Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aberrant expression of a novel circular RNA in pancreatic cancer

Abstract

Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules that are produced from pre-mRNAs through a process known as back-splicing. Although circRNAs are expressed under specific conditions, current understanding of their comprehensive expression status is still limited. Here, we performed a large-scale circRNA profiling analysis in human pancreatic ductal adenocarcinoma (PDAC) tissues, using circular RNA-specific RNA sequencing. We identified more than 40,000 previously unknown circRNAs, some of which were upregulated in PDAC tissues, compared with normal pancreatic tissues. We determined the full-length sequence of a circRNA upregulated in PDAC, which was derived from two noncoding RNA loci on chromosome 12. The novel circRNA, named circPDAC RNA, was not expressed in normal human cells, but was expressed in PDAC and other carcinoma cells. While postulated biological functions, such as peptide production from the circPDAC RNA, were not detected, its aberrant expression was confirmed in other PDAC tissues and in serum from a PDAC patient. These results demonstrate that comprehensive studies are necessary to reveal the expression status of circRNAs and that the circPDAC RNA identified here might serve as a novel biomarker for cancers, including PDAC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors declare that all the data supporting the findings of this study are presented within the article or the supplementary information files, and are available upon reasonable request to the corresponding author. The RNA sequencing data have been deposited in the Sequence Read Archive database (http://www.ncbi.nlm.nih.gov/sra) under the accession code PRJNA591376.

References

  1. Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Clin Oncol. 2019;10:10–27.

    Article  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  Google Scholar 

  3. Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18:5–18.

    Article  CAS  Google Scholar 

  4. Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, Coffman EJ, et al. Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science. 2011;331:593–6.

    Article  CAS  Google Scholar 

  5. Anfossi S, Babayan A, Pantel K, Calin GA. Clinical utility of circulating non-coding RNAs—an update. Nat Rev Clin Oncol. 2018;15:541–63.

    Article  Google Scholar 

  6. Kishikawa T, Otsuka M, Yoshikawa T, Ohno M, Yamamoto K, Yamamoto N, et al. Quantitation of circulating satellite RNAs in pancreatic cancer patients. JCI Insight. 2016;1:e86646.

    Article  Google Scholar 

  7. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLOS ONE. 2012;7:e30733.

    Article  CAS  Google Scholar 

  8. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19:141–57.

    Article  CAS  Google Scholar 

  9. Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA. 2014;20:1666–70.

    Article  Google Scholar 

  10. Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Wu YM, et al. The landscape of circular RNA in cancer. Cell 2019;176:869–81.e13.

    Article  CAS  Google Scholar 

  11. Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32:453–61.

    Article  CAS  Google Scholar 

  12. Szabo L, Salzman J. Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev Genet. 2016;17:679–92.

    Article  CAS  Google Scholar 

  13. Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71:428–42.

    Article  CAS  Google Scholar 

  14. Ouyang H, Mou L, Luk C, Liu N, Karaskova J, Squire J, et al. Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am J Pathol. 2000;157:1623–31.

    Article  CAS  Google Scholar 

  15. Lee KM, Yasuda H, Hollingsworth MA, Ouellette MM. Notch 2-positive progenitors with the intrinsic ability to give rise to pancreatic ductal cells. Lab Investig. 2005;85:1003–12.

    Article  CAS  Google Scholar 

  16. Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, Li S, et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience. 2018;7:1–6.

    PubMed  PubMed Central  Google Scholar 

  17. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.

    Article  CAS  Google Scholar 

  18. Gao Y, Wang J, Zhao F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 2015;16:4.

    Article  CAS  Google Scholar 

  19. Gao Y, Zhang J, Zhao F. Circular RNA identification based on multiple seed matching. Brief Bioinform. 2018;19:803–10.

    Article  CAS  Google Scholar 

  20. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  Google Scholar 

  21. Ono Y, Sugitani A, Karasaki H, Ogata M, Nozaki R, Sasajima J, et al. An improved digital polymerase chain reaction protocol to capture low-copy KRAS mutations in plasma cell-free DNA by resolving ‘subsampling’ issues. Mol Oncol. 2017;11:1448–58.

    Article  CAS  Google Scholar 

  22. Bernard V, Kim DU, San Lucas FA, Castillo J, Allenson K, Mulu FC, et al. Circulating nucleic acids are associated with outcomes of patients with pancreatic cancer. Gastroenterology. 2019;156:108–18.e4.

    Article  CAS  Google Scholar 

  23. Kramer MC, Liang D, Tatomer DC, Gold B, March ZM, Cherry S, et al. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 2015;29:2168–82.

    Article  CAS  Google Scholar 

  24. Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2016;13:34–42.

    Article  Google Scholar 

  25. Fan C, Lei X, Fang Z, Jiang Q, Wu FX. CircR2Disease: a manually curated database for experimentally supported circular RNAs associated with various diseases. Database. 2018:1–6.

  26. Meng X, Hu D, Zhang P, Chen Q, Chen M. CircFunBase: a database for functional circular RNAs. Database. 2019:1–6.

  27. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8.

    Article  CAS  Google Scholar 

  28. Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7:11215.

    Article  CAS  Google Scholar 

  29. Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019;20:18.

    Article  CAS  Google Scholar 

  30. Zhao J, Lee EE, Kim J, Yang R, Chamseddin B, Ni C, et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun. 2019;10:2300.

    Article  Google Scholar 

  31. Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25:981–4.

    Article  CAS  Google Scholar 

  32. Yang F, Liu DY, Guo JT, Ge N, Zhu P, Liu X, et al. Circular RNA circ-LDLRAD3 as a biomarker in diagnosis of pancreatic cancer. World J Gastroenterol. 2017;23:8345–54.

    Article  CAS  Google Scholar 

  33. Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLOS ONE. 2015;10:e0141214.

    Article  Google Scholar 

  34. Li J, Li Z, Jiang P, Peng M, Zhang X, Chen K, et al. Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. J Exp Clin Cancer Res. 2018;37:177.

    Article  Google Scholar 

  35. Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 2017;357:eaam8526.

    Article  Google Scholar 

  36. Kleaveland B, Shi CY, Stefano J, Bartel DP. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell. 2018;174:350–62.e17.

    Article  CAS  Google Scholar 

  37. Kristensen LS, Hansen TB, Venø MT, Kjems J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene. 2018;37:555–65.

    Article  CAS  Google Scholar 

  38. Weng W, Wei Q, Toden S, Yoshida K, Nagasaka T, Fujiwara T, et al. Circular RNA ciRS-7-A promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin Cancer Res. 2017;23:3918–28.

    Article  CAS  Google Scholar 

  39. Tanaka E, Miyakawa Y, Kishikawa T, Seimiya T, Iwata T, Funato K, et al. Expression of circular RNA CDR1‑AS in colon cancer cells increases cell surface PD‑L1 protein levels. Oncol Rep. 2019;42:1459–66.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (#19H03430, #18H05024, and #19J11829) (to MO, MO, and KS), by The Translational Research program; Strategic promotion for practical application of innovative medical technology, TR-SPRINT, from the Japan Agency for Medical Research and Development, AMED (to MO), by the Project for Cancer Research And Therapeutic Evolution (P-CREATE) from AMED (to MO, #JP19cm0106602), and by the grants from Kobayashi Foundation for Cancer Research, All Japan Coffee Association, and Japan Foundation for Applied Enzymology (to MO).

Author information

Authors and Affiliations

Authors

Contributions

TS and MO designed the research. TS, TI, ET, KS, and CS performed majority of the experiments. MM and RN obtained clinical samples. TS, MO, and RM analyzed the data. TS, MO, and KK wrote the manuscript.

Corresponding author

Correspondence to Motoyuki Otsuka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seimiya, T., Otsuka, M., Iwata, T. et al. Aberrant expression of a novel circular RNA in pancreatic cancer. J Hum Genet 66, 181–191 (2021). https://doi.org/10.1038/s10038-020-00826-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-020-00826-5

This article is cited by

Search

Quick links