Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heterogeneous electrosynthesis of C–N, C–S and C–P products using CO2 as a building block

Abstract

Electrochemical CO2 reduction (CO2R) provides a sustainable route to produce carbon-based fuels. This Review explores the expansion of the scope and impact of CO2R by coupling CO2 with heteroatomic co-reactants. The societal demand for C–X (C–N, C–S and C–P) bond-containing chemicals is evaluated, and current synthetic routes for C–X bonds are examined. Established routes for heteroatom coupling are then contrasted with electrosynthetic approaches that use CO2 as a building block, which are classified into three distinct categories: (1) surface–solution coupling, (2) co-reduction and (3) near-surface coupling. Within each category, key aspects of the catalyst, reactor and molecule-specific reactivity that enable the coupling pathway are examined. The Review is concluded with a forward-looking discussion of required developments in electrocatalytic chemistry and how computational tools may accelerate progress. Finally, we examine upcoming challenges in both system design and technoeconomics that need to be addressed as this technology matures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Technological pathways and societal demand for C–X products.
Fig. 2: Surface–solution coupling strategy.
Fig. 3: Overview of the co-reduction strategy to form C–X bonds.
Fig. 4: Near-surface coupling synthetic route for C–X bonds.
Fig. 5: Possibilities for scope expansion.
Fig. 6: Precursors, possible pre-coupling intermediates, and their pathways towards C–N coupling.
Fig. 7: Electrochemical cell configurations for C–X coupling reactions.
Fig. 8: TEA analysis.

Similar content being viewed by others

Data availability

All relevant data are published with the manuscript.

References

  1. McGlade, C. & Ekins, P. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. Nature 517, 187–190 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. IPCC. Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2015).

  3. Schiffer, Z. J. & Manthiram, K. Electrification and decarbonization of the chemical industry. Joule 1, 10–14 (2017).

    Article  Google Scholar 

  4. Welsby, D., Price, J., Pye, S. & Ekins, P. Unextractable fossil fuels in a 1.5 °C world. Nature 597, 230–234 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. IPCC. Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 1454, 147 (Cambridge Univ. Press, 2014).

  6. Xia, R., Overa, S. & Jiao, F. Emerging electrochemical processes to decarbonize the chemical industry. JACS Au. 2, 1054–1070 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fujii, H. & Managi, S. Economic development and multiple air pollutant emissions from the industrial sector. Environ. Sci. Pollut. Res. 23, 2802–2812 (2016).

    Article  CAS  Google Scholar 

  8. Lagadec, M. F. & Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 19, 1140–1150 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Masel, R. I. et al. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 16, 118–128 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Lin, R., Guo, J., Li, X., Patel, P. & Seifitokaldani, A. Electrochemical reactors for CO2 conversion. Catalysts 10, 473 (2020).

    Article  CAS  Google Scholar 

  11. Bistline, J. E. T. & Blanford, G. J. The role of the power sector in net-zero energy systems. Energy Clim. Change 2, 100045 (2021).

    Article  CAS  Google Scholar 

  12. DeAngelo, J. et al. Energy systems in scenarios at net-zero CO2 emissions. Nat. Commun. 12, 6096 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bogdanov, D. et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 227, 120467 (2021).

    Article  Google Scholar 

  14. Smith, C., Hill, A. K. & Torrente-Murciano, L. Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13, 331–344 (2020).

    Article  Google Scholar 

  15. Wyndorps, J., Ostovari, H. & von der Assen, N. Is electrochemical CO2 reduction the future technology for power-to-chemicals? An environmental comparison with H2-based pathways. Sustain. Energy Fuels 5, 5748–5761 (2021).

    Article  CAS  Google Scholar 

  16. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  PubMed  Google Scholar 

  17. Shin, H., Hansen, K. U. & Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 4, 911–919 (2021).

    Article  Google Scholar 

  18. Wesseh, P. K. & Lin, B. Optimal emission taxes for full internalization of environmental externalities. J. Cleaner Prod. 137, 871–877 (2016).

    Article  Google Scholar 

  19. Somoza-Tornos, A., Guerra, O. J., Crow, A. M., Smith, W. A. & Hodge, B.-M. Process modeling, techno-economic assessment, and life cycle assessment of the electrochemical reduction of CO2: a review. iScience 24, 102813 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ehlers, J. C., Feidenhans’l, A. A., Therkildsen, K. T. & Larrazábal, G. O. Affordable green hydrogen from alkaline water electrolysis: key research needs from an industrial perspective. ACS Energy Lett 8, 1502–1509 (2023).

    Article  CAS  Google Scholar 

  21. Stephens, I. E. et al. 2022 roadmap on low temperature electrochemical CO2 reduction. J. Phys. Energy 4, 042003 (2022).

    Article  CAS  Google Scholar 

  22. Global Production of Urea 2020, by Region (Statista Research Department, 2023).

  23. Li, J., Zhang, Y., Kuruvinashetti, K. & Kornienko, N. Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 6, 303–319 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Westhead, O. et al. Near ambient N2 fixation on solid electrodes versus enzymes and homogeneous catalysts. Nat. Rev. Chem. 7, 184–201 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, M. et al. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes? Energy Environ. Sci. 14, 2535–2548 (2021).

    Article  CAS  Google Scholar 

  26. Bushuyev, O. S. et al. What should we make with CO2and how can we make it? Joule 2, 825–832 (2018).

    Article  CAS  Google Scholar 

  27. Greenblatt, J. B., Miller, D. J., Ager, J. W., Houle, F. A. & Sharp, I. D. The technical and energetic challenges of separating (photo)electrochemical carbon dioxide reduction products. Joule 2, 381–420 (2018).

    Article  CAS  Google Scholar 

  28. Bulk Chemicals/Urea Market (Fortune Business Insights, 2022).

  29. Amines Market (Market Research Future, 2022).

  30. Acrylonitrile Market Size, Share & Trends Analysis Report, 2030 (Grand View Research, 2022).

  31. Dimethylformamide (DMF) Market (Markets and Markets, 2022).

  32. Glycine Market Outlook (2022–2032) (Future Market Insights, 2022).

  33. Formamide Market – Forecast (2023–2028) (Industry ARC, 2022).

  34. Appl, M. in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, 2011).

  35. Zhang, H., Sun, Z. & Hu, Y. H. Steam reforming of methane: current states of catalyst design and process upgrading. Renew. Sustain. Energy Rev. 149, 111330 (2021).

    Article  CAS  Google Scholar 

  36. Irrgang, T. & Kempe, R. Transition-metal-catalyzed reductive amination employing hydrogen. Chem. Rev. 120, 9583–9674 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Bähn, S. et al. The catalytic amination of alcohols. ChemCatChem 3, 1853–1864 (2011).

    Article  Google Scholar 

  38. Weissermel, K. & Arpe, H.-J. Industrial Organic Chemistry (Wiley, 2008).

  39. Goddard, W. A., Chenoweth, K., Pudar, S., van Duin, A. C. T. & Cheng, M.-J. Structures, mechanisms and kinetics of selective ammoxidation and oxidation of propane over multi-metal oxide catalysts. Top. Catal. 50, 2–18 (2008).

    Article  CAS  Google Scholar 

  40. Meessen, J. & Petersen, H. in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2012).

  41. van Langevelde, P. H., Katsounaros, I. & Koper, M. T. M. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 5, 290–294 (2021).

    Article  Google Scholar 

  42. Organosulfur Compounds Market Report – Global Forecast From 2022 To 2030 (Data Intelo, 2022).

  43. Global Sulphonates Market – Industry Trends and Forecast to 2029 (Data Bridge Market Research, 2022).

  44. Methane Sulfonic Acid Market Snapshop (Future Market Insights, 2022).

  45. Global Methyl Mercaptan Market Outlook (Expert Market Research, 2022).

  46. Dimethyl Sulfoxide (DMSO): Global Strategic Business Report. Report No. 338647 (Global Industry Analysts, Inc., 2023).

  47. Eckroth, D., Grayson, M., Kirk, R. E. & Othmer, D. F. Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, 1978).

  48. Roy, K.-M. in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2000).

  49. Glyphosate Market (Transparency Market Research, 2022); https://www.transparencymarketresearch.com/glyphosate-market.html

  50. Phosphinates (hypophosphites) and Phosphonates (phosphites) (Observatory of Economic Complexity, 2020).

  51. Phosphate Ester Market. Report No. CH 4050 (Markets and Markets, 2017).

  52. Phosphonates: Global Strategic Business Report (Global Industry Analysts, 2022).

  53. Global Organophosphate Market – Industry Trends and Forecast to 2029 (Data Bridge Market Research, 2022).

  54. Ung, S. P. M. & Li, C.-J. From rocks to bioactive compounds: a journey through the global P(V) organophosphorus industry and its sustainability. RSC Sustain. 1, 11–37 (2023).

    Article  CAS  Google Scholar 

  55. Svara, J., Weferling, N. & Hofmann, T. in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2006).

  56. Geeson, M. B. & Cummins, C. C. Let’s make white phosphorus obsolete. ACS Cent. Sci. 6, 848–860 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Article  CAS  Google Scholar 

  58. Jouny, M. et al. Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 11, 846–851 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Li, J. & Kornienko, N. Electrochemically driven C–N bond formation from CO2 and ammonia at the triple-phase boundary. Chem. Sci. 13, 3957–3964 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meng, N. et al. Electrosynthesis of formamide from methanol and ammonia under ambient conditions. Nat. Commun. 13, 5452 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fang, Y. et al. Synthesis of amino acids by electrocatalytic reduction of CO2 on chiral Cu surfaces. Chem 9, 460–471 (2023).

    Article  CAS  Google Scholar 

  62. Kornienko, N., Li, J., Al-Mahayni, H., Chartrand, D. & Seifitokaldani, A. Electrochemical formation of C–S bonds from CO2 and small molecule sulfur species. Nat. Synth 2, 757–765 (2023).

    Article  Google Scholar 

  63. Chen, C. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12, 717–724 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Yuan, M. et al. Highly selective electroreduction of N2 and CO2 to urea over artificial frustrated Lewis pairs. Energy Environ. Sci. 14, 6605–6615 (2021).

    Article  CAS  Google Scholar 

  65. Yuan, M. et al. Artificial frustrated Lewis pairs facilitating the electrochemical N2 and CO2 conversion to urea. Chem. Catal. 2, 309–320 (2022).

    Article  CAS  Google Scholar 

  66. Yuan, M. et al. Electrochemical C-N coupling with perovskite hybrids toward efficient urea synthesis. Chem. Sci. 12, 6048–6058 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yuan, M. et al. Unveiling electrochemical urea synthesis by co-activation of CO2 and N2 with Mott-Schottky heterostructure catalysts. Angew. Chem. Int. Ed. 60, 10910–10918 (2021).

    Article  CAS  Google Scholar 

  68. Lv, C. et al. Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nat. Sustain. 4, 868–876 (2021).

    Article  Google Scholar 

  69. Meng, N., Huang, Y., Liu, Y., Yu, Y. & Zhang, B. Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets. Cell Rep. Phys. Sci. 2, 100378 (2021).

    Article  CAS  Google Scholar 

  70. Wei, X. et al. Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis. Adv. Mater. 35, 2300020 (2023).

    Article  CAS  Google Scholar 

  71. Cao, N. et al. Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. J. Colloid Interface Sci. 577, 109–114 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Guo, C. et al. Electrochemical upgrading of formic acid to formamide via coupling nitrite co-reduction. J. Am. Chem. Soc. 144, 16006–16011 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, Y. et al. Oxy-reductive CN bond formation via pulsed electrolysis. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/6397d6bb0a81274bb9df4b8d (2022).

  74. Merritt, M. V. & Sawyer, D. T. Electrochemical reduction of elemental sulfur in aprotic solvents. Formation of a stable S8 species. Inorg. Chem. 9, 211–215 (1970).

    Article  CAS  Google Scholar 

  75. Laudadio, G. et al. An environmentally benign and selective electrochemical oxidation of sulfides and thiols in a continuous-flow microreactor. Green Chem. 19, 4061–4066 (2017).

    Article  CAS  Google Scholar 

  76. Wu, Y., Jiang, Z., Lin, Z., Liang, Y. & Wang, H. Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat. Sustain. 4, 725–730 (2021).

    Article  Google Scholar 

  77. Rooney, C. L., Wu, Y., Tao, Z. & Wang, H. Electrochemical reductive N-methylation with CO2 enabled by a molecular catalyst. J. Am. Chem. Soc. 143, 19983–19991 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Tao, Z. et al. Cascade electrocatalytic reduction of carbon dioxide and nitrate to ethylamine. J. Energy Chem. 65, 367–370 (2022).

    Article  CAS  Google Scholar 

  79. Zhang, X. et al. Direct electro-synthesis of valuable C=N compound from NO. Chem Catal. 2, 1807–1818 (2022).

    Article  CAS  Google Scholar 

  80. Kim, J. E. et al. Electrochemical synthesis of glycine from oxalic acid and nitrate. Angew. Chem. Int. Ed. 60, 21943–21951 (2021).

    Article  CAS  Google Scholar 

  81. Britschgi, J., Kersten, W., Waldvogel, S. R. & Schüth, F. Electrochemically initiated synthesis of methanesulfonic acid. Angew. Chem. Int. Ed. 61, e202209591 (2022).

    Article  CAS  Google Scholar 

  82. Savateev, A., Kurpil, B., Mishchenko, A., Zhang, G. & Antonietti, M. A ‘waiting’ carbon nitride radical anion: a charge storage material and key intermediate in direct C–H thiolation of methylarenes using elemental sulfur as the ‘S’-source. Chem. Sci. 9, 3584–3591 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kurpil, B., Kumru, B., Heil, T., Antonietti, M. & Savateev, A. Carbon nitride creates thioamides in high yields by the photocatalytic Kindler reaction. Green Chem. 20, 838–842 (2018).

    Article  CAS  Google Scholar 

  84. Long, H. et al. Electrochemical C–H phosphorylation of arenes in continuous flow suitable for late-stage functionalization. Nat. Commun. 12, 6629 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ollivier, A., Sengmany, S., Rey, M., Martens, T. & Léonel, E. Direct phosphonylation of N-carbamate-tetrahydroisoquinoline by convergent paired electrolysis. Synlett 31, 1191–1196 (2020).

    Article  CAS  Google Scholar 

  86. Dunbar, K. L., Scharf, D. H., Litomska, A. & Hertweck, C. Enzymatic carbon-sulfur bond formation in natural product biosynthesis. Chem. Rev. 117, 5521–5577 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Huang, Z. et al. Radical-radical cross-coupling for C-S bond formation. Org. Lett. 18, 2351–2354 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Li, D. et al. Electrochemical oxidative C-H/S-H cross-coupling between enamines and thiophenols with H2 evolution. Chem. Sci. 10, 2791–2795 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chawla, R. & Yadav, L. D. S. Organic photoredox catalysis enabled cross-coupling of arenediazonium and sulfinate salts: synthesis of (un)symmetrical diaryl/alkyl aryl sulfones. Org. Biomol. Chem. 17, 4761–4766 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Wang, X., Cuny, G. D. & Noël, T. A mild, one-pot Stadler-Ziegler synthesis of arylsulfides facilitated by photoredox catalysis in batch and continuous-flow. Angew. Chem. Int. Ed. 52, 7860–7864 (2013).

    Article  CAS  Google Scholar 

  91. Montchamp, J.-L. Phosphinate chemistry in the 21st century: a viable alternative to the use of phosphorus trichloride in organophosphorus synthesis. Acc. Chem. Res. 47, 77–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Budnikova, Y. H., Dolengovsky, E. L., Tarasov, M. V. & Gryaznova, T. V. Recent advances in electrochemical C-H phosphorylation. Front. Chem. 10, 1054116 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cai, B.-G., Xuan, J. & Xiao, W.-J. Visible light-mediated CP bond formation reactions. Sci. Bull. 64, 337–350 (2019).

    Article  CAS  Google Scholar 

  94. Elias, J. S., Costentin, C. & Nocera, D. G. Direct electrochemical P(V) to P(III) reduction of phosphine oxide facilitated by triaryl borates. J. Am. Chem. Soc. 140, 13711–13718 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Melville, J. F., Licini, A. J. & Surendranath, Y. Electrolytic synthesis of white phosphorus is promoted in oxide-deficient molten salts. ACS Cent. Sci 9, 373–380 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ramos-Figueroa, J. S., Palmer, D. R. J. & Horsman, G. P. Phosphoenolpyruvate mutase-catalyzed C-P bond formation: mechanistic ambiguities and opportunities. ChemBioChem 23, e202200285 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Brotzel, F., Chu, Y. C. & Mayr, H. Nucleophilicities of primary and secondary amines in water. J. Org. Chem. 72, 3679–3688 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Jaramillo, P., Pérez, P., Contreras, R., Tiznado, W. & Fuentealba, P. Definition of a nucleophilicity scale. J. Phys. Chem. A 110, 8181–8187 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Minegishi, S. & Mayr, H. How constant are Ritchie’s ‘constant selectivity relationships’? A general reactivity scale for n-, π- and σ-nucleophiles. J. Am. Chem. Soc. 125, 286–295 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Armstrong, D. A. et al. Standard electrode potentials involving radicals in aqueous solution: inorganic radicals (IUPAC Technical Report). Pure Appl. Chem. 87, 1139–1150 (2015).

    Article  CAS  Google Scholar 

  101. Fallmann, H. & Grogger, C. in Organosilicon Chemistry IV (eds Auner, N. & Weis, J.) 229–231 (Wiley, 2000).

  102. Yoshida, J., Muraki, K., Funahashi, H. & Kawabata, N. Electrochemical synthesis of organosilicon compounds. J. Org. Chem. 51, 3996–4000 (1986).

    Article  CAS  Google Scholar 

  103. Beck, A. D., Haufe, S. & Waldvogel, S. R. Boron-catalyzed electrochemical Si-C bond formation for safe and controllable benzylation and allylation of hydrosilanes. ChemElectroChem 9, e202200840 (2022).

    Article  CAS  Google Scholar 

  104. Chen, H., Zhu, C., Yue, H. & Rueping, M. Carbon-germanium bond formation via low-valent cobalt-catalyzed cross-electrophile coupling. ACS Catal. 13, 6773–6780 (2023).

    Article  CAS  Google Scholar 

  105. Simons, J. H. Production of fluorocarbons: I. The generalized procedure and its use with nitrogen compounds. J. Electrochem. Soc. 95, 47 (1949).

    Article  CAS  Google Scholar 

  106. Nørskov, J. K., Abild-Pedersen, F., Studt, F. & Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl Acad. Sci. USA 108, 937–943 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    Article  CAS  Google Scholar 

  108. Yang, G.-L. et al. Gaseous CO2 coupling with N-containing intermediates for key C-N bond formation during urea production from coelectrolysis over Cu. ACS Catal. 12, 11494–11504 (2022).

    Article  CAS  Google Scholar 

  109. Huang, Y. et al. Direct electrosynthesis of urea from carbon dioxide and nitric oxide. ACS Energy Lett. 7, 284–291 (2021).

    Article  Google Scholar 

  110. Wang, X. et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. Nat. Energy 7, 170–176 (2022).

    Article  Google Scholar 

  111. Xie, Y. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 5, 564–570 (2022).

    Article  CAS  Google Scholar 

  112. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Christopher, P. Surface-mediated processes for energy production and conversion: critical considerations in model system design for DFT calculations. ACS Energy Lett. 3, 3015–3016 (2018).

    Article  CAS  Google Scholar 

  114. Resasco, J. et al. Enhancing the connection between computation and experiments in electrocatalysis. Nat. Catal. 5, 374–381 (2022).

    Article  Google Scholar 

  115. Nguyen, T. N. & Dinh, C.-T. Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chem. Soc. Rev. 49, 7488–7504 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Meng, N. et al. Oxide-derived core-shell Cu@Zn nanowires for urea electrosynthesis from carbon dioxide and nitrate in water. ACS Nano 16, 9095–9104 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Geng, J. et al. Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites. Angew. Chem. Int. Ed. 62, e202210958 (2023).

    Article  CAS  Google Scholar 

  118. Obasanjo, C. A. et al. High-rate and selective conversion of CO2 from aqueous solutions to hydrocarbons. Nat. Commun. 14, 3176 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Prajapati, A. et al. CO2-free high-purity ethylene from electroreduction of CO2 with 4% solar-to-ethylene and 10% solar-to-carbon efficiencies. Cell Rep. Phys. Sci. 3, 101053 (2022).

    Article  CAS  Google Scholar 

  120. Kibria, M. G. et al. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv. Mater. 31, 1807166 (2019).

    Article  Google Scholar 

  121. Ge, L. et al. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 8, 663–692 (2022).

    Article  CAS  Google Scholar 

  122. Salvatore, D. A. et al. Designing anion exchange membranes for CO2 electrolysers. Nat. Energy 6, 339–348 (2021).

    Article  CAS  Google Scholar 

  123. Wang, X. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 5, 478–486 (2020).

    Article  CAS  Google Scholar 

  124. Li, Y. C. et al. Bipolar membranes inhibit product crossover in CO2 electrolysis cells. Adv. Sustain. Syst. 2, 1700187 (2018).

    Article  Google Scholar 

  125. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. O’Brien, C. P. et al. Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration. ACS Energy Lett. 6, 2952–2959 (2021).

    Article  Google Scholar 

  127. Xie, K. et al. Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products. Nat. Commun. 13, 3609 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).

    Article  CAS  Google Scholar 

  129. Kim, J. Y. T. et al. Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nat. Catal. 5, 288–299 (2022).

    Article  CAS  Google Scholar 

  130. König, M., Vaes, J., Klemm, E. & Pant, D. Solvents and supporting electrolytes in the electrocatalytic reduction of CO2. iScience 19, 135–160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Chu, A. T. & Surendranath, Y. Aprotic solvent exposes an altered mechanism for copper-catalyzed ethylene electrosynthesis. J. Am. Chem. Soc. 144, 5359–5365 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Shao, J. et al. Scalable electrosynthesis of formamide through C-N coupling at the industrially relevant current density of 120 mA cm−2. Angew. Chem. Int. Ed. 134, e202213009 (2022).

    Article  Google Scholar 

  133. Sisler, J. et al. Ethylene electrosynthesis: a comparative techno-economic analysis of alkaline vs membrane electrode assembly vs CO2-CO-C2H4 tandems. ACS Energy Lett. 6, 997–1002 (2021).

    Article  CAS  Google Scholar 

  134. Lan, J. et al. Efficient electrosynthesis of formamide from carbon monoxide and nitrite on a Ru-dispersed Cu nanocluster catalyst. Nat. Commun. 14, 2870 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Luo, Y. et al. Selective electrochemical synthesis of urea from nitrate and CO2 via relay catalysis on hybrid catalysts. Nat. Catal. 6, 939–948 (2023).

    Article  CAS  Google Scholar 

  136. Lee, M. G. et al. Selective synthesis of butane from carbon monoxide using cascade electrolysis and thermocatalysis at ambient conditions. Nat. Catal. 6, 310–318 (2023).

    Article  CAS  Google Scholar 

  137. Spurgeon, J. M. & Kumar, B. A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 11, 1536–1551 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.K., J.L., M.M., H.B. and Y.Z. acknowledge NSERC for a Discovery Grant (RGPIN-2019-05927). A.S. and H.H. acknowledge NSERC for a Discovery Grant (RGPIN-2020-04960) and the Canada Research Chair (950-23288). G.G. acknowledges financial support from Queen’s University (Canada). C.-T.D. acknowledges financial support from NSERC, the Canada Foundation for Innovation (CFI) and Queen’s University.

Author information

Authors and Affiliations

Authors

Contributions

J.L., Y.Z., M.M., H.B. and N.K. analysed the chemical aspects. A.S. and H.H. provided insight into DFT, TEA and LCA. G.G. and C.-T.D. overviewed the systems section and helped with TEA. All authors provided input on the complete manuscript.

Corresponding authors

Correspondence to Cao-Thang Dinh, Ali Seifitokaldani or Nikolay Kornienko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Shaojun Guo, Hailiang Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Table 1 and TEA modelling,

Supplementary Data

Data for sensitivity analysis

Source data

Source Data Fig. 8

TEA modelling for formamide (8a), acetamide (8b), urea (8c), breakdown of production cost of chemicals (8d)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Heidarpour, H., Gao, G. et al. Heterogeneous electrosynthesis of C–N, C–S and C–P products using CO2 as a building block. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00530-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00530-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing