. 5B). We also identified
that expression levels of a total of 271 genes are regulated by 260
trans-eQTLs (Table S5B). A positional enrichment analysis showed
that 56.28% (5605/9960) of significant cis-eQTLs cluster within
10 kb of the transcription starting site (TSS) of its target genes
(Supplementary Fig. 5C). Interestingly, we observed that 15.13% of
cis-pQTLs reside in exonic regions, with 75.63% of them being
non-synonymous variants. This indicates that a total of 11.44% of
cis-pQTLs can be attributed to non-synonymous variants. In
contrast, only 5.43% of cis-eQTLs were detected in exonic regions,
with 33.64% of which are non-synonymous variants, resulting in
1.83% of the total cis-eQTLs being non-synonymous exonic cis-
eQTLs (Fig. 3C). This observation indicates that coding variants
have a unique and significant impact on protein expression, which
differs from the tendency of cis-eQTLs to be located near the TSS
region, as observed in this study and previous eQTL studies. The
enrichment of cis-pQTLs in coding variants is consistent with
recent proteome-wide association studies conducted in AD [44]
and lymphoblastoid cell lines (LCLs) [45].
To understand the potential influence of Protein-Altering

Variants (PAVs) on the regulation of protein expression levels,

we utilized three well-established prediction algorithms, Com-
bined Annotation Dependent Depletion (CADD) [46], Sorting
Intolerant From Tolerant (SIFT) [47], and Polymorphism Phenotyp-
ing v2 (PolyPhen 2) [48] to predict PAVs with potentially
deleterious effects. Out of 90 non-synonymous SNPs detected as
cis-pQTLs, we identified a total of 63, 43, and 46 SNPs with
deleterious effects on protein function as determined by CADD
(score > 20), SIFT, and PolyPhen 2, respectively (Supplementary
Fig. 6A; Table S6), with 38 SNPs being predicted to be deleterious
by all three algorithms. As an example, a non-synonymous SNP at
Chr2:98,275,354 in exon 4 in protein ACTR1B was predicted to be
deleterious by all three tools (Supplementary Fig. 6B). ACTR1B had
strong cis-eQTL (p= 8.49 × 10−16) and cis-pQTL (p= 2.83 × 10−10),
and co-localized with a SCZ locus (Fig. 3D). The reference
homozygous allele (G/G) decreases protein expression level
compared to the homozygous alternative allele (A/A), (Supple-
mentary Fig. 6C).
Among the 256 trans-pQTLs identified in this study, 11 were

found to modulate the expression of more than five proteins
(Supplementary Fig. 7). For example, a trans-QTL (rs77546871) in
WW domain-containing oxidoreductase (WWOX) protein regulates
the expression of 27 downstream proteins (Supplementary Fig. 7;
blue lines). WWOX is also a significant cis-pGene (p= 9.19 × 10−10,
q= 1.92 × 10−4). WWOX has been implicated in signaling path-
ways, such as regulating the central nervous system (CNS)
development and neural differentiation [49], and dysfunction of
this gene has been found to result in reduced GABA-ergic
inhibitory interneuron numbers in mice [50]. GWA studies have
also identified WWOX as a risk gene for common neurodegen-
erative conditions, such as SCZ [51], AD [52], and autism [53].

Fig. 3 Genetic regulation of the brain proteome. A Circos plot showing genome-wide cis-pQTLs. Significant cis-pQTLs (q < 0.05) are
highlighted in red color. B Scatter plot showing the relationship between minor allele frequency (MAF) and effect size of significant cis-pQTLs.
SCZ risk genes with a large effect size (β > 0.5) are also labeled in the plot. C Stacked bar chart illustrating the proportions of each class of QTLs
found in different genomic regions. D LocusZoom plot illustrating the colocalization of cis-eQTL, cis-pQTL, and GWAS locus.
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Extensive colocalization between cis-pQTLs, cis-eQTLs, and
GWAS signals
To investigate the extent of colocalization between genetic
variants associated with gene and protein expression and signals
from GWAS of SCZ and BP, we first examined whether the
association signals regulating gene and protein expression levels
are driven by the same genetic variant. We performed a
colocalization analysis for 883 pGenes and 9960 eGenes using
the coloc program. The colocalization analysis estimates five
posterior probabilities (PP0, PP1, PP2, PP3, and PP4) (see
methods). We identified 660 pGenes with cis-eQTL signals within
a 1 Mb distance (upstream or downstream). Among these, we
found 386 pGenes (i.e., 346 genomic loci) with evidence of the
colocalization (PP4 > 0.80; Fig. 4A; Table S7A). An over-
representation analysis indicated a significant enrichment (Fisher
exact test; p= 5.8 × 10−3) of colocalized cis-QTL signals.
Out of the 386 colocalized cis-QTL signals, 76 had matched SNP-

eGene and SNP-pGene pairs. We examined the effect size of these
matched pairs and observed a high consistency in the direction of
effect size between eQTLs and pQTLs (Fig. 4B). The effect size of
colocalized cis-pQTLs is slightly smaller compared to that of their
corresponding cis-eQTLs (Fig. 4B inset), in agreement with the
previous observation [45]. As an example, we illustrate serine
racemase (SRR) protein to show the colocalization of cis-eQTL and
cis-pQTL signals, which had a large posterior probability of
colocalization (PP4= 0.99). SRR was identified as a significant cis-
pQTL (p= 2.64 × 10−19, q= 3.71 × 10−13), and a significant cis-
eQTL (p= 4.88 × 10−87, q= 5.82 × 10−75) (Fig. 4C–E). SRR is a
highly expressed protein in the brain acting as an endogenous
ligand of N-methyl d-aspartate (NMDA) receptors. Disruption of

the SRR protein was shown to reduce the function of NMDA
receptors and is associated with susceptibility to SCZ [54].
We next conducted a colocalization analysis between cis-pQTLs/

cis-eQTLs and GWAS loci. We found 12 cis-pQTLs colocalized with
SCZ GWAS signals [55] and 2 cis-pQTLs colocalized with BP GWAS
signals [56], (PP4 > 0.80; Supplementary Fig. 8A–C; Table S7B, C).
Furthermore, we identified 65 and 21 cis-eQTLs colocalizing with
SCZ and BP GWAS signals, respectively (PP4 > 0.80; Supplementary
Fig. 8A, D, E; Table S7D, E). For example, we found angiotensin-
converting enzyme (ACE) that had a strong colocalized signal
between cis-eQTL (p= 2.20 × 10−18), cis-pQTL (p= 1.73 × 10−9),
and SCZ GWAS loci (Supplementary Fig. 8F).

Mediation analysis elucidates the regulation of protein
expression
To investigate whether protein expression is dependently
regulated by its cis-pQTL through the corresponding mRNA
transcription [57] (Fig. 5A), we performed a conditional mapping
for the 386 colocalized pGenes using the corresponding gene
expression as a co-variate (Supplementary Fig. 9A). We observed
that the expression level of a majority of pGenes (305/386, 79%) is
regulated by eGenes (Fig. 5B; Table S8), suggesting that these
protein regulations were largely regulated through transcriptional
mechanisms (i.e., transcription-dependent regulation). In addition,
a substantial proportion of matched SNP-pGenes and SNP-eGenes
(67/76; 88%) exhibited transcription-dependent regulation.
This transcription-dependent protein regulation was supported

by a modest correlation (r= 0.34) between transcripts and
proteins (Fig. 5C), which is significantly higher (p < 2.2 × 10−16)
than those transcription-independent pGenes (r= 0.14). However,

Fig. 4 Co-localized QTLs modulating the expression levels of genes and proteins. A Ternary plot showing colocalization posterior
probabilities of QTLs of gene and protein expression. We considered H0+ H1+ H2 as evidence for the lack of test power. H0: no causal variant,
H1: causal variant for PD GWAS only, H2: causal variant for QTL only, H3: two distinct causal variants, H4: one common causal variant. B Scatter
plot showing the distribution of effect sizes of 76 matched SNP-eQTLs and SNP-pQTLs colocalized pairs. C LocusZoom plot showing a
colocalized QTL regulating SRR gene and protein expression. D Box plot showing normalized SRR protein expression and its cis-pQTL allele
dosage. E Box plot showing normalized SRR gene expression and its cis-eQTL allele dosage.
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the effect size of transcription-mediated pGenes was significantly
lower as compared to that of transcription-independent pGenes
(Fig. 5D; 0.11 vs 0.18; p= 6.5 × 10−6), suggesting direct genetic
effects on protein abundance tend to be stronger than the
mediation effects. As expected, the vast majority of transcription-
dependent pQTLs are found to be in the genomic regulatory
regions (Supplementary Fig. 9B).
To illustrate transcription-dependent regulation, we high-

lighted an example of transient receptor potential cation channel
subfamily V member 2 (TRPV2), an ion channel protein.
TRPV2 showed a significant cis-pQTL (p= 2.93 × 10−45, q value=
2.11 × 10−27), but the signal was abolished after conditioning on
gene expression as a co-variate. TRPV2 level at the gene level is
also regulated by a significant cis-eQTL (p= 3.70 × 10−97, q
value= 2.66 × 10−58) (Fig. 5E). The transcript and protein expres-
sion levels of TRPV2 are highly correlated (Fig. 5E; inset). In the
case of the transcription-independent regulation, we found a
significant cis-pQTL that regulates GLRX5 protein abundance
independently of its transcription (Fig. 5F). As expected, there is a

lack of correlation between protein and transcript abundance
(Fig. 5F; inset).

Causal contribution of cis-pGenes and cis-eGenes to
psychiatric disorders
We next sought to identify genomic loci associated with
psychiatric disorders through genetic effects on gene and
protein expression. We evaluated 287 SCZ genomic loci
identified by a meta-analysis of recent published data from
the Psychiatric Genomics Consortium (PGC) [55]. We used
summary-based Mendelian randomization (SMR) analysis
coupled with the heterogeneity independent instruments
(HEIDI) test [58] (Fig. 6A), identifying 4 pGenes that passed both
the HEIDI heterogeneity test (PHEIDI > 0.05) and the SMR
significance threshold of PSMR < 6.3 × 10−5 (0.05/790; p= 0.05
corrected by the total number of pGenes) (Fig. 6B; Table S9A).
We also detected 19 eGenes that passed PHEIDI > 0.05 and
PSMR < 5.3 × 10−6 (0.05/9,495; corrected by 9,495 eGenes)
(Fig. 6B; Table S9B). Among these pGenes and eGenes with

Fig. 5 Genetic regulation of protein expression mediated by mRNA. A Two mediation models of protein expression: transcription-
dependent protein regulation and transcription-independent protein regulation. B Scatter plot showing negative log-transformed p values of
cis-pQTL before and after conditioning on mRNA. C Box and whisker plot showing Pearson correlation coefficient between expression levels of
proteins and transcripts in both transcript-mediated and transcript-independent groups. The plot shows the mean (horizontal lines), 5th–95th

percentile values (boxes), and SEM (whiskers). D Box and whisker plot showing effect sizes of transcription-dependent and transcription-
independent regulations. E An example of transcription-dependent regulation is exemplified by TRPV2. LocusZoom plots show a significant
localization of cis-pQTL (top) and cis-eQTL (bottom). The inset shows the scatter plot of a high correlation (r= 0.70) between the expression of
gene and protein. F Transcription-independent regulation is exemplified by GLRX5. LocusZoom plots show a significant cis-pQTL but not a
cis-eQTL. The inset shows the scatter plot of a low correlation (r= 0.10) of GLRX5 expression levels between gene and protein.
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significant cis-pQTL and cis-eQTL, 2 pGenes and 13 eGenes were
also prioritized for the SCZ GWAS loci. Note that the SMR
analysis cannot distinguish causality from pleiotropy. In addi-
tion, one protein (BTN2A1) and 21 genes showed PHEIDI < 0.05
from the HEIDI test, suggesting that expression and GWAS are
likely to be driven by different variants in the same linkage
disequilibrium block. We also evaluated 64 genomic loci recently
identified by BP GWAS meta-analysis [56], identifying 4 causal/
pleoitropic eGenes (PSMR < 5.3 × 10−6; Supplementary Fig. 10;
Table S9C).
An example of the causality effect of pGene on SCZ is DARS2, a

mitochondrial aspartyl-tRNA synthetase. The SMR analysis
detected a significant association between DARS2 protein
expression and SCZ (PSMR= 1.66 × 10−5 and PHEIDI= 0.16). DARS2
is a significant pGene (p= 5.88 × 10−21, q= 4.93 × 10−15) (Fig. 6C),
which is highly expressed in the brain and has been identified as
the strongest causal gene of SCZ in an independent GWAS12. As
an example of a significant causal association between eGenes
and SCZ, CUL9 (cullin-9) exhibited a significant association
between gene expression and SCZ, with PSMR= 1.78 × 10−7 and
PHEIDI= 0.11 (Fig. 6D; Table S9B). CUL9 is a parkin-like ubiquitin
ligase that has been prioritized as a candidate gene for an SCZ
GWAS locus [55].

Integrative analysis prioritizes proteins for psychiatric
disorders
Previous studies have shown that molecular QTLs (e.g., eQTLs,
methylation QTLs (mQTLs), and pQTLs) tend to influence complex
diseases [59], and they can be harnessed to prioritize risk genes for
GWAS loci [60]. Although it is currently difficult to pinpoint causal
genes at GWAS loci, prioritized genes/proteins could be plausible
candidates underlying the GWAS associations. In this study, we
attempt to establish a framework to systematically prioritize risk
genes for 313 significant SCZ GWAS loci (p < 5 × 10−8) and
311 suggestive loci (5 × 10−8 < p < 1 × 10−6) with small effect size
[55].
We sought to combine multiple data sets to prioritize genes/

proteins for GWAS loci using order statistics (Fig. 7A). Five data
sets were included for the prioritization, including pGenes ranked
by cis-pQTL nominal p values, eGenes ranked by cis-eQTL nominal
p values, co-localization between cis-pQTLs and cis-eQTLs ranked
by PP4 values, and disease relevance score with SCZ by the
GeneCards database, and connectivity score ranked by the
number of downstream SCZ risk genes in protein-protein
interaction (PPI) network (see Methods; Supplementary Fig. 11A).
To derive the PPI network connectivity score, we first extracted
high-confidence PPI with a score ≥ 700 (mean score: 295, range:

Fig. 6 Causal relationship between pGenes and SCZ. A Schematic diagram showing three putative mechanistic controls of a QTL: causality,
pleiotropy, and genetic linkage. B Forest plots showing effect sizes of 4 and 19 SCZ GWAS loci causally controlled by pGenes and eGenes,
respectively. The causality relationship was estimated by the SMR/HEIDI method. Center values mark effect size point estimates, error bars the
95% confidence intervals. C LocusZoom plot showing an example of an SCZ GWAS is controlled by a cis-pQTL. D LocusZoom plot showing an
example of an SCZ GWAS is controlled by a cis-eQTL.
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Fig. 7 Prioritization of candidate genes for SCZ GWAS loci by integrating multiple data sets. A Schematic diagram of candidate gene
prioritization using order statistics. B Heatmap showing the top 60 proteins ranked by combining five data sets. The missing values are
indicated by white boxes. C Network-based reprioritizing candidate genes for SCZ GWAS associations with small effect. Sub-network (top) was
derived from the STRING PPI network. Significant GWAS risk genes are indicated by red nodes, whereas candidate genes (PPP2R4 and
PPP2R5B) for suggestive GWAS loci are indicated by blue nodes. D LocusZoom plot showing a SCZ GWAS locus (rs6478858), a colocalized QTL
regulating PPP2R4 gene and protein expression levels. E Box plot showing normalized SRR protein expression and its cis-pQTL allele dosage.
F Box plot showing normalized SRR gene expression and its cis-eQTL allele dosage.
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150–999) and kept those nodes with cis-pGenes or cis-eGenes
(Supplementary Fig. 11B), yielding an SCZ network with 2011
nodes and 3118 protein-protein interactions (Supplementary
Fig. 11B). We used order statistics to generate a final ranking
score, followed by identifying candidate genes for GWAS loci. To
further assess the cell-type-specific differential expression of these
ranked proteins, we also downloaded single-cell transcriptomic
data generated from 48 post-mortem human prefrontal cortex
samples, including 24 schizophrenia cases and 24 controls [61]
and mapped differential expression genes between SCZ and
controls and expression abundance of 20 cell types to our ranked
proteins (Table S10). The final ranking result revealed that among
the top-ranked 60 proteins, 8 candidate genes were from the
313 significant PGC SCZ GWAS loci (Fig. 7B; Table S10) and 2
additional candidate genes were SCZ GWAS loci from other
studies. Single-cell transcriptomic data [61] support that 30 out of
the top 60 proteins showed excitatory neuron cell-state (Ex-SZTR,
which are enriched for differentially-expressed genes and
significantly more prevalent in schizophrenia than in control
individuals, but preferentially found in schizophrenia individuals
with non-schizophrenia transcriptional signatures across all other
cell types in addition to excitatory neuron) (Supplementary
Fig. 12).
A major challenge in GWAS is unable to detect loci with a small

effect due to low statistical power [57]. We next leveraged our
prioritized proteins to identify candidate risk genes for 290
suggestive GWAS loci (5 × 10−8 < p < 1 × 10−6) with a smaller effect
size. We found 2 out of the top 60 ranked genes in suggestive
GWAS loci (Fig. 7B). For example, PPP2R4 is prioritized as a
candidate gene for a GWAS locus rs6478858. This is also supported
by evidence that PPP2R4 is functionally associated with SCZ risk
genes that include MAPT, PPP2R2A, FOXO3, AKT3, RERE, RSMO6,
PSMA4, and MAD1L1 (Fig. 7C). PPP2R4 showed a colocalized
significant cis-pQTL (p= 2.70 × 10−15, q value= 1.58 × 10−8) and
cis-eQTL (p= 8.92 × 10−16, q= 2.29 × 10−12) (Fig. 7D). The reference
homozygous allele (G/G) increases protein and gene expression
levels by 1.16-fold and 1.14-fold compared to the homozygous
alternative allele (A/A), respectively (Fig. 7E, F). Single-cell tran-
scriptomic data showed that PPP2R4 decreases the expression level
in microglia and is differentially expressed in SCZ compared to
control samples (Supplementary Fig. 12). These results suggest that
our protein prioritization provides a potential strategy for identify-
ing candidate genes in GWAS loci with small effects.

DISCUSSION
In this study, we performed proteome-wide and transcriptome-
wide association studies of post-mortem brain tissue from a
human cohort of controls and patients with psychiatric disorders.
We characterized the genetic architecture of human gene and
protein regulation by discovering 9791 cis-eQTLs and 788 cis-
pQTLs that regulate gene and protein expression, respectively.
Our causality analysis highlighted eGenes and pGenes that are
functionally implicated in psychiatric disorders. Prioritization
analysis further revealed proteins as candidate risk genes for
SCZ GWAS loci. Taken together, the findings of this study increase
our understanding of the genetic regulation of gene and protein
expression in the human brain and shed light on the underlying
molecular mechanisms involved in psychiatric disorders.
One of the strengths of this study was that we comprehensively

defined the landscape of genetic regulation of protein expression
by quantifying 11,608 unique proteins across all 268 human brain
samples. We quantified a total of 19,272 unique proteins from at
least one batch of TMT-based proteomic experiments (Fig. 2B). To
the best of our knowledge, this is the deepest human brain
proteome reported to date for such a large human cohort.
Compared to a recent large-scale human brain proteomic study
[30], our proteomic data detected ~43.08% (11,608 vs. 8356) more

unique proteins. This deep proteomic data provides an opportu-
nity to comprehensively evaluate genetic loci regulating protein
expression even with lowly expressed proteins, which otherwise
remain undiscovered or poorly characterized with shallow
proteomic data.
The availability of transcriptome and proteome of the brain

tissue from the same human cohort in this study provided an
excellent opportunity to investigate the commonalities and
disparities in gene and protein expression regulations. We
provided evidence that the vast majority (321/386) of colocalized
cis-eQTLs and cis-pQTLs exhibited the same regulatory direction
(Supplementary Fig. 13A), but the effect size of cis-pQTLs is
generally smaller than that of cis-eQTLs (Supplementary Fig. 13B),
indicating that their potential effects on downstream phenotypes
were often attenuated or buffered [25, 46]. We also identified two
cis-QTLs that showed an inconsistent direction of effect on eGenes
and pGenes (i.e., TBC1D9B and NTPCR) (Fig. 4B; Supplementary
Fig. 13C, D). NTPCR had strong significant cis-eQTL
(p= 4.12 × 10−90) and cis-pQTL (p= 7.72 × 10−58), but showed a
negative correlation between gene and protein expression levels,
suggesting a likelihood of the pleiotropic effect of the variant. On
the other hand, despite exhibiting significant cis-eQTL
(p= 9.59 × 10−25) and cis-pQTL (p= 1.11 × 10−18), TBC1D9B
showed no correlation (r=−0.10; p= 0.09) between gene and
protein expression levels (Supplementary Fig. 13D), suggesting a
possibility of false QTL signals.
Another advantage of measuring gene and protein expression

in the same tissue from the matched samples is that it allows us to
investigate the mediation of protein regulation. Although protein
expression often correlates poorly with transcript levels, we
observed that most of the pGenes (274/386) were colocalized
with eQTLs signals, and the expression level of most of these
colocalized pGenes are modulated by gene transcription. This
observation is consistent with previous reports that the vast
majority of genetic variants controlling gene expression also
influence protein abundance [62]. In addition, we also observed
about some of the pGenes are regulated in a transcription-
independent manner. For these pGenes, post-transcriptional
regulation often buffers differences in the genetic regulation of
protein abundance from mRNA levels [24].
In the present study, we identified 883 pGenes, a number

substantially lower than the number of 9960 eGenes detected. A
plausible possibility for this observation is the relatively smaller
sample size used for detecting pQTLs compared to eQTL
detection. Moreover, we posit that the buffering of genetic
variation at the protein level could account for this difference
[44, 62, 63]. The most widely recognized mechanism that buffers
genetic variation is redundancy. The redundancy may arise due to
various post-transcriptional and post-translational regulations that
can modulate protein expression levels independently of mRNA
levels. For example, the human genome has more proteins than
genes. The family of protein members can substitute for one
another when inappropriately expressed.
The detection of pQTLs can be influenced by population

structure, which introduces confounding factors. To assess the
impact of population structure on pQTL detection in this study, we
compared cis-pQTLs detected by QTLtools without considering
population structure with those detected by the GEMMA program
with taking into consideration relatedness. We found 88% (781/
883) of significant pGenes identified by both QTLtools and
GEMMA analyses (Supplementary Fig. 14). This result suggests that
the population structure has a marginal impact on the detection
of pQTLs. The GEMMA method with population structure detected
more significant cis-pQTLs, suggesting that incorporating popula-
tion structure in the QTL mapping can slightly improve
statistical power.
The low expression level may produce false positive eQTLs in

which the major allele was associated with lower gene expression

J. Luo et al.

9

Molecular Psychiatry



levels. In this study, we used genes with transcripts per million
reads (TPM) > 0.1 in at least 25% of samples. To evaluate the
impact of low expression on eQTL detection, we first explored the
distribution of positive cis-eQTLs across different gene expression
levels. Our analysis revealed a consistent rate of positive cis-eQTLs
throughout the expression spectrum (Supplementary Fig. 15A).
We observed a slightly lower rate of positive cis-eQTLs for genes
with low expression levels (TPM < 1; Log2(TPM) < 0). The analysis
supports that there is no inflation in the subset of genes with low
expression. To further validate our findings, we randomly selected
six significant cis-eQTLs regulating genes displaying low expres-
sion levels (TPM < 1; Log2 (TPM) < 0; Supplementary Fig. 15B). Our
manual examination further confirmed that these cis-eQTLs
indeed displayed true eQTL signals, as evidenced by both
Manhattan and box plots (Supplementary Fig. 15C). We conducted
further investigation into 33 significant cis-eQTLs (q < 0.05) that
regulate genes with low expression (Log2(TPM) < 0) by only two
homozygote genotypes. Our analysis revealed that the majority of
these genes showed positive signals, as illustrated by two
examples (Supplementary Fig. 15D). However, it is worth noting
that one gene had a borderline significant cis-eQTL
(q= 4.06 × 10−5, Supplementary Fig. 15E). Our analyses suggest
that low expression could potentially exert a marginal influence
on eQTL detection.
While we measured protein expression in the frontal cortex, a

human brain region is still highly heterogeneous, containing
different cell types [64]. Recent advances in single-cell transcrip-
tomics have demonstrated the feasibility of identifying cell-type-
specific eQTLs [64], which allows us to characterize the cellular
specificity of genetic regulation of gene expression. In this study,
we might be able to define cell-type-specific pQTLs by compu-
tationally deconvoluting sample-wise cell-type-specific expression
from our bulk proteomic data. For example, CIBERSORTx [65] was
developed for deriving a signature matrix and sample-wise
deconvolution from the single-cell transcriptomic data. Although
single-cell proteomics is still in its infancy, several promising
technologies are being explored, such as nanoTOPS and SCoPE-
MS [66]. For example, nanoTOPS is capable of identifying ~2000
proteins at 100-μm spatial resolution [67]. With the advent of
single-cell proteomics technology, we will be able to define the
genetic regulation of protein expression at the cellular level.
In summary, we provided a comprehensive resource on protein

expression in the brain across a human cohort with control
individuals and patients with psychiatric disorders. We defined a
landscape of the genetic regulation of protein expression in the
brain, highlighting a large set of variants and targets involved in
molecular mechanisms underlying psychiatric disorders. We
developed a framework to investigate the mediation of the
protein expression and the causal link of eQTLs/pQTLs to genomic
loci detected in the larger meta-GWAS study. We believe that
integrating GWAS and genetic regulation of protein expression
provides a new avenue for identifying novel risk genes for GWAS
loci, thereby providing important insights into the pathogenesis of
psychiatric disorders.

METHODS
Human postmortem brain tissue
For proteome profiling, a total of 268 well-characterized postmortem
human brain samples (165 males, 103 females) from the Stanley Medical
Research Institute (SMRI) and Banner Sun Health Research Institute (BSHRI)
were used for this study. These samples were collected from 198
neurotypical controls, 45 individuals with SCZ, and 25 individuals with
BP (Table S1A, B). The samples include 262 Caucasians, 1 Hispanic
American, 3 Asian American, and 2 Unknown. For transcriptome profiling,
RNA-Seq data from 416 samples (262 males and 154 females). More
detailed information about the specimens is provided in Table S1C, D.

Brain tissue lysis and protein quantification
Frozen tissues from the frontal cortex (BA46) were obtained from controls
and patients with SCZ and BP. The tissues were weighed and
homogenized in lysis buffer (50mM HEPES, pH 8.5, 8 M urea, and 0.5%
sodium deoxycholate, 100 µl buffer per 10mg tissue) with a 1×PhosSTOP
phosphatase inhibitor cocktail (Sigma-Aldrich). The total protein concen-
tration of each sample was measured by the BCA Protein Assay Kit (Thermo
Fisher Scientific), and confirmed by Coomassie-stained short SDS gels.

Protein digestion and TMT labeling
We used our previously optimized protocol [67, 68] for this analysis. In
brief, quantified protein samples (~0.3 mg in the lysis buffer with 8 M urea)
were proteolyzed with Lys-C (Wako, 1:100 w/w) at room temperature for
2 h, diluted 4-fold to reduce urea to 2 M, and digested by trypsin (Promega,
1:50 w/w) at room temperature overnight. The digestion was terminated
by the addition of 1% trifluoroacetic acid, followed by centrifugation. The
supernatant was desalted with Sep-Pak C18 cartridge (Waters), and then
dried by speedvac. Each sample was resuspended in 50mM HEPES, pH 8.5,
labeled with 11-plex TMT reagents, mixed equally, and desalted again for
subsequent fractionation. We used 0.1 mg protein per sample. A total of 29
batches of 11-plex TMT experiments were performed.

Extensive two-dimensional LC/LC-MS/MS
The pooled TMT labeled samples were fractionated using offline basic pH
reversed-phase chromatography (HPLC), and followed by acidic pH reverse
phase LC-MS/MS analysis [68, 69]. For the offline basic HPLC, we generated
40 concatenated fractions for each batch. We performed the offline LC run
(~3 h gradient) on an XBridge C18 column (3.5 μm particle size, 4.6 mm×
25 cm, Waters; buffer A: 10 mM ammonium formate, pH 8.0; buffer B: 95%
acetonitrile, 10 mM ammonium formate, pH 8.0) [70]. For the acidic pH LC-
MS/MS analysis, each fraction was run sequentially on a column (75 µm
x 15−30 cm, 1.9 µm C18 resin, 65 °C to reduce backpressure) interfaced
with an Orbitrap Fusion and Q Exactive HF MS (Thermo Fisher). Peptides
were eluted by a 1.5−2 h gradient (buffer A: 0.2% formic acid, 5% DMSO;
buffer B: buffer A plus 65% acetonitrile). MS settings included MS1 scans
(60,000 resolution, 1 × 106 AGC and 100ms maximal ion time) and 20 data-
dependent MS2 scans (410-1600m/z, 60,000 resolution, 1 × 105 AGC,
~105ms maximal ion time, HCD, 38% normalized collision energy, 1.0m/z
isolation window with 0.2m/z offset, and ~15 s dynamic exclusion).

Identification of proteins by database search with JUMP
software
We performed peptide identification with the JUMP search engine to
improve the sensitivity and specificity [71]. JUMP searched MS/MS raw data
against a composite target/decoy database [72] to evaluate FDR. The
target human protein sequences (83,955 entries) were downloaded from
the UniProt database. The decoy database was generated by reversing to
generate a decoy database that was concatenated to the target database.
FDR was estimated by the ratio of the number of decoy matches and the
number of target matches. Major parameters included precursor and
product ion mass tolerance ( ± 15 ppm), full trypticity, static mass shift for
the TMT tags (+229.16293) and carbamidomethyl modification of
57.02146 on cysteine, dynamic mass shift for Met oxidation (+15.99491),
maximal missed cleavage (n= 2), and maximal modification sites (n= 3).
Putative PSMs were filtered by mass accuracy and then grouped by
precursor ion charge state and filtered by JUMP-based matching scores
(Jscore and ΔJn) to reduce FDR below 1% for proteins during the whole
proteome analysis. If one peptide could be generated from multiple
homologous proteins, based on the rule of parsimony, the peptide was
assigned to the canonical protein form in the manually curated Swiss-Prot
database. PSM-, peptide- and protein-level FDR were controlled using the
target-decoy strategy [73]. Target and decoy spectral matches were
distinguished from one another using linear discriminant analysis (LDA)
based on several different parameters including Jscore, ΔJscore, precursor
mass error, and charge state. The linear discriminant model was trained for
individual LC-MS analyses using peptide matches to forward and reversed
peptide sequences as positive and negative training data. Similar
approaches have been published previously using different sets of
features or different classifiers [74, 75]. After each was scored, sequences
shorter than seven amino acids were discarded and peptide spectral
matches were sorted by discriminant score and filtered to a 1% FDR as
indicated by the number of decoy sequences in the filtered data set. PSMs
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with low confidence (Jscore < 50 for one-hit-wonder) were manually
verified (Table S11).

Protein quantification by JUMP software suite
Protein quantification was carried out using the following steps [76]. We
first extracted the TMT reporter ion intensities of each PSM and corrected
the raw intensities based on the isotopic distribution of each labeling
reagent. We discarded PSMs with low intensities (i.e., the minimum
intensity of 1000 and median intensity of 5000). After normalizing
abundance with the trimmed median intensity of all PSMs, we calculated
the mean-centered intensities across samples (e.g., relative intensities
between each sample and the mean) and summarized protein relative
intensities by averaging related PSMs. Finally, we derived protein absolute
intensities by multiplying the relative intensities by the grand mean of the
three most highly abundant PSMs. Log2-transformed data were used for
the subsequent PEER factor analysis [42]. To determine the unique
proteins, we considered only one canonical version if the identified
peptides were shared by multiple isoforms. However, if an isoform was
identified by its distinct peptides, it was also included in the list of unique
proteins

Genotypic data
We generated genotypic data from three different sources, namely
Affymetrix, PsychcChip, and whole-genome sequencing. For Affymetrix
and PsychcChip, we followed best practices for genotype calling and
conducted thorough quality control checks to ensure high-quality data. In
addition, we applied the GATK Haplotype caller to align the reads from
whole-genome sequencing to the human reference genome and called
the variants. We also used the BEAGLE method to refine the genotypes by
inferring haplotypes and missing genotype data from the 1000G-EUR
reference panel.
The genotypic data from each platform were imputed using Minimac3

and the Haplotype Reference Consortium (HRC) panel after standard
quality control. After imputation, we filtered genotypes using R2 > 0.3 and
HWE < 10−6 to obtain high-quality imputation data. We also corrected the
identity of samples using our software, DRAMS. To generate the final
genotypic data, we combined genotypes from the three platforms, set
genotypes that did not match to missing values, and filtered genotypes by
using missing rate <0.4 and minor allele frequency (MAF) < 0.01. We then
re-imputed the missing values with the BEAGLE method and removed
genotypes with HWE < 10−6 and genotypes within the ENCODE blacklist
[77].

Transcriptome profiling by RNA-seq
We used different RNA preparation techniques for human brain samples
from the SMRI and the BSHRI collections. For SMRI brain samples, total RNA
was isolated for SMRI samples through organic extraction. Briefly,
approximately 50−60mg of frontal cortex (BA9 or BA46) was homo-
genized by polytron probe in Trizol. Total RNA was precipitated with
isopropanol at room temperature, pelleted, washed with 75% ethanol, and
resuspended in DEPC treated water. Quantification was performed by
obtaining OD at A260, and quality assayed by agarose gel electrophoresis.
For BSHRI brain samples, total RNA was mixed with ethanol and applied to
a miRNeasy mini-column. Columns were treated with the RNase-free
DNase digestion set (Qiagen), then washed with the appropriate miRNeasy
mini kit buffers. Total RNA was eluted with RNase-free water. All total RNA
samples that passed QC for library generation had a concentration of
≥100 ng/uL, assayed by the Qubit 2.0 RNA BR Assay or Xpose, and a RIN
score ≥5.5, assayed by the Bioanalyzer RNA 6000 Nano assay kit. Libraries
were sequenced on the HiSeq4000 (Illumina).

RNA-seq data analysis
All FASTQ files were trimmed for adapter sequence and low base call
quality (Phred score <30 at ends) using cutadapt (v1.12) and then aligned
to the GRCH37 (i.e., hg19) reference genome with STAR (2.4.2a) [78], using
GENCODE gene annotations. BAM files were sorted using samtools (v1.3)
[79]. Gene expression levels were quantified using RSEM (v1.2.29) [80].
Genes were filtered to include only those on autosomes longer than 250
base pairs with transcripts per million reads (TPM) > 0.1 in at least 25% of
samples, removing immunoglobulin biotypes. Count-level quantifications
were corrected for library size by using trimmed mean of M-values (TMM)
normalization and were log2 transformed.

PEER factor analysis
We employed the Probabilistic Estimation of Expression Residuals (PEER)
method [42] to remove hidden batch and other confounding effects for
both transcriptomic and proteomic data. A total of 30 and 13 covariate
factors were identified in transcriptomic and proteomic data, respectively.
These covariant factors captured ~99% of the total variance in both
transcriptomic and proteomic data. We used the inverse normal-
transformed PEER-processed residuals for downstream association
analyses.

Association analysis
We performed eQTL/pQTL mapping for both gene and protein expression
using the QTLtools program (Version 1.2) [43] with the permutation number
of 10,000. The top variant was selected as the QTL for the protein/gene.
eQTLs/pQTLs were defined as cis (local) if the QTL was within 1 Mb on either
side of the TSS, whereas eQTLs/pQTLs were defined as trans (distal) if the
peak association was at least 5 Mb outside of the exon boundaries. We used
beta distribution-adjusted empirical p values to estimate the q value by
using the QVALUE R package. Significant cis-eQTLs and cis-pQTLs were
controlled by the q value < 5%. Due to the large number of analyses for
calculating trans-eQTL and trans-pQTL, we used the conservative
Bonferroni-corrected p value of 0.05 (0.05/(number of genotypes x number
of proteins)= 0.05/(8,101,465 × 11,608)= 5.3 × 10−13). A positive effect
means the increase in expression level in the presence of the reference
allele, whereas the negative effect indicates the decrease of the expression
level in the presence of the alternative allele. To consider population
structure in the pQTL mapping analysis, we performed the QTL analysis by
the GEMMA software [81] that accounts for the population structure.
Population structure were determined by the PLINK software [82].

Functional annotation of QTLs
ANNOVAR [83] was used to functionally annotate the leading SNP of a QTL.
RefSeq from the UCSC genome browser database was used to annotate
SNPs. The functional consequence (synonymous, non-synonymous) of
coding SNP was also determined.

Co-localization analysis
We used the coloc R package [84] to analyze the colocalization between
cis-eQTls and cis-pQTLs. A window size of 500 kb on either side of the pQTL
was used. The coloc program uses a Bayesian model to determine
posterior probabilities for five mutually exclusive hypotheses: no associa-
tion of any variant in the region with either cis-pQTL and cis-eQTL (H0);
association with cis-pQTL but not cis-eQTL (H1), association with cis-eQTL
but not cis-pQTL (H2), two different QTLs (H3); and a shared QTL for both
gene and protein expression (H4). These hypotheses were tested to
produce the posterior probabilities, PPi (i ∈ [0,4]). We consider PP4 > 0.5 to
be significant evidence of colocalization.

Causal/pleiotropic analysis of the effect of pGenes/eGenes on
SCZ GWAS
We applied SMR [58] to test the causal/pleiotropic effect between genes/
proteins and diseases using summary statistics from GWAS. In this study,
SMR used SCZ GWAS loci as instrument variables and gene/protein
expression levels as exposure to test whether the causal effect of a specific
variant on the SCZ GWAS signal acts via a specific gene/protein. The SCZ
GWAS loci were downloaded from the recently published Psychiatric
Genomics Consortium (PGC) [55]. SMR performed the HEIDI (heterogeneity
in dependent instruments) test to exclude the GWAS and pQTLs/eQTLs
caused by genetic linkage. The HEIDI threshold (PHEIDI > 0.05) and the SMR
FDR-corrected threshold (adjusted PSMR < 0.05) were used.

Mediation analysis
The mediation analysis was performed to identify eGenes that are likely to
be a causal mediator between the pQTL and the protein expression it
regulates. We implemented this analysis with Perl language based on the
conditional mapping function provided in the QTLtools. If the expression
level of a protein is regulated by its cis-pQTL via the corresponding eGene
as a mediator, the p value in the conditional pQTL mapping model
(transcript as a covariate) should significantly decrease or abolish the pQTL
effect. To assess whether the p value significantly drops for a given
mediator on a cis-pQTL, a null distribution of p values was estimated by
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randomly permuting sample labeling of the eGene. For each protein, this
analysis produces 1 cis- nominal p value and 1000 permutated nominal p
values. The combined p values are then converted into z-scores. We
consider a potential causal mediator with a z-score ≤−4.26 (p= 1 × 10−5

significance level; 0.01/1000 multiple correction tests).

PPI network of SCZ risk genes
GWASs have identified hundreds of GWAS loci associated with SCZ and BP.
To manually curate a catalog of SCZ and BP risk genes, we extracted a total
of 971 risk genes in GWAS loci reported by a list of 9 papers (Table S12).
Detailed information about the studied subjects, diagnosis, genotyping,
quality control, and statistical analyses is provided in the original papers.
To create a PPI network of SCZ risk genes, we downloaded the STRING
database [85] and extracted physically binding protein-protein interactions
with a score ≥ 700, yielding a network of SCZ risk genes. We then only kept
those nodes with cis-pGenes or cis-eGenes, yielding an SCZ network with
2011 nodes and 3118 protein-protein interactions. The generated network
is used for calculating connectivity score.

Prioritization analysis
We employed order statistics to integrate multiple datasets for prioritizing
genes/proteins in GWAS loci [86, 87]. A total of 5 individual data sets with
were used for this analysis: (1) pQTL data, ranked by the nominal p value;
(2) eQTL data, ranked by the nominal p value; (3) colocalization between
pQTLs and eQTLs; ranked by the PP4 values generated by the coloc
program; (4) GeneCards disease-relevant score, ranked by the scores
provided by GeneCards [88]; (5) Interaction with known SCZ-GWAS genes:
ranked by the number of SCZ proteins and/or genes were connected to it.
The final integrative protein ranking was generated by the order statistics.

DATA AVAILABILITY
The raw mass spectrometry data and RNA-seq from this study are available in the
Synapse database under accession code syn32136022.1.

CODE AVAILABILITY
Data analyses were performed in LINUX shell, Perl (v5.18.4), and R (v4.0.4; https://
www.r-project.org/). RNA-seq data were mapped to the human reference genome
(GRCH37) using the following software tools: cutadapt (v1.12) (https://github.com/
marcelm/cutadapt), STAR (2.4.2a) (https://github.com/alexdobin/STAR/releases), sam-
tools (v1.3) (https://sourceforge.net/projects/samtools/files/samtools/1.3/), RSEM
(v1.2.29) (https://github.com/deweylab/RSEM/releases/tag/v1.2.29). Genotype were
processed by Eagle2 (https://alkesgroup.broadinstitute.org/Eagle/), Minimac3,
(https://genome.sph.umich.edu/wiki/Minimac3). Annotation using ANNOVAR
(https://annovar.openbioinformatics.org/en/latest/user-guide/startup/), Proteomic
data were processed with JUMP software (https://github.com/JUMPSuite/JUMP).
QTL mapping were performed using PEER (https://github.com/PMBio/peer), QTLtools
(https://qtltools.github.io/qtltools/), coloc (https://github.com/cran/coloc), SMR
(https://yanglab.westlake.edu.cn/software/smr/), and qvalue (https://github.com/
StoreyLab/qvalue). STRING database for the network analysis (https://string-db.org/).
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