Developmental biology articles within Nature

Featured

  • Article |

    Pancreatic β-cells release insulin, which controls energy homeostasis in vertebrates, and its lack causes diabetes mellitus. The transcription factor neurogenin 3 (Neurog3) initiates differentiation of β-cells and other islet cell types from pancreatic endoderm; here, the transcription factor Rfx6 is shown to direct islet cell differentiation downstream of Neurog3 in mice and humans. This may be useful in efforts to generate β-cells for patients with diabetes.

    • Stuart B. Smith
    • , Hui-Qi Qu
    •  & Michael S. German
  • Letter |

    The transcription factor Tbx3 is shown to significantly improve the quality of induced pluripotent stem (iPS) cells. Tbx3 binding sites in embryonic stem cells are present in genes involved in pluripotency and reprogramming factors. Furthermore, there are intrinsic qualitative differences in iPS cells generated by different methods in terms of their pluripotency, thus highlighting the need to rigorously characterize iPS cells beyond in vitro studies.

    • Jianyong Han
    • , Ping Yuan
    •  & Bing Lim
  • Letter |

    Heterozygous mutations in the gene encoding CHD7, an ATP-dependent chromatin-remodelling protein, result in CHARGE syndrome — a disorder characterized by malformations of the craniofacial structures, peripheral nervous system, ears, eyes and heart. In humans and Xenopus, CHD7 is now shown to be essential for the formation of multipotent migratory neural crest and for activating the transcriptional circuitry of the neural crest; shedding light on the pathoembryology of CHARGE syndrome.

    • Ruchi Bajpai
    • , Denise A. Chen
    •  & Joanna Wysocka
  • Editorial |

    • Deepa Nath
    • , Ritu Dhand
    •  & Angela K. Eggleston
  • Article |

    Age-associated changes in stem cell supportive niche cells are shown to deregulate normal haematopoiesis by causing haematopoietic stem cell dysfunction. Age-dependent defects in niche cells are systemically regulated and can be reversed by exposure to a young circulation or by neutralization of the conserved longevity regulator, insulin-like growth factor-1, in the marrow microenvironment.

    • Shane R. Mayack
    • , Jennifer L. Shadrach
    •  & Amy J. Wagers
  • Article |

    Mouse and human fibroblasts can be reprogrammed to a pluripotent state with a combination of four transcription factors. Here, mature differentiated cells are directed, via a combination of a few transcription factors (distinct from those described for generating iPS cells), to form functional neurons in vitro, without having to revert the fibroblasts to an embryonic state.

    • Thomas Vierbuchen
    • , Austin Ostermeier
    •  & Marius Wernig
  • Letter |

    The extent of epigenetic reprogramming in mammalian primordial germ cells (PGCs) and in early embryos, and its molecular mechanisms, are poorly understood. DNA methylation profiling in PGCs now reveals a genome–wide erasure of methylation, with female PGCs being less methylated than male ones. A deficiency of the cytidine deaminase AID interferes with the genome–wide erasure of DNA methylation, indicating that AID has a critical function in epigenetic reprogramming.

    • Christian Popp
    • , Wendy Dean
    •  & Wolf Reik
  • Letter |

    Progenitor cells sustain the capacity of self-renewing tissues for proliferation while suppressing cell cycle exit and terminal differentiation. DNA methylation is one potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through cell divisions. The DNA methyltransferase 1 and other regulators of DNA methylation are now shown to be essential for epidermal progenitor cell function.

    • George L. Sen
    • , Jason A. Reuter
    •  & Paul A. Khavari
  • Letter |

    Immune homeostasis relies on tight control over the size of a population of regulatory T cells (Treg) that can suppress over-exuberant immune responses. Cells commit to the Treg lineage by upregulating the transcription factor Foxp3. Conserved non-coding DNA sequence elements at the Foxp3 locus are now shown to control the composition, size and maintenance of the Treg cell population.

    • Ye Zheng
    • , Steven Josefowicz
    •  & Alexander Y. Rudensky
  • Article |

    The differentiation of an embryonic stem cell (ESC) requires both suppression of the self-renewal process and activation of the specific differentiation pathway. The let-7 family of microRNAs (miRNAs) are now shown to suppress the self-renewal program in cells that are normally unable to silence this program, whereas introduction of ESC cell cycle regulating miRNAs blocks the action of let-7. Thus, the interplay between these two groups of miRNAs dictates cell fate.

    • Collin Melton
    • , Robert L. Judson
    •  & Robert Blelloch