2.3% over the period 2006–14. Within individual medical faculties, the proportion of money going to surgical departments also fell. This is consistent with earlier studies showing that fewer surgeon-scientists apply for NIH grants and that those who do tend to be less successful than their medical colleagues in non-surgical disciplines (S. J. Rangel and R. L. Moss Surgery 136, 232–239; 2004).

The SUS report also looked at the number of abstracts submitted to the annual Academic Surgical Congress between 2011 and 2015, and found that the proportion relating to basic science fell by 24%.

What is behind this dismaying trend? In a survey conducted among academic surgeons in 2000, the majority of respondents reported a belief in the value of basic scientific research, even if they were finding that growing clinical and administrative duties hindered their success. But by the time of the SUS report, there had been a mood shift. Some 1,000 academic surgeons responded to a survey that the authors carried out. More than half said that basic research was a priority in their departments — but just one-third said that it was realistic to expect surgeons to succeed in basic research. Most respondents said they had neither the time nor the motivation for research, and in any case lacked adequate departmental support and funding. Nearly two-thirds believed that basic research among trainees should be limited to a select few residents with the ambition and talent to be successful in future research activities.

Non-surgical medical departments are not affected in the same way. This is probably because the time pressures on surgeons are even greater than those on other physicians. Surgeons are faced with the same increases in administrative duties as other medical-faculty members, but their clinical duties have grown faster. US hospitals depend increasingly on the income that surgeons generate — and have little motivation for encouraging them to spend time on research.

The flow of surgeons out of research is a problem that must be recognized and stopped. Translational medicine needs them too much. Transplantation and transplant immunology have always been dominated by surgeons, and these areas are set to embrace a future that includes regenerative medicine and possibly xenotransplantation (transplantation of tissues and organs from other species). They are also much needed for crucial research into surgically treated diseases that only rarely hit the headlines — particularly in the correction of congenital birth defects, but also in adult disorders that rely on surgical skills, such as pancreatic cancers.

Involvement in research also allows surgeons to develop rigour in their everyday work, and to judge — and so maintain and improve — the quality of the work done by their peers.

Policymakers must create a health-care environment in which hospitals have incentives to think of patient care as inevitably linked to science, and to stop seeing surgeons as easy sources of revenue. But that’s not going to happen any time soon. In the meantime, and at the very least, funding agencies should make it less burdensome for busy surgeons to apply for grants — and, in response, academic surgeons should apply more often, and thus increase their chances of success.

We have examined researchers’ opinions about metrics over recent months, and what matters to them when choosing where to submit their work. And in the second half of 2016, we carried out a survey of authors.

Some 985 authors from Nature Research and more than 2,500 from Springer Nature overall, who had published a research article during 2015–16, gave us their views, with the largest groups of respondents coming from Europe (47%), Asia and the Middle East (19%) and the United States (15%).

The survey showed a demand for publishers to provide more information about their journals: 85% of authors said that information on journal performance is important to them when deciding where to submit their work, but 48% thought that publishers did not provide enough. For junior researchers with less publishing experience, this information is particularly important.

The survey also revealed that authors were deeply interested in the quantitative and qualitative details of a journal’s peer-review process. Journal choice was influenced by these and other experiences, including interactions with journal editors, an understanding of a journal’s readership, and the overall reputation of a journal and its publisher. The survey did confirm that, despite knowledge of its limitations, the impact factor remains a key metric for researchers, although alternative metrics were considered by many to be as important for journal choice.

Since the survey, we have attempted to provide more-accessible information about what the different metrics mean, and about aspects of the peer-review process that researchers care about. The latter is particularly important, given that we employ some 300 professional editors dedicated to delivering efficient and robust peer review.

Accordingly, we have improved the Nature Research metrics page to provide extra information on median times for all the key stages of the submission-to-publication workflow. We’ve also created a new infographic with short, simple explanations of each of the metrics we now offer, which we’ve released under a CCBY licence so that anyone, anywhere, can use it.