
In molecular, cellular and developmental
biology, compact and elegant theories of the
sort familiar in physics are rare; rather,

explanations of phenomena are typically
couched in natural language narratives that
describe the interactions of large numbers of
distinct molecular entities. In this essay, we
define model as any representation of a system.
Models are usually made up of abstractions
that are easier to manipulate than the actual
system. We are concerned with models of cel-
lular processes whose internal descriptions
match the molecular mechanisms by which
those processes act. In particular, we are inter-
ested in models that incorporate knowable
quantities, including the number or amount
of different entities (for example, proteins,
transcripts or regulatory sites) and the rates at
which these entities react, and in which the
entities and reactions are governed by physical
laws. We define simulation as a representation
that embodies information contained in a
model, and that provides access to the model
by allowing computation of system behaviour.

To give an example of this usage, physicists
routinely use computer simulations to access
and elaborate predictions of the dominant
theoretical framework in high-energy
physics, the Standard Model. In the biological
examples we will discuss here, the informa-
tion that constitutes a model might be
described in words or systems of equations,
but the simulations that provide access to the
models will run on computers.

The models used in molecular, cellular and
developmental biology are typically heuristic.
They arise alongside the process of experiment
and are inseparable from it. Because they are
based on experiments in which perturbation
of system components has had observed
effects, the models typically contain embed-
ded knowledge of causality and of the passage
of time. In such models, time progresses from
one experimentally defined causal step to the
next (Fig. 1a, b). In the simulations discussed
here, time is absolute (Fig. 1c). 

Too ambitious, too soon
Past efforts to model behaviour of molecular
and cellular systems over absolute time 
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typically were qualitatively incomplete or
oversimplified compared to available knowl-
edge, and quantitatively incomplete in the
sense that key numbers were unknown. 
For example, even thoughtful, carefully 
constructed models posited the control of
embryonic and somatic cell proliferation by
a single cyclin whose degradation controlled
entry into mitosis1 after the existence of 
different cyclins that controlled progression
through different phases of the cell cycle was
established2. Models of circadian rhythms
based on known molecular entities3 were
immediately outgrown as new molecules
(for example, Clock and Cycle) were discov-
ered4. In general, such models did not result
in predictions of phenomena that biologists
perceived to be significant enough to 
warrant subsequent experimental effort.

An extreme example of the disjunction
between model and experiment is the study
of imagined networks of mutually activating
and repressing genes (or gene products) —
so-called ‘genetic regulatory networks’. Early
studies showed that relatively simple interac-
tions among network members could give
rise to surprisingly complicated behaviour
(ref. 5 and Fig. 2). However, by the early
1970s it was becoming apparent that few if
any living systems had complex regulatory
networks of this type, and that living systems
regulate their transitions from state to state
in other ways (see below). Although research
on these imagined networks continues to
this day, most biologists are either unaware
of the work or ignore it. 

But despite this history, we can now 
contemplate models of molecular, cellular
and developmental biological systems that
are coupled to experiment and result in
increased understanding. One reason for
optimism is that for some processes, enough
biology is now known to begin to constrain
useful models, and we can foresee obtaining
much of the rest.

Qualitative simulations
One computable representation we may
shortly expect to see is the so-called Biologi-
cal Information System (BIS). The term

comes by analogy to Geographical Informa-
tion Systems (GISs). BISs will extend current
databases by embodying largely qualitative
mechanistic knowledge. Over the next
decade, BISs are likely to develop further, to
encompass all known qualitative facts,
including the components, their interac-
tions and causal relationships for entire 
cellular subsystems and cells. The qualitative
relationships among the components of
such systems would be described by natural
language equivalents — a small group of
verbs defining permitted interactions. The
information contained in BISs will be used to
compute qualitative system behaviour over
small numbers of causal steps. Although
such computations will be only simple
manipulations of existing knowledge, they
will still be useful (see below). 

Quantitative models
Progress in computation
Quantitative models of cellular processes
often involve the representation of chemical
reactions for which reactant molecules are
scarce, and the continuous-variation
approximation of differential calculus
breaks down. Whereas in the 1950s the
advent of the digital computer allowed
numerical solution of large systems of differ-
ential equations, it was not until the 1970s
that stochastic methods6 were developed to
handle scarce reactants. During the 1990s
these methods began to be applied widely to
simulate biological systems7,8. Recently, the
efficiency of these methods has been
increased significantly9, so that the earlier
simulations8 can now be solved on desktop
machines instead of supercomputers. Fur-
ther reductions in computational cost will
come from ‘linking’ deterministic and sto-
chastic regimes (ref. 10 and D. T. Gillespie,
personal communication), and may come
from new methods that better handle large
numbers of coupled reactions.

The promise of these methods also
depends on increases in computing power.
For example, one can now use a Gibson-
modified Gillespie algorithm9 to execute 1010

reaction events per day on an 800-MHz 

Representations of cellular processes that can be used to compute 
their future behaviour would be of general scientific and practical value. 
But past attempts to construct such representations have been
disappointing. This is now changing. Increases in biological understanding
combined with advances in computational methods and in computer power
make it possible to foresee construction of useful and predictive simulations
of cellular processes.
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Pentium III processor. That is, a day on a 
current personal computer is sufficient to
simulate 100 minutes of a 100-reaction 
system in which each reaction occurs
~20,000 times per second. At such speeds, a
hypothetical simulation of Escherichia coli
that tracked 1014–1016 reaction events per cell
doubling (R.B. and D.E., unpublished data)
could now run on existing multiprocessor
computers11 and, perhaps, on the single
processors of 2020 (ref. 12). 

Need for more information
Before we can model cellular systems 
quantitatively, we first need to overcome
gaps in understanding. Even qualitative
understanding is incomplete. For example,
33% of phage l proteins and 45% of phage
T7 proteins remain uncharacterized 
(L. Thomason, personal communication),
but many of these probably contribute (at
least quantitatively) to system behaviour
under some conditions. In higher organ-
isms, for complex traits (for example, disease
susceptibility in humans and crop yield in
plants), more of the contributing proteins
remain unidentified and causal relationships
are less worked out. 

Second, we need to understand better the
physics of some intracellular phenomena. In
E. coli, for example, intracellular protein
concentration is 200–320 mg ml11 (ref. 13).
As biologists have long been aware13,14, these
high concentrations may well affect permit-
ted reactions and their rates. Consistent with
this idea, measurements of the diffusion of
the Aequorea victoria green fluorescent 
protein (GFP) in E. coli reveal an apparent
diffusion coefficient that is 11 times lower in
E. coli than in water15. The same experiments
also revealed that tagging GFP with a 
His6 moiety lowered its apparent diffusion
coefficient by another 40%, demonstrating
that the behaviour of this widely used 
protein in the cellular environment is not
well understood.

Third, even for biological systems in
which all the components are known, we 
seldom understand precisely how they 
interact to make the process work. For exam-
ple, the scaffold–kinase complex in one of
the yeast signal transduction pathways is
commonly thought of as a single protein
complex. But consider that the scaffold 
protein (Ste5) can itself form at least a dimer,
each monomer of which could form 
individual complexes with three different
kinases, which between them have at least
seven phosphorylation sites. These facts
indicate that there can be 25,666 unique
species that contain Ste5. Not only is this
more than the number of Ste5 molecules in
the cell (~5,000; ref. 16), but in principle
each different species could have different
quantitative or even qualitative functions. A
similar problem occurs with combinations
of regulatory proteins bound to complex
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gene-regulatory regions often found in
eukaryotes. Defining which species are
important, determining their qualitative
and quantitative function, and keeping 
track of them in models (ref. 17 and 
L. Lok, unpublished results) all present 
considerable observational and computa-
tional challenges. 

Fourth, we need to learn to make better
use of physics to constrain models, and to

define key experiments. At present, perhaps
the best examples come from studies of bac-
terial chemotaxis18. Consideration of process
physics has also aided the understanding of
other sensory systems. For example, animal
visual systems should ultimately be limited
in sensitivity by the rate at which the retinal
moiety of rhodopsin isomerizes as a result of
thermal noise, and experiments in fact reveal
that cold toads actually see better in dim light
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Figure 1 The lac operon of Escherichia coli. a, Qualitative model showing that without inducer, the
lac repressor binds to the operator and LacZ is repressed. b, Qualitative model showing that in the
presence of inducer, the lac repressor does not bind to the operator, lac operon mRNA is
transcribed, and LacZ protein is produced (Y and A proteins are not shown). c, Output of a single
run of a stochastic simulation based on this model. Note the fluctuation in number of lac repressor
molecules, which is due to variation in timing of individual synthesis and decay events. At time
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seconds and induced transcription begins, followed soon after by translation of lac mRNA and the
appearance of the first new LacZ proteins.
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than warm ones19. Other applications of
physics are less obvious. For instance, 
particular models of circadian rhythms are
sensitive to noise and, given variation in the
timing of reaction events, do not produce the
stable oscillations observed in nature20.
Thus, for circadian rhythms, consideration
of system function and likely process physics
helped to dismiss a particular class of 
models. Looking beyond these cases, it is
interesting to note that much of cell and
organismic biology can be understood as the
processing of information from the genome,
from internal events, and from external
events, by an amorphous ‘architecture’ of
diffusing molecular components. We can
thus hope that future developments in infor-
mation theory will provide broader insights
into biological function and help constrain
models and suggest experiments. 

Finally and most importantly, we need to
devise new experimental methods for
obtaining quantitative data about biological
processes. At the moment, we lack good
experimental means to determine: (1) the
absolute numbers of different molecular
species in populations of cells; (2) the num-
bers of these species in individual cells; 
(3) how those numbers vary among individ-
ual, genetically identical members of a 
population; (4) how those numbers vary
over time; and (5) the rates of the individual
reactions causing that variation. The 
development of methods for acquiring this
quantitative knowledge is one of the greatest
challenges for biology in the twenty-first
century21, one well beyond the scope of 
this essay.

Need to choose useful levels of resolution
Any model embodies a physical and logical
level of resolution. It seems likely that 
for many cellular and early embryonic
developmental processes, the appropriate
level of resolution is that of known proteins,
DNA regulatory sites, and so on. However,
in any given instance, an assumption that
those molecules are ‘localized’ to well-
mixed compartments may not be sufficient.
For example, the discovery that E. coli
MinC and MinD, proteins that suppress
septum formation and cytokinesis, are
localized to the poles, helped explain why
the cell normally divides in the middle22,23.
But the same experiments revealed the 
startling fact that individual protein 
molecules do not stay put. Molecules of
MinC and MinD translocate from one 
pole to the other over tens of seconds. 
The use of fluorescent fusion proteins (and
other methods) will surely reveal many
instances where spatial localization is
important for understanding process 
function. It is thus likely that future 
simulations will need to divide the cellular
milieu into individual voxels (volume 
elements) in which reactions occur.
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Future simulations will also need to allow
for transition among different levels of reso-
lution. A biologist might describe a protein
as a simple ellipsoid, then, in the next breath,
explain the effect of a point mutation by the
atomic-level structural changes it causes in
the active site. We can imagine a future simu-
lation of an intracellular signalling pathway
that ignored the shape and size of the indi-
vidual molecular components, except when
computing the effect of a kinase inhibitor
when specific atomic information would be
required about the interaction of the
inhibitor with an active site. Similarly, future
simulations of a cell (or groups of cells)
might treat individual signal transduction
pathways as parameterized modules, until
pathway-specific effects needed to be 
represented. By allowing transitions to the 
coarsest level of resolution needed to repre-
sent observed behaviour, future simulations
will use fewer computer cycles, and facilitate
the ability of researchers to comprehend and
interact with them.

Need to interact with experiment
Just as biological models were developed
through the comparison of model-based
predictions with experimental observa-
tions, so simulations of biological systems
will need to develop alongside of, and in 
comparison with, experiments. The level of
comparison will sometimes be qualitative.
For example, a simulation of T7 growth24

allowed the prediction that some
rearranged genomes should encode phage
that grow faster than wild type (a prediction
that for the single genome tested to 

date proved incorrect25). At other times the
level of comparison will be quantitative,
based on static endpoints. For example,
Kananyan et al.26 and Arkin et al.8 compared
the computed number of l phage that 
form lysogens as a function of multiplicity
of infection to experimental observations
of Kourilsky et al.27. In the future, the 
important level of comparison may 
frequently be quantitative, based on 
time-dependent behaviour. For example,
discrepancies between computed and
observed phage T7 protein synthesis rates
suggested that translation from some T7
messenger RNAs might be subject to nega-
tive regulation by an as-yet-unknown
mechanism (Fig. 3 and ref. 25). 

There are very few biological systems for
which complete quantitative models can be
constructed from existing information.
Because contemporary biologists have no
shortage of hypotheses they find worth 
pursuing, virtually all generated without
recourse to quantitative models, the infor-
mation needed to construct them will not
automatically be forthcoming. Thus, to be
successful, future modelling efforts will
probably need to direct and influence 
ongoing experiments.

Need to define model systems
Sometimes it will be easier to gather 
experimental data from simplified systems.
Consider the previously mentioned yeast
signal cascade. If there are 25,666 unique
protein complexes that contain Ste5, and it
is unknown which occur in vivo, and 
experimental determination of complex
existence is not easy, we might reduce the
number of unique complexes by fusing
individual protein monomers into 
chimaeras that retain biological function
(P. M. Pryciak, personal communication).
Simplified systems can even be constructed
from scratch. For example, several groups
have constructed simple genetic systems
using prokaryotic repressors. So far, the
synthetic systems constructed have been
relatively simple, with around a dozen
genetic components28,29. However, as the
ability to synthesize and assemble large
DNA fragments30 continues to increase
(and the cost of synthesis decreases), more
ambitious systems will be designed and
constructed.

Still, a good deal of information for 
quantitative models will be gathered from
non-simplified systems — cells and organ-
isms. The organisms and cell types may or
may not be well studied. But in this genomic
age, if it seems appropriate to develop a 
hitherto understudied organism into an
experimental system, we can at least hope to
bring about a basic level of understanding by
marshalling the full power of sequencing,
gene expression monitoring, large-scale
mapping of protein interactions, functional

Figure 2 Behaviour of a ‘genetic regulatory
network’. In this example, regulation comes
from cross-acting activators and repressors,
and each of the several hundred genes is
regulated by the products of two others.
Shown are transitions among the 30 stable
states of this network5. State transitions in
such networks show, for example, basins of
attraction and chaotic regimes42. In general,
living systems seem to use other mechanisms
to regulate their transitions from state to 
state (see text).
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analysis by transposon mutagenesis, 
deletion mutagenesis, and dominant 
protein-based approaches21.

Control of behaviour by genes
Figure 4 shows an eighteenth-century
orrery, a quantitative simulation of the
motion of the planets in the Solar System.
Although the observations on which the
simulation was based and the understanding
of the physical laws that governed its ele-
ments were, in retrospect, quite accurate, the
computed positions of the planets eventually
deviate from what is observed. Deviation
from observation is due both to imperfec-
tions in the clockwork, the brass rings and
gears, and to the fact that, over long periods
of time, the motion of the planets around the
Sun is chaotic31. Although perhaps not
chaotic, in biological systems (and 
simulations), too much depends on chance
interactions among small numbers of inter-
acting molecules to yield behaviour that is
completely determined over time. 

However, aspiring modellers can make
use of the fact that cells and organisms use a
number of genetic mechanisms to supple-
ment their highly imperfect biochemical
clockwork and keep their dynamic 
behaviour on track. First, biological systems
frequently go back to the genome, invoking
subprogrammes that reset them into new
states. Regulatory proteins, frequently gene
activators, initiate these genomic subpro-
grammes. For example, expression of MyoD
protein initiates a course of gene expression
that converts fibroblasts into myoblasts
(muscle precursors)32. Similarly, ectopic
expression of the Eyeless protein in the 
future leg, wing or antenna tissues of devel-
oping Drosophila melanogaster larvae
invokes a subprogramme that results in
(nonfunctional) eyes at the sites of Eyeless
expression33. Once initiated, progression
through any given process may rely on 
biochemical clockwork. But at some point
the subprogramme is completed, and pro-
gression to the next process presumably
requires invoking a new subprogramme.

Second, cells use checkpoint controls —
feedback mechanisms that prevent a
sequence of events from starting, and hold
the cell at the ‘checkpoint’ until the mecha-
nism receives a signal that a required
sequence of earlier events has in fact been
completed. Checkpoints are defined 
operationally, for example by mutations that
arrest progression of cellular systems at given
states. For example, in the yeast 
Saccharomyces cerevisiae, the checkpoint
protein Rad9 prevents cells with DNA dam-
age from attempting a new round of DNA
synthesis until the damage is repaired34. Both
genomic subprogrammes and checkpoint
controls punctuate the temporal transitions
of systems and provide the opportunity to
reset them to new starting states.

the development of BISs to contain it. Such
information systems will be good for more
than teaching and learning. Relatively simple
operations on (partly quantitative) informa-
tion in GISs now allow people to determine
driving directions and distance. By analogy,
consider an information system that embod-
ies known interactions and causal relation-
ships among proteins that regulate cell 
division, and which could use that knowl-
edge to enumerate those entities affected by
perturbing the activity of different members
of the protein network. Imagine a physician
performing cancer therapy in 2020 who is
looking at a listing of the changes in DNA
sequence, gene expression and proteins in an
individual tumour. The physician might use
this information together with a BIS to 
support decisions on whether the inhibition
of a particular protein kinase is likely to be
useful for treating that particular tumour.

Vetting information
Another consequence would be an increase
in the accuracy of biological information.
This increase arises naturally from the fact
that large-scale modelling efforts will require
the combining of information from many
different sources. Biology currently tests the
validity of qualitative conclusions from 
different laboratories by mechanisms that
range from peer-review to gossip. These are
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Third, cells and organisms use other, less
well understood mechanisms that coordi-
nate timing of biological events and place
dynamic system behaviour under more 
regulation than could be provided by 
biochemical clockwork alone. For example,
clk-1 mutants of the nematode Caenorhabdi-
tis elegans develop slowly at 15 7C, faster at 20
7C, and still faster at 25 7C. When two-cell
clk-1 embryos removed from 15 7C mothers
are shifted to 20 7C, they continue to develop
slowly, whereas two-cell embryos from 25 7C
mothers shifted to 20 7C continue to develop
rapidly35,36. This observation shows that —
beginning at a developmental stage before
transcription of the embryo’s own genes
starts — the tempo of development in the
wild-type worm is specified by a mechanism
that is in part temperature independent.
Construction of quantitative models can
only further focus experimental attention on
clk-1 and other mechanisms that govern the
timing of biological processes. Dedicated
mutant hunts and ‘protein genetic’ screens37

may reveal additional ways by which 
cells and organisms coordinate and regulate
their time-dependent behaviour and reset to
new states.

Consequences of success
The increasing amount of biological knowl-
edge will probably itself be sufficient to force
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fairly effective; for example, they were able to
demonstrate that not all ‘phage T7 labs’ were
actually studying T7 (ref. 38). However,
agreement on sets of quantitative informa-
tion (and on very large sets of qualitative
information) will probably require new ways
of checking the accuracy, consistency and
validity of that information. Making the
computable information, the models and
the simulations available to all scientists is
clearly part of the solution. Once a draft 
simulation is constructed, discrepancies
between computed and observed system
behaviour will suggest changes to the model
and new experiments. Done properly, pro-
viding access to simulations to large 
communities of biologists should accelerate
the process of biological discovery itself. 

Guiding intervention and therapy
Another consequence of success comes from
the fact that quantitative mechanism-based
models allow researchers to observe the
complete behaviour of a specified system
over time, and track all changes in its behav-
iour due to perturbations. It is easier to use a
model to search for perturbations that have
significant effects on system behaviour than
it is to perform similar experiments on 
the living system. In some systems, an exper-
imental search for sensitive components may
not be possible. Moreover, models allow the
search for multiple small perturbations that
produce large effects when combined. In

most experimental systems, this is usually
not possible. 

Such capabilities will be useful for drug
discovery and therapy. For example, quanti-
tative models would help identify target 
proteins that give rise to therapeutic effects
when partially inhibited. This alone would
allow the development of small-molecule
inhibitors that bind the target protein less
tightly, thereby reducing the time needed to
discover new drugs. Even more benefit may
come from identification of cases where
large changes in system behaviour could be
achieved by partial inhibition of multiple
protein targets. This would allow the identi-
fication of multiple targets that would 
permit the use of two or more drugs in small-
er amounts, potentially resulting in fewer
side effects. Models may also be useful in
regimes (for example, anticancer therapy) in
which drug concentration or amount of
inhibition is limited. For example, models
have been used to indicate that inhibition of
a particular ‘drug target’, gene 1 messenger
RNA of phage T7, has a paradoxical effect.
The encoded protein, gp1, downregulates its
own activity. Mutations in the messenger
RNA that decrease ‘drug’ binding result in
greater system inhibition39.

Improving biological design
Models should form the basis of tools to aid
in optimization of existing biological sys-
tems and design of new ones. Additionally,
quantitative models will enable engineers to
evolve biological systems by rounds of 
variation and selection for any function they
desire. Such model-based evolution may
complement existing organismic (for exam-
ple, crossing two strains) and molecular (for
example, mutagenesis using polymerase
chain reaction, or DNA shuffling) approach-
es40,41 that depend on sometimes clever but
often cumbersome selections and screens in
the real world. As mentioned above, by the
time computer-based optimization of living
systems is possible, it will also be possible to
fabricate large DNA sequences encoding the
successful solutions, and thus to transfer
successful designs from model to life. 

Enabling new scientific understanding 
Finally, mechanism-based models may
bring now-unforeseen benefits to scientific
understanding and capability. We have 
hinted at three of these. One comes from the
fact that current biological understanding
(and experimental methodology) does not
deal very well with the passage of absolute
time. The experiments needed to construct
quantitative models, and consideration of
those models, may help reveal mechanisms
and insights into ways living systems regulate
their temporal behaviour. A second comes
from the idea that many biological systems
can be described in terms of information
processing. Quantitative models will be

needed to gain any insights from 
this metaphor. A third comes from the fact
that mechanism-based models will be used
as design tools and should speed the rise of a
greatly heightened capability to engineer 
living systems. Although the lineaments of a
world in which biology is directed by 
human intention might be foreseeable, the
details of the changes to our selves and to 
our interaction with the living world cannot
be foreseen.
Drew Endy and Roger Brent are at the Molecular
Sciences Institute, 2168 Shattuck Avenue, Berkeley,
California 94704, USA. 
1. Tyson, J. J. Proc. Natl Acad. Sci. USA 88, 7328–7332 (1991).

2. Lehner, C. F. & O’Farrell, P. H. Cell 61, 535–547 (1990).

3. Leloup, J. C. & Goldbeter, A. J. Biol. Rhythms 13, 70–87 (1998).

4. Rutila, J. E. et al. Cell 93, 805–814. (1998).

5. Kauffman, S. A. J. Theor. Biol. 22, 437–467 (1969).

6. Gillespie, D. T. J. Comput. Phys. 22, 403–434 (1976).

7. McAdams, H. H. & Arkin, A. P. Proc. Natl Acad. Sci. USA 94,

814–819 (1997).

8. Arkin, A., Ross, J. & McAdams, H. H. Genetics 149, 1633–1648

(1998).

9. Gibson, M. A. & Bruck, J. J. Phys. Chem. 2104, 1876–1889 (2000).

10.Gillespie, D. T. J. Chem. Phys. 113, 297–306 (2000).

11.van der Steen, A. J. & Dongara, J. J. <www.top500.org/ORSC/>

(2000).

12.Hutcheson, G. D. & Hutcheson, J. D. Sci. Am. 54–62

(January 1996).

13.Cayley, S., Lewis, B. A., Guttman, H. J. & Record, M. T. J. Mol.

Biol. 222, 281–300 (1991).

14. Zimmerman, S. B. & Trach, S. O. J. Mol. Biol. 222, 599–620 (1991).

15.Elowitz, M. B., Surette, M. G., Wolf, P.-E., Stock, J. B. & Leibler,

S. J. Bacteriol. 181, 197–203 (1999).

16.Bardwell, L., Cook, J. G., Chang, E. C., Cairns, B. R. & Thorner,

J. Mol. Cell. Biol. 16, 3637–3650 (1996).

17. Morton-Firth, C. J. & Bray, D. J. Theor. Biol. 192, 117–128 (1998).

18.Block, S. M., Segall, J. E. & Berg, H. C. Cell 31, 215–26 (1982).

19.Aho, A.-C., Donner, K., Hyden, C., Larsen, L. O. & Reuter, T.

Nature 334, 348–350 (1988).

20.Barkai, N. & Leibler, S. Nature 403, 267–268 (2000).

21.Brent, R. Cell 100, 169–183 (2000).

22.Hu, Z. & Lutkenhaus, J. Mol. Microbiol. 34, 82–90 (1999).

23. Raskin, D. M. & de Boer, P. A. J. Bacteriol. 181, 6419–6424 (1999).

24. Endy, D., Kong, D. & Yin, J. Biotechnol. Bioeng. 55, 375–389 (1997).

25.Endy, D., Yu, L., Yin, J. & Molineaux, I. J. Proc. Natl Acad. Sci.

USA 97, 5375–5380 (2000).

26.Kananyan, G. Kh., Ratner, V. A. & Churaev, R. N. Genetika 16,

2209–2017 (1980).

27.Kourilsky, P. Mol. Gen. Genet. 122, 183–195 (1973).

28.Elowitz, M. B. & Leibler, S. Nature 403, 335–338 (2000).

29.Gardner, T., Cantor, C. R. & Collins, J. J. Nature 403,

339–342 (2000).

30.Yount, B., Curtis, K. M. & Baric, R. S. J. Virol. 74,

16000–10611 (2000).

31.Sussman, G. J. & Wisdom, J. Science 257, 56–62 (1992).

32.Davis, R. L., Weintraub, H. & Lassar, A. B. Cell 51, 987–1000

(1987).

33.Halder, G., Callaerts, P. & Gehring, W. J. Science 267,

1788–1792 (1995).

34.Weinart, T. A. & Hartwell. L. H. Science 241, 317–322 (1988).

35. Wong, A., Boutis, P. & Hekimi, S. Genetics 139, 1247–1259 (1995).

36. Branicky, R., Benard, C. & Hekimi, S. BioEssays 22, 48–56 (2000).

37.Colman-Lerner, A. & Brent, R. Trends Cell Biol. 56–60 (Suppl.

December 2000).

38.Studier, F. W. Virology 95, 70–84 (1979).

39.Endy, D. & Yin, J. Antimicrob. Agents Chemother. 44,

1097–1099 (2000).

40.Soong et al. Nature Genet. 25, 436–439 (2000).

41.Schmidt-Dannert, C., Umeno, D. & Arnold, F. H. Nature

Biotechnol. 18, 750–753 (2000).

42.Kauffman, S. A. The Origins of Order : Self-Organization and

Selection in Evolution (Oxford Univ. Press, 1993).

Acknowledgements. We thank R. Carlson, A. Colman-Lerner, 

D. Gillespie, M. Gruber, P. Pryciak, C. Kenyon, E. Kroll, E. Lyons,

L. Lok, I. J. Molineux, O. Resnekov, T. Roosevelt, L. Thomason, 

J. Yin and L. You for useful comments, discussions or unpublished

information. Work at TMSI is supported by grants to R.B. and D.E

from the NIH, DARPA and the Office of Naval Research.

insight feature

NATURE | VOL 409 | 18 JANUARY 2001 | www.nature.com 395

Figure 4 A simulation from 1773. Figure
shows the workings of the ‘Grand Orrery’, a
mechanical device that computes the
positions of planets and moons in the Solar
System (see http://www.nmsi.ac.uk/
collections/exhiblets/george3/gallery.htm).
Less than 80 years later, models of planetary
orbits were precise enough to demonstrate
that deviations in the path of Uranus from its
expected orbit could be accounted for by
positing the existence of a new planet, and to
tell astronomers where to point their
telescopes to find it. Thus, by the 1840s,
astronomical simulations were precise
enough to allow prediction of Neptune. By
contrast, during the 1990s no biological
model of circadian rhythm allowed prediction
of the regulatory proteins Cycle or Clock.
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