Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aluminium(I) anion-supported zero-valent palladium complexes

Abstract

Monovalent group 13 element anions, such as boryl [BR2] and aluminyl [AlR2] anions, serve as nucleophiles to form diverse group 13 element-containing molecules. Although transition-metal complexes bearing group 13 ligands are accessible via salt metathesis with these anions, zero-valent transition-metal complexes have never been reported. In the present study, the synthesis, isolation and characterization of palladium complexes in the zero-oxidation state featuring one, two and three anionic aluminium ligands are reported. The Pd(0) complexes result from the ligand exchange reaction between bis(tri-tert-butylphosphoranyl)palladium and cyclic (alkyl)(amino)aluminium (CAAAl) anions. X-ray crystallographic and spectroscopic analyses, with the aid of quantum chemical calculations, disclose the highly negatively charged Pd centre, polarized Pd(δ)–Al(δ+) covalent bond, as well as the pronounced σ-donor and π-acceptor properties of the CAAAl ligand. Remarkably, 3K[Pd(0)(CAAAl)3] readily reacts with bis(pinacolato)diboron, leading to a bis(boryl)bis(aluminyl)Pd(II) complex via an unprecedented oxidative addition of the B–B bond to the Pd centre.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of TM-aluminyl complexes in +I and +III oxidation state generated from Al(I) anions and Pd(0) complexes from the present study.
Fig. 2: Synthesis and structures of compounds 2, 3 and 5.
Fig. 3: Bonding analysis of compounds 2′, 3′ and 5.
Fig. 4: Deformation density plots and energy decomposition.
Fig. 5: Reaction of 5 with B2pin2.
Fig. 6: Reaction of 5 with 1-AdCN.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre under deposition nos. CCDC 2266523 (2), 2266524 (3), 2266525 (5) and 2266526 (6) and 2297129 (7). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures. Additional synthetic methods, NMR spectra, IR data, single-crystal X-ray diffraction data and computational details are available in the Supplementary Information.

References

  1. Hartwig, J. Organotransition Metal Chemistry (University Science Books, 2010).

    Google Scholar 

  2. Takaya, J. Catalysis using transition metal complexes featuring main group metal and metalloid compounds as supporting ligands. Chem. Sci. 12, 1964–1981 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Takaya, J. & Iwasawa, N. Synthesis, structure, and catalysis of palladium complexes bearing a group 13 metalloligand: remarkable effect of an aluminum-metalloligand in hydrosilylation of CO2. J. Am. Chem. Soc. 139, 6074–6077 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Hara, N. et al. Rhodium complexes bearing PAlP pincer ligands. J. Am. Chem. Soc. 140, 7070–7073 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Fujii, I., Semba, K., Li, Q. Z., Sakaki, S. & Nakao, Y. Magnesiation of aryl fluorides catalyzed by a rhodium–aluminum complex. J. Am. Chem. Soc. 142, 11647–11652 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Morisako, S. et al. Synthesis of a pincer–Ir(V) complex with a base-free alumanyl ligand and its application toward the dehydrogenation of alkanes. Angew. Chem. Int. Ed. Engl. 58, 15031–15035 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion. Nature 557, 92–95 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. The aluminyl anion: a new generation of aluminium nucleophile. Angew. Chem. Int. Ed. Engl. 60, 1702–1713 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Coles, M. P. & Evans, M. J. The emerging chemistry of the aluminyl anion. Chem. Commun. 59, 503–519 (2023).

    Article  CAS  Google Scholar 

  10. Hobson, K., Carmalt, C. J. & Bakewell, C. Recent advances in low oxidation state aluminium chemistry. Chem. Sci. 11, 6942–6956 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hicks, J., Mansikkamaki, A., Vasko, P., Goicoechea, J. M. & Aldridge, S. A nucleophilic gold complex. Nat. Chem. 11, 237–241 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. McManus, C. et al. Coinage metal aluminyl complexes: probing regiochemistry and mechanism in the insertion and reduction of carbon dioxide. Chem. Sci. 12, 13458–13468 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roy, M. M. D. et al. Probing the extremes of covalency in M-Al bonds: lithium and zinc aluminyl compounds. Angew. Chem. Int. Ed. Engl. 60, 22301–22306 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, H. Y. et al. Ambiphilic Al–Cu bonding. Angew. Chem. Int. Ed. Engl. 60, 14390–14393 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, H. Y., Neale, S. E., Hill, M. S., Mahon, M. F. & McMullin, C. L. On the reactivity of Al-group 11 (Cu, Ag, Au) bonds. Dalton Trans. 51, 3913–3924 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Coles, M. P. et al. Isolating elusive ‘Al(μ-O)M’ intermediates in CO2 reduction by bimetallic Al–M complexes (M = Zn, Mg). Chem. Commun. 58, 10091–10094 (2022).

    Article  Google Scholar 

  17. Sugita, K. & Yamashita, M. An alumanylyttrium complex with an absorption due to a transition from the Al–Y bond to an unoccupied d-orbital. Chemistry 26, 4520–4523 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Feng, G., Chan, K. L., Lin, Z. & Yamashita, M. Al-Sc bonded complexes: synthesis, structure, and reaction with benzene in the presence of alkyl halide. J. Am. Chem. Soc. 144, 22662–22668 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Sheong, F. et al. Reactivity of unsupported transition metal-aluminyl complexes: a nucleophilic TM-Al bond. Inorg. Chem. 61, 10255–10262 (2022).

    Article  PubMed  Google Scholar 

  20. Buchin, B. et al. Synthesis and characterization of novel AlI compound Al(C5Me4Ph): comparison of the coordination chemistry of Al(C5Me5) and Al(C5Me4Ph) at d10 metal centers. Z. Anorg. Allg. Chem. 631, 2756–2762 (2005).

    Article  CAS  Google Scholar 

  21. Kempter, A., Gemel, C. & Fischer, R. A. The Al(I) bisimidinate Al(DDP) as a metalloid NHC type ligand for Pd(0) complexes and clusters. Chem. Commun. 14, 1551–1553 (2006).

    Article  Google Scholar 

  22. Kempter, A., Gemel, C. & Fischer, R. A. Pt(0) and Pd(0) olefin complexes of the metalloid N-heterocyclic carbene analogues [E(I)(ddp)] (ddp = 2-(2,6-diisopropylphenyl)amino-4-(2,6-diisopropylphenyl)imino-2-pentene; E = Al, Ga): ligand substitution, H–H and Si–H bond activation, and cluster formation. Chem. Eur. J. 13, 2990–3000 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Hooper, T. N., Garcon, M., White, A. J. P. & Crimmin, M. R. Room temperature catalytic carbon-hydrogen bond alumination of unactivated arenes: mechanism and selectivity. Chem. Sci. 9, 5435–5440 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brown, R. K. et al. Alumination of aryl methyl ethers: switching between sp2 and sp3 C–O bond functionalisation with Pd-catalysis. Chem. Commun. 57, 11673–11676 (2021).

    Article  CAS  Google Scholar 

  25. Zhang, L., Kaukver, S., McMullen, J., White, A. J. P. & Crimmin, M. R. Catalytic C–H aumination of thiophenes: DFT predictions and experimental verification. Organometallics 42, 1711–1716 (2023).

    Article  CAS  Google Scholar 

  26. Rekhroukh, F., Chen, W., Brown, R. K., White, A. J. P. & Crimmin, M. R. Palladium-catalysed C–F alumination of fluorobenzenes: mechanistic diversity and origin of selectivity. Chem. Sci. 11, 7842–7849 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hooper, T. N. et al. Catalyst control of selectivity in the C–O bond alumination of biomass derived furans. Chem. Sci. 11, 7850–7857 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gonzalez-Gallardo, S., Bollermann, T., Fischer, R. A. & Murugavel, R. Cyclopentadiene based low-valent group 13 metal compounds: ligands in coordination chemistry and link between metal rich molecules and intermetallic materials. Chem. Rev. 112, 3136–3170 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Asay, M., Jones, C. & Driess, M. N-Heterocyclic carbene analogues with low-valent group 13 and group 14 elements: syntheses, structures, and reactivities of a new generation of multitalented ligands. Chem. Rev. 111, 354–396 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, X. & Liu, L. L. A free aluminylene with diverse sigma-donating and doubly sigma/pi-accepting ligand features for transition metals*. Angew. Chem. Int. Ed. Engl. 60, 27062–27069 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Nagata, K., Agou, T. & Tokitoh, N. Syntheses and structures of terminal arylalumylene complexes. Angew. Chem. Int. Ed. Engl. 53, 3881–3884 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Yan, C. & Kinjo, R. A three-membered diazo-aluminum heterocycle to access an Al=C pi bonding species. Angew. Chem. Int. Ed. Engl. 61, e202211800 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Koshino, K. & Kinjo, R. Construction of σ-aromatic AlB2 ring via borane coupling with a dicoordinate cyclic (alkyl)(amino)aluminyl anion. J. Am. Chem. Soc. 142, 9057–9062 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Pyykko, P. & Atsumi, M. Molecular single-bond covalent radii for elements 1–118. Chemistry 15, 186–197 (2009).

    Article  PubMed  Google Scholar 

  35. Alvarez, S. A cartography of the van der Waals territories. Dalton Trans. 42, 8617–8636 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. Consistent van der Waals radii for the whole main group. J. Phys. Chem. A 113, 5806–5812 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bader, R. F. W. Atoms in molecules. Acc. Chem. Res. 18, 9–15 (1985).

    Article  CAS  Google Scholar 

  38. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  39. Mitoraj, M., Michalak, A. & Ziegler, T. A combined charge and energy decomposition scheme for bond analysis. J. Chem. Theory Comp. 5, 962–975 (2009).

    Article  CAS  Google Scholar 

  40. Ansell, M. B., Spencer, J. & Navarro, O. (N-Heterocyclic carbene)2-Pd(0)-catalyzed silaboration of internal and terminal alkynes: scope and mechanistic studies. ACS Catal. 6, 2192–2196 (2016).

    Article  CAS  Google Scholar 

  41. Takaya, J., Kirai, N. & Iwasawa, N. Efficient synthesis of diborylalkenes from alkenes and diboron by a new PSiP-pincer palladium-catalyzed dehydrogenative borylation. J. Am. Chem. Soc. 133, 12980–12983 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Kirai, N., Takaya, J. & Iwasawa, N. Two reversible sigma-bond metathesis pathways for boron–palladium bond formation: selective synthesis of isomeric five-coordinate borylpalladium complexes. J. Am. Chem. Soc. 135, 2493–2496 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Sakai, S. & Kikuno, T. Reaction of BX2–BX2 (X = H or OH) with M(PH3)2 (M = Pd or Pt). A theoretical study of the characteristic features. Inorg. Chem. 36, 226–229 (1997).

    Article  Google Scholar 

  44. Cui, Q., Musaev, D. G. & Morokuma, K. Why do Pt(PR3)2 complexes catalyze the alkyne diboration reaction, but their palladium analogues do not? A density functional study. Organometallics 17, 742–751 (1998).

    Article  CAS  Google Scholar 

  45. Burks, H. E., Liu, S. & Merken, J. P. Development, mechanism, and scope of the palladium-catalyzed enantioselective allene diboration. J. Am. Chem. Soc. 129, 8766–8773 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Matsuda, T. & Kirikae, H. Palladium-catalyzed hydrometalation and bismetalation of biphenylene. Organometallics 30, 3923–3925 (2011).

    Article  CAS  Google Scholar 

  47. Cummings, S. P., Le, T. N., Fernandez, G. E., Quiambao, L. G. & Stokes, B. J. Tetrahydroxydiboron-mediated palladium-catalyzed transfer hydrogenation and deuteration of alkenes and alkynes using water as the stoichiometric H or D atom donor. J. Am. Chem. Soc. 138, 6107–6110 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Wierschen, A. L., Lowe, J., Romano, N., Lee, S. J. & Gagné, M. R. Silylpalladium cations enable the cleavage of nitrile C–CN bonds. Organometallics 39, 1258–1268 (2020).

    Article  CAS  Google Scholar 

  49. Malatesta, L. Isocyanide complexes of metals. Prog. Inorg. Chem. 1, 283–379 (1959).

    CAS  Google Scholar 

  50. Samar, D., Fortin, J.-F., Fortin, D., Decken, A. & Harvey, P. D. The beauty and cmplexity of the mixed-ligand Pd(II)-containing monomer, oligomers and polymer built upon diphosphines and 1,8-diisocyano-p-menthane. J. Inorg. Organomet. Polym. Mater. 15, 411 (2006).

    Article  Google Scholar 

  51. Kundu, S., Brennessel, W. W. & Jones, W. D. Making M–CN bonds from M–Cl in (PONOP)M and (dippe)Ni systems (M = Ni, Pd, and Pt) using t-BuNC. Inorg. Chim. Acta 379, 109–114 (2011).

    Article  CAS  Google Scholar 

  52. Boyarskiy, V. P., Bokach, N. A., Luzyanin, K. V. & Kukushkin, V. Y. Metal-mediated and metal-catalyzed reactions of iocyanides. Chem. Rev. 115, 2698–2779 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Frisch M. J. et al. Gaussian 16, revision A.03 (Gaussian, 2016).

  54. Glendening E. D. et al. NBO v.7.0 (Theoretical Chemistry Institute, University of Wisconsin, 2013).

  55. Neese, F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 8, e1327 (2018).

    Article  Google Scholar 

  56. Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 152, 224108 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Keith, T. A. AIMAll v.19.10.12 (Overland Park KS, 2019).

Download references

Acknowledgements

R.K. acknowledges financial support from NTU, Nippon Shokubai and the Singapore Ministry of Education (MOET2EP10220-0002). R.K. thanks L. Yongxin (NTU) for assistance with the X-ray diffraction analysis.

Author information

Authors and Affiliations

Authors

Contributions

C.Y. and K.K. performed the synthetic experiments, analysed the data and performed the theoretical analyses. L.Z. assisted with the experimental and computational studies. C.Y. and K.K. contributed equally to the present study. R.K. conceived and supervised the project. C.Y., K.K. and R.K. wrote the manuscript.

Corresponding author

Correspondence to Rei Kinjo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Martyn Coles and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary Figs. 1–40 and Tables 1–18.

Supplementary Data 1

X-ray crystallographic data for compound 2, CCDC 2266523.

Supplementary Data 2

X-ray crystallographic data for compound 3, CCDC 2266524.

Supplementary Data 3

X-ray crystallographic data for compound 5, CCDC 2266525.

Supplementary Data 4

X-ray crystallographic data for compound 6, CCDC 2266526.

Supplementary Data 5

X-ray crystallographic data for compound 7, CCDC 2297129.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Koshino, K., Zhu, L. et al. Aluminium(I) anion-supported zero-valent palladium complexes. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00537-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00537-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing