Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy

Abstract

Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antitumor mechanisms of OVs.
Fig. 2: OV-aided cancer–immunity cycle.
Fig. 3: Steps within the pipeline for OV technology development.

Similar content being viewed by others

References

  1. Gujar, S., Bell, J. & Diallo, J.-S. SnapShot: cancer immunotherapy with oncolytic viruses. Cell 176, 1240–1240.e1 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Russell, S. J., Bell, J. C., Engeland, C. E. & McFadden, G. Advances in oncolytic virotherapy. Commun. Med. 2, 33 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Melcher, A., Harrington, K. & Vile, R. Oncolytic virotherapy as immunotherapy. Science 374, 1325–1326 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lawler, S. E., Speranza, M.-C., Cho, C.-F. & Chiocca, E. A. Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 3, 841–849 (2017).

    Article  PubMed  Google Scholar 

  5. Shalhout, S. Z., Miller, D. M., Emerick, K. S. & Kaufman, H. L. Therapy with oncolytic viruses: progress and challenges. Nat. Rev. Clin. Oncol. 20, 160–177 (2023).

    Article  PubMed  Google Scholar 

  6. Azad, T. et al. Synthetic virology approaches to improve the safety and efficacy of oncolytic virus therapies. Nat. Commun. 14, 3035 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bluming, A. Z. & Ziegler, J. L. Regression of Burkitt’s lymphoma in association with measles infection. Lancet 2, 105–106 (1971).

    Article  CAS  PubMed  Google Scholar 

  8. Pasquinucci, G. Possible effect of measles on leukaemia. Lancet 1, 136 (1971).

    Article  CAS  PubMed  Google Scholar 

  9. Zygiert, Z. Hodgkin’s disease: remissions after measles. Lancet 1, 593 (1971).

    Article  CAS  PubMed  Google Scholar 

  10. Gujar, S. A., Marcato, P., Pan, D. & Lee, P. W. K. Reovirus virotherapy overrides tumor antigen presentation evasion and promotes protective antitumor immunity. Mol. Cancer Ther. 9, 2924–2933 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Gujar, S. et al. Multifaceted therapeutic targeting of ovarian peritoneal carcinomatosis through virus-induced immunomodulation. Mol. Ther. 21, 338–347 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Tseha, S. T. Role of adenoviruses in cancer therapy. Front. Oncol. 12, 772659 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pol, J., Kroemer, G. & Galluzzi, L. First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology 5, e1115641 (2016).

    Article  PubMed  Google Scholar 

  14. Frampton, J. E. Teserpaturev/G47Δ: first approval. BioDrugs 36, 667–672 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Chaurasiya, S., Fong, Y. & Warner, S. G. Oncolytic virotherapy for cancer: clinical experience. Biomedicines 9, 419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harrington, K., Freeman, D. J., Kelly, B., Harper, J. & Soria, J.-C. Optimizing oncolytic virotherapy in cancer treatment. Nat. Rev. Drug Discov. 18, 689–706 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Twumasi-Boateng, K., Pettigrew, J. L., Kwok, Y. Y. E., Bell, J. C. & Nelson, B. H. Oncolytic viruses as engineering platforms for combination immunotherapy. Nat. Rev. Cancer 18, 419–432 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Boorjian, S. A. et al. Intravesical nadofaragene firadenovec gene therapy for BCG-unresponsive non-muscle-invasive bladder cancer: a single-arm, open-label, repeat-dose clinical trial. Lancet Oncol. 22, 107–117 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, S. & Rabkin, S. D. The discovery and development of oncolytic viruses: are they the future of cancer immunotherapy? Expert Opin. Drug Discov. 16, 391–410 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Pol, J. et al. Trial watch: oncolytic viruses for cancer therapy. Oncoimmunology 3, e28694 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pol, J. et al. Trial watch–oncolytic viruses and cancer therapy. Oncoimmunology 5, e1117740 (2016).

    Article  PubMed  Google Scholar 

  22. Pol, J. G. et al. Trial watch: oncolytic viro-immunotherapy of hematologic and solid tumors. Oncoimmunology 7, e1503032 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Marchini, A., Bonifati, S., Scott, E. M., Angelova, A. L. & Rommelaere, J. Oncolytic parvoviruses: from basic virology to clinical applications. Virol. J. 12, 6 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Haller, S. L., Peng, C., McFadden, G. & Rothenburg, S. Poxviruses and the evolution of host range and virulence. Infect. Genet. Evol. 21, 15–40 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Hendrickson, R. C., Wang, C., Hatcher, E. L. & Lefkowitz, E. J. Orthopoxvirus genome evolution: the role of gene loss. Viruses 2, 1933–1967 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moussatche, N. & Condit, R. C. Fine structure of the vaccinia virion determined by controlled degradation and immunolocalization. Virology 475, 204–218 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Gujar, S., Pol, J. G., Kim, Y., Lee, P. W. & Kroemer, G. Antitumor benefits of antiviral immunity: an underappreciated aspect of oncolytic virotherapies. Trends Immunol. 39, 209–221 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Melcher, A., Parato, K., Rooney, C. M. & Bell, J. C. Thunder and lightning: immunotherapy and oncolytic viruses collide. Mol. Ther. 19, 1008–1016 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Annels, N. E. et al. Oncolytic immunotherapy for bladder cancer using coxsackie A21 virus. Mol. Ther. Oncolytics 9, 1–12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thompson, E. M. et al. Poliovirus receptor (CD155) expression in pediatric brain tumors mediates oncolysis of medulloblastoma and pleomorphic xanthoastrocytoma. J. Neuropathol. Exp. Neurol. 77, 696–702 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaufman, H. L., Kohlhapp, F. J. & Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat. Rev. Drug Discov. 14, 642–662 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tseng, J.-C., Granot, T., DiGiacomo, V., Levin, B. & Meruelo, D. Enhanced specific delivery and targeting of oncolytic Sindbis viral vectors by modulating vascular leakiness in tumor. Cancer Gene Ther. 17, 244–255 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Hess, M. et al. Bacterial glucuronidase as general marker for oncolytic virotherapy or other biological therapies. J. Transl. Med. 9, 172 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pol, J. G. et al. Maraba virus as a potent oncolytic vaccine vector. Mol. Ther. 22, 420–429 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Schreiber, L.-M., Urbiola, C., Erlmann, P. & Wollmann, G. In vivo bioimaging for monitoring intratumoral virus activity. Methods Mol. Biol. 2058, 237–248 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Kuruppu, D. et al. Oncolytic HSV1 targets different growth phases of breast cancer leptomeningeal metastases. Cancer Gene Ther. 30, 833–844 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Miller, A. & Russell, S. J. The use of the NIS reporter gene for optimizing oncolytic virotherapy. Expert Opin. Biol. Ther. 16, 15–32 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Robertson, M. G. et al. Cancer imaging and therapy utilizing a novel NIS-expressing adenovirus: the role of adenovirus death protein deletion. Mol. Ther. Oncolytics 20, 659–668 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, L. et al. Intratumoral expression of interleukin 23 variants using oncolytic vaccinia virus elicit potent antitumor effects on multiple tumor models via tumor microenvironment modulation. Theranostics 11, 6668–6681 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin, D., Shen, Y. & Liang, T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal Transduct. Target. Ther. 8, 1–29 (2023).

    Google Scholar 

  41. Neault, S. et al. Robust envelope exchange platform for oncolytic measles virus. J. Virol. Methods 302, 114487 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Stepanenko, A. A. et al. Superior infectivity of the fiber chimeric oncolytic adenoviruses Ad5/35 and Ad5/3 over Ad5-delta-24-RGD in primary glioma cultures. Mol. Ther. Oncolytics 24, 230–248 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Baker, A. T. et al. The fiber knob protein of human adenovirus type 49 mediates highly efficient and promiscuous infection of cancer cell lines using a novel cell entry mechanism. J. Virol. 95, e01849-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kleinlützum, D. et al. Enhancing the oncolytic activity of CD133-targeted measles virus: receptor extension or chimerism with vesicular stomatitis virus are most effective. Front. Oncol. 7, 127 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Menotti, L. & Avitabile, E. Herpes simplex virus oncolytic immunovirotherapy: the blossoming branch of multimodal therapy. Int. J. Mol. Sci. 21, 8310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, P.-H., Opadele, A. E., Onodera, Y. & Nam, J.-M. Targeting integrins in cancer nanomedicine: applications in cancer diagnosis and therapy. Cancers 11, 1783 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bates, E. A. et al. Development of a low-seroprevalence, αvβ6 integrin-selective virotherapy based on human adenovirus type 10. Mol. Ther. Oncolytics 25, 43–56 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Parato, K. A. et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol. Ther. 20, 749–758 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Paraskevakou, G. et al. Epidermal growth factor receptor (EGFR)-retargeted measles virus strains effectively target EGFR- or EGFRvIII expressing gliomas. Mol. Ther. 15, 677–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Allen, C. et al. Retargeted oncolytic measles strains entering via the EGFRvIII receptor maintain significant antitumor activity against gliomas with increased tumor specificity. Cancer Res. 66, 11840–11850 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Gao, Y. & Bergman, I. Vesicular stomatitis virus (VSV) G glycoprotein can be modified to create a Her2/neu-targeted VSV that eliminates large implanted mammary tumors. J. Virol. 97, e0037223 (2023).

    Article  PubMed  Google Scholar 

  52. Lauer, U. M. & Beil, J. Oncolytic viruses: challenges and considerations in an evolving clinical landscape. Future Oncol. https://doi.org/10.2217/fon-2022-0440 (2022).

  53. Macedo, N., Miller, D. M., Haq, R. & Kaufman, H. L. Clinical landscape of oncolytic virus research in 2020. J. Immunother. Cancer 8, e001486 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Harrington, K. J. et al. Talimogene laherparepvec and pembrolizumab in recurrent or metastatic squamous cell carcinoma of the head and neck (MASTERKEY-232): a multicenter, phase 1b study. Clin. Cancer Res. 26, 5153–5161 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Stojdl, D. F. et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat. Med. 6, 821–825 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Stojdl, D. F. et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4, 263–275 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Ho, T. Y., Mealiea, D., Okamoto, L., Stojdl, D. F. & McCart, J. A. Deletion of immunomodulatory genes as a novel approach to oncolytic vaccinia virus development. Mol. Ther. Oncolytics 22, 85–97 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cristi, F., Gutiérrez, T., Hitt, M. M. & Shmulevitz, M. Genetic modifications that expand oncolytic virus potency. Front. Mol. Biosci. 9, 831091 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Muster, T. et al. Interferon resistance promotes oncolysis by influenza virus NS1-deletion mutants. Int. J. Cancer 110, 15–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Hong, B., Sahu, U., Mullarkey, M. P. & Kaur, B. Replication and spread of oncolytic herpes simplex virus in solid tumors. Viruses 14, 118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ramachandran, M. et al. Safe and effective treatment of experimental neuroblastoma and glioblastoma using systemically delivered triple microRNA-detargeted oncolytic semliki forest virus. Clin. Cancer Res. 23, 1519–1530 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Peter, M. & Kühnel, F. Oncolytic adenovirus in cancer immunotherapy. Cancers 12, 3354 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gonzalez-Pastor, R., Goedegebuure, P. S. & Curiel, D. T. Understanding and addressing barriers to successful adenovirus-based virotherapy for ovarian cancer. Cancer Gene Ther. 28, 375–389 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Raimondi, G. et al. Patient-derived pancreatic tumour organoids identify therapeutic responses to oncolytic adenoviruses. EBioMedicine 56, 102786 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fiorini, E. & Corbo, V. Oncolytic virotherapy meets the human organoid technology for pancreatic cancers. EBioMedicine 57, 102828 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Diallo, J.-S., Roy, D., Abdelbary, H., De Silva, N. & Bell, J. C. Ex vivo infection of live tissue with oncolytic viruses. J. Vis. Exp. 2011, 2854 (2011).

    Google Scholar 

  67. Workenhe, S. T. & Mossman, K. L. Oncolytic virotherapy and immunogenic cancer cell death: sharpening the sword for improved cancer treatment strategies. Mol. Ther. 22, 251–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gujar, S., Pol, J. G. & Kroemer, G. Heating it up: oncolytic viruses make tumors ‘hot’ and suitable for checkpoint blockade immunotherapies. Oncoimmunology 7, e1442169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Galluzzi, L. et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J. Immunother. Cancer 8, e000337 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Brown, M. Engaging pattern recognition receptors in solid tumors to generate systemic antitumor immunity. Cancer Treat. Res. 183, 91–129 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Hoden, B., DeRubeis, D., Martinez-Moczygemba, M., Ramos, K. S. & Zhang, D. Understanding the role of Toll-like receptors in lung cancer immunity and immunotherapy. Front. Immunol. 13, 1033483 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, D. & Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 6, 291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Humeau, J., Le Naour, J., Galluzzi, L., Kroemer, G. & Pol, J. G. Trial watch: intratumoral immunotherapy. Oncoimmunology 10, 1984677 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kepp, O. et al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 3, e955691 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kim, Y. et al. Dendritic cells in oncolytic virus-based anti-cancer therapy. Viruses 7, 6506–6525 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zafar, S. et al. CD40L coding oncolytic adenovirus allows long-term survival of humanized mice receiving dendritic cell therapy. Oncoimmunology 7, e1490856 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Xu, Q. et al. Evaluation of Newcastle disease virus mediated dendritic cell activation and cross-priming tumor-specific immune responses ex vivo. Int. J. Cancer 146, 531–541 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Humeau, J., Lévesque, S., Kroemer, G. & Pol, J. G. Gold standard assessment of immunogenic cell death in oncological mouse models. Methods Mol. Biol. 1884, 297–315 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Deng, L. et al. Oncolytic therapy with vaccinia virus carrying IL-24 for hepatocellular carcinoma. Virol. J. 19, 44 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Oh, E., Hong, J., Kwon, O.-J. & Yun, C.-O. A hypoxia- and telomerase-responsive oncolytic adenovirus expressing secretable trimeric TRAIL triggers tumour-specific apoptosis and promotes viral dispersion in TRAIL-resistant glioblastoma. Sci. Rep. 8, 1420 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bressy, C., Hastie, E. & Grdzelishvili, V. Z. Combining oncolytic virotherapy with p53 tumor suppressor gene therapy. Mol. Ther. Oncolytics 5, 20–40 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yamada, S. et al. Oncolytic herpes simplex virus expressing yeast cytosine deaminase: relationship between viral replication, transgene expression, prodrug bioactivation. Cancer Gene Ther. 19, 160–170 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, J., Ding, M., Xu, K., Mao, L. & Zheng, J. shRNA-armed conditionally replicative adenoviruses: a promising approach for cancer therapy. Oncotarget 7, 29824–29834 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Atherton, M. J. et al. Customized viral immunotherapy for HPV-associated cancer. Cancer Immunol. Res. 5, 847–859 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Chen, T. et al. IL-21 arming potentiates the anti-tumor activity of an oncolytic vaccinia virus in monotherapy and combination therapy. J. Immunother. Cancer 9, e001647 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhu, Z. et al. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol. Cancer 21, 196 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhao, Y. et al. Oncolytic adenovirus: prospects for cancer immunotherapy. Front. Microbiol. 12, 707290 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Heidbuechel, J. P. W. & Engeland, C. E. Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies. J. Hematol. Oncol. 14, 63 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bridle, B. W. et al. HDAC inhibition suppresses primary immune responses, enhances secondary immune responses, and abrogates autoimmunity during tumor immunotherapy. Mol. Ther. 21, 887–894 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bridle, B. W. et al. Oncolytic vesicular stomatitis virus quantitatively and qualitatively improves primary CD8+ T-cell responses to anticancer vaccines. Oncoimmunology 2, e26013 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bridle, B. W. et al. Privileged antigen presentation in splenic B cell follicles maximizes T cell responses in prime-boost vaccination. J. Immunol. 196, 4587–4595 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Pol, J., Le Bœuf, F. & Diallo, J.-S. Genetic, immunological, and pharmacological strategies to generate improved oncolytic viruses. Med. Sci. (Paris) 29, 165–173 (2013).

    Article  PubMed  Google Scholar 

  93. Pol, J. G. et al. Preclinical evaluation of a MAGE-A3 vaccination utilizing the oncolytic Maraba virus currently in first-in-human trials. Oncoimmunology 8, e1512329 (2019).

    Article  PubMed  Google Scholar 

  94. Pol, J. G. et al. Development and applications of oncolytic Maraba virus vaccines. Oncolytic Virother. 7, 117–128 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pol, J. G. et al. Enhanced immunotherapeutic profile of oncolytic virus-based cancer vaccination using cyclophosphamide preconditioning. J. Immunother. Cancer 8, e000981 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pol, J. G., Bridle, B. W. & Lichty, B. D. Detection of tumor antigen-specific T-cell responses after oncolytic vaccination. Methods Mol. Biol. 2058, 191–211 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Pol, J. G., Workenhe, S. T., Konda, P., Gujar, S. & Kroemer, G. Cytokines in oncolytic virotherapy. Cytokine Growth Factor Rev. 56, 4–27 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Zhang, L. et al. Delivery of viral-vectored vaccines by B cells represents a novel strategy to accelerate CD8+ T-cell recall responses. Blood 121, 2432–2439 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Pol, J. G., Rességuier, J. & Lichty, B. D. Oncolytic viruses: a step into cancer immunotherapy. Virus Adapt. Treat. 4, 1–21 (2011).

    Google Scholar 

  100. Naumenko, V. A., Stepanenko, A. A., Lipatova, A. V., Vishnevskiy, D. A. & Chekhonin, V. P. Infection of non-cancer cells: a barrier or support for oncolytic virotherapy? Mol. Ther. Oncolytics 24, 663–682 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Toro Bejarano, M. & Merchan, J. R. Targeting tumor vasculature through oncolytic virotherapy: recent advances. Oncolytic Virother. 4, 169–181 (2015).

    PubMed  PubMed Central  Google Scholar 

  102. Carew, J. S. et al. Oncolytic reovirus inhibits angiogenesis through induction of CXCL10/IP-10 and abrogation of HIF activity in soft tissue sarcomas. Oncotarget 8, 86769–86783 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Nair, M. et al. Enhancing antitumor efficacy of heavily vascularized tumors by RAMBO virus through decreased tumor endothelial cell activation. Cancers 12, 1040 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hou, W., Chen, H., Rojas, J., Sampath, P. & Thorne, S. H. Oncolytic vaccinia virus demonstrates antiangiogenic effects mediated by targeting of VEGF. Int. J. Cancer 135, 1238–1246 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hardcastle, J. et al. Enhanced antitumor efficacy of vasculostatin (Vstat120) expressing oncolytic HSV-1. Mol. Ther. 18, 285–294 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, Z. et al. Suppression of tumor growth by oncolytic adenovirus-mediated delivery of an antiangiogenic gene, soluble Flt-1. Mol. Ther. 11, 553–562 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Raja, J., Ludwig, J. M., Gettinger, S. N., Schalper, K. A. & Kim, H. S. Oncolytic virus immunotherapy: future prospects for oncology. J. Immunother. Cancer 6, 140 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Evgin, L. et al. Complement inhibition prevents oncolytic vaccinia virus neutralization in immune humans and cynomolgus macaques. Mol. Ther. 23, 1066–1076 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Doronin, K. et al. Coagulation factor X activates innate immunity to human species C adenovirus. Science 338, 795–798 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Minuk, G. Y., Paul, R. W. & Lee, P. W. The prevalence of antibodies to reovirus type 3 in adults with idiopathic cholestatic liver disease. J. Med. Virol. 16, 55–60 (1985).

    Article  CAS  PubMed  Google Scholar 

  111. Russell, S. J. & Peng, K. W. Measles virus for cancer therapy. Curr. Top. Microbiol. Immunol. 330, 213–241 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Yu, B. et al. Seroprevalence of neutralizing antibodies to human adenovirus type 5 in healthy adults in China. J. Med. Virol. 84, 1408–1414 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Maroun, J. et al. Designing and building oncolytic viruses. Future Virol. 12, 193–213 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Atasheva, S. et al. Systemic cancer therapy with engineered adenovirus that evades innate immunity. Sci. Transl. Med. 12, eabc6659 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee, N. et al. Generation of novel oncolytic vaccinia virus with improved intravenous efficacy through protection against complement-mediated lysis and evasion of neutralization by vaccinia virus-specific antibodies. J. Immunother. Cancer 11, e006024 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Heiniö, C. et al. TNFa and IL2 encoding oncolytic adenovirus activates pathogen and danger-associated immunological signaling. Cells 9, 798 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hemminki, O. et al. Immunological data from cancer patients treated with Ad5/3-E2F-Δ24-GMCSF suggests utility for tumor immunotherapy. Oncotarget 6, 4467–4481 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Short, J. J. et al. Substitution of adenovirus serotype 3 hexon onto a serotype 5 oncolytic adenovirus reduces factor X binding, decreases liver tropism, and improves antitumor efficacy. Mol. Cancer Ther. 9, 2536–2544 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Muharemagic, D. et al. Aptamer-facilitated protection of oncolytic virus from neutralizing antibodies. Mol. Ther. Nucleic Acids 3, e167 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Castleton, A. et al. Human mesenchymal stromal cells deliver systemic oncolytic measles virus to treat acute lymphoblastic leukemia in the presence of humoral immunity. Blood 123, 1327–1335 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Kaczorowski, A. et al. Delivery of improved oncolytic adenoviruses by mesenchymal stromal cells for elimination of tumorigenic pancreatic cancer cells. Oncotarget 7, 9046–9059 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Melen, G. J. et al. Influence of carrier cells on the clinical outcome of children with neuroblastoma treated with high dose of oncolytic adenovirus delivered in mesenchymal stem cells. Cancer Lett. 371, 161–170 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Dey, M. et al. Intranasal oncolytic virotherapy with CXCR4-enhanced stem cells extends survival in mouse model of glioma. Stem Cell Rep. 7, 471–482 (2016).

    Article  CAS  Google Scholar 

  124. Keshavarz, M. et al. Oncolytic virus delivery modulated immune responses toward cancer therapy: challenges and perspectives. Int. Immunopharmacol. 108, 108882 (2022).

    Article  CAS  PubMed  Google Scholar 

  125. Thambi, T., Hong, J., Yoon, A.-R. & Yun, C.-O. Challenges and progress toward tumor-targeted therapy by systemic delivery of polymer-complexed oncolytic adenoviruses. Cancer Gene Ther. 29, 1321–1331 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shin, D. H. et al. Current strategies to circumvent the antiviral immunity to optimize cancer virotherapy. J. Immunother. Cancer 9, e002086 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Munguia, A., Ota, T., Miest, T. & Russell, S. J. Cell carriers to deliver oncolytic viruses to sites of myeloma tumor growth. Gene Ther. 15, 797–806 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Peng, K.-W. et al. Using clinically approved cyclophosphamide regimens to control the humoral immune response to oncolytic viruses. Gene Ther. 20, 255–261 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Fulci, G. et al. Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc. Natl Acad. Sci. USA 103, 12873–12878 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Liu, Y.-P. et al. Polyinosinic acid decreases sequestration and improves systemic therapy of measles virus. Cancer Gene Ther. 19, 202–211 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Koski, A. et al. Systemic adenoviral gene delivery to orthotopic murine breast tumors with ablation of coagulation factors, thrombocytes and Kupffer cells. J. Gene Med. 11, 966–977 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Shashkova, E. V., Doronin, K., Senac, J. S. & Barry, M. A. Macrophage depletion combined with anticoagulant therapy increases therapeutic window of systemic treatment with oncolytic adenovirus. Cancer Res. 68, 5896–5904 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Ikeda, K. et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat. Med. 5, 881–887 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Niemann, J. et al. Molecular retargeting of antibodies converts immune defense against oncolytic viruses into cancer immunotherapy. Nat. Commun. 10, 3236 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Wein, L. M., Wu, J. T. & Kirn, D. H. Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: implications for virus design and delivery. Cancer Res. 63, 1317–1324 (2003).

    CAS  PubMed  Google Scholar 

  136. Lopez, M. V. et al. Tumor associated stromal cells play a critical role on the outcome of the oncolytic efficacy of conditionally replicative adenoviruses. PLoS ONE 4, e5119 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Li, L., Liu, S., Han, D., Tang, B. & Ma, J. Delivery and biosafety of oncolytic virotherapy. Front. Oncol. 10, 475 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Zhou, P. et al. Intratumoral delivery of a novel oncolytic adenovirus encoding human antibody against PD-1 elicits enhanced antitumor efficacy. Mol. Ther. Oncolytics 25, 236–248 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Knapp, J. P., Kakish, J. E., Bridle, B. W. & Speicher, D. J. Tumor temperature: friend or foe of virus-based cancer immunotherapy. Biomedicines 10, 2024 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bilbao, R. et al. A blood-tumor barrier limits gene transfer to experimental liver cancer: the effect of vasoactive compounds. Gene Ther. 7, 1824–1832 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Rust, N. M. et al. Bradykinin enhances Sindbis virus infection in human brain microvascular endothelial cells. Virology 422, 81–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Jaime-Ramirez, A. C. et al. Reolysin and histone deacetylase inhibition in the treatment of head and neck squamous cell carcinoma. Mol. Ther. Oncolytics 5, 87–96 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Springfeld, C. et al. Oncolytic efficacy and enhanced safety of measles virus activated by tumor-secreted matrix metalloproteinases. Cancer Res. 66, 7694–7700 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Ebert, O. et al. Syncytia induction enhances the oncolytic potential of vesicular stomatitis virus in virotherapy for cancer. Cancer Res. 64, 3265–3270 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Zhang, J., Frolov, I. & Russell, S. J. Gene therapy for malignant glioma using Sindbis vectors expressing a fusogenic membrane glycoprotein. J. Gene Med. 6, 1082–1091 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Le Boeuf, F. et al. Reovirus FAST protein enhances vesicular stomatitis virus oncolytic virotherapy in primary and metastatic tumor models. Mol. Ther. Oncolytics 6, 80–89 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Morodomi, Y. et al. BioKnife, a uPA activity-dependent oncolytic Sendai virus, eliminates pleural spread of malignant mesothelioma via simultaneous stimulation of uPA expression. Mol. Ther. 20, 769–777 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jung, K. H. et al. Oncolytic adenovirus expressing relaxin (YDC002) enhances therapeutic efficacy of gemcitabine against pancreatic cancer. Cancer Lett. 396, 155–166 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Oh, E., Choi, I.-K., Hong, J. & Yun, C.-O. Oncolytic adenovirus coexpressing interleukin-12 and decorin overcomes Treg-mediated immunosuppression inducing potent antitumor effects in a weakly immunogenic tumor model. Oncotarget 8, 4730–4746 (2017).

    Article  PubMed  Google Scholar 

  150. Yang, Y. et al. Systemic delivery of an oncolytic adenovirus expressing decorin for the treatment of breast cancer bone metastases. Hum. Gene Ther. 26, 813–825 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Yumul, R. et al. Epithelial junction opener improves oncolytic adenovirus therapy in mouse tumor models. Hum. Gene Ther. 27, 325–337 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tedcastle, A., Illingworth, S., Brown, A., Seymour, L. W. & Fisher, K. D. Actin-resistant DNAse I expression from oncolytic adenovirus enadenotucirev enhances its intratumoral spread and reduces tumor growth. Mol. Ther. 24, 796–804 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sette, P. et al. GBM-targeted oHSV armed with matrix metalloproteinase 9 enhances anti-tumor activity and animal survival. Mol. Ther. Oncolytics 15, 214–222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ungerechts, G. et al. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses. Mol. Ther. Methods Clin. Dev. 3, 16018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Harrington, K. J. Oncolytic viruses: methods and protocols. Br. J. Cancer 108, 735 (2013).

    Article  PubMed Central  Google Scholar 

  156. Kirn, D. H., Liu, T.-C. & Thorne, S. H. (eds) Oncolytic Viruses: Methods and Protocols (Humana Press, 2012).

  157. Abdelmageed, A. A. & Ferran, M. C. The propagation, quantification, and storage of vesicular stomatitis virus. Curr. Protoc. Microbiol. 58, e110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nakamura, T. et al. Rescue and propagation of fully retargeted oncolytic measles viruses. Nat. Biotechnol. 23, 209–214 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Schneider, U., von Messling, V., Devaux, P. & Cattaneo, R. Efficiency of measles virus entry and dissemination through different receptors. J. Virol. 76, 7460–7467 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dybas, J. M. et al. Adenovirus remodeling of the host proteome and host factors associated with viral genomes. mSystems https://doi.org/10.1128/mSystems.00468-21 (2021).

  161. Gueret, V., Negrete-Virgen, J. A., Lyddiatt, A. & Al-Rubeai, M. Rapid titration of adenoviral infectivity by flow cytometry in batch culture of infected HEK293 cells. Cytotechnology 38, 87–97 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mendoza, E. J., Manguiat, K., Wood, H. & Drebot, M. Two detailed plaque assay protocols for the quantification of infectious SARS‐CoV‐2. Curr. Protoc. Microbiol. 57, ecpmc105 (2020).

    Article  PubMed  Google Scholar 

  163. James, K. T. et al. Novel high-throughput approach for purification of infectious virions. Sci. Rep. 6, 36826 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shmulevitz, M. & Lee, P. W. K. in Oncolytic Viruses: Methods and Protocols (eds Kirn, D. H., Liu, T.-C. & Thorne, S. H.) 163–176 (Humana Press, 2012).

  165. Langfield, K. K., Walker, H. J., Gregory, L. C. & Federspiel, M. J. Manufacture of measles viruses. Methods Mol. Biol. 737, 345–366 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Shmulevitz, M., Gujar, S. A., Ahn, D.-G., Mohamed, A. & Lee, P. W. K. Reovirus variants with mutations in genome segments S1 and L2 exhibit enhanced virion infectivity and superior oncolysis. J. Virol. 86, 7403–7413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Peck, K. M. & Lauring, A. S. Complexities of viral mutation rates. J. Virol. 92, e01031-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Howley, P. M. Fields Virology: Fundamentals. (Wolters Kluwer Medical, 2023).

  169. Cacciabue, M., Currá, A. & Gismondi, M. I. ViralPlaque: a Fiji macro for automated assessment of viral plaque statistics. PeerJ 7, e7729 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Liu, T. et al. Rapid and stain-free quantification of viral plaque via lens-free holography and deep learning. Nat. Biomed. Eng. 7, 1040–1052 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Dulbecco, R. & Vogt, M. Some problems of animal virology as studied by the plaque technique. Cold Spring Harb. Symp. Quant. Biol. 18, 273–279 (1953).

    Article  CAS  PubMed  Google Scholar 

  172. Baer, A. & Kehn-Hall, K. Viral concentration determination through plaque assays: using traditional and novel overlay systems. J. Vis. Exp. 2014, e52065 (2014).

    Google Scholar 

  173. McSharry, J. J. Uses of flow cytometry in virology. Clin. Microbiol. Rev. 7, 576–604 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tang, V. A. et al. Single-particle characterization of oncolytic vaccinia virus by flow virometry. Vaccine 34, 5082–5089 (2016).

    Article  PubMed  Google Scholar 

  175. Roingeard, P., Raynal, P.-I., Eymieux, S. & Blanchard, E. Virus detection by transmission electron microscopy: still useful for diagnosis and a plus for biosafety. Rev. Med. Virol. 29, e2019 (2019).

    Article  PubMed  Google Scholar 

  176. Lee, P. & Gujar, S. Potentiating prostate cancer immunotherapy with oncolytic viruses. Nat. Rev. Urol. 15, 235–250 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Petkov, C. I. et al. Unified ethical principles and an animal research ‘Helsinki’ declaration as foundations for international collaboration. Curr. Res. Neurobiol. 3, 100060 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Waehler, R., Russell, S. J. & Curiel, D. T. Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet. 8, 573–587 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Russell, L. et al. PTEN expression by an oncolytic herpesvirus directs T-cell mediated tumor clearance. Nat. Commun. 9, 5006 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Farrera-Sal, M., Moya-Borrego, L., Bazan-Peregrino, M. & Alemany, R. Evolving status of clinical immunotherapy with oncolytic adenovirus. Clin. Cancer Res. 27, 2979–2988 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Suksanpaisan, L. et al. Preclinical development of oncolytic immunovirotherapy for treatment of HPVPOS cancers. Mol. Ther. Oncolytics 10, 1–13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Evgin, L. et al. Oncolytic virus-mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Sci. Transl. Med. 14, eabn2231 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Loken, S. D. et al. Morbidity in immunosuppressed (SCID/NOD) mice treated with reovirus (Dearing 3) as an anti-cancer biotherapeutic. Cancer Biol. Ther. 3, 734–738 (2004).

    Article  CAS  PubMed  Google Scholar 

  184. Gujar, S. A., Pan, D., Marcato, P., Garant, K. A. & Lee, P. W. Oncolytic virus-initiated protective immunity against prostate cancer. Mol. Ther. 19, 797–804 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Mosely, S. I. S. et al. Rational selection of syngeneic preclinical tumor models for immunotherapeutic drug discovery. Cancer Immunol. Res. 5, 29–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  186. Prestwich, R. J. et al. Tumor infection by oncolytic reovirus primes adaptive antitumor immunity. Clin. Cancer Res. 14, 7358–7366 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Nelson, A., Gebremeskel, S., Lichty, B. D. & Johnston, B. Natural killer T cell immunotherapy combined with IL-15-expressing oncolytic virotherapy and PD-1 blockade mediates pancreatic tumor regression. J. Immunother. Cancer 10, e003923 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Kwan, A. et al. Macrophages mediate the antitumor effects of the oncolytic virus HSV1716 in mammary tumors. Mol. Cancer Ther. 20, 589–601 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Karandikar, S. H. et al. New epitopes in ovalbumin provide insights for cancer neoepitopes. JCI Insight 5, e127882 (2019).

    Article  PubMed  Google Scholar 

  190. Wang, D. et al. Ultralow-dose binary oncolytic/helper-dependent adenovirus promotes antitumor activity in preclinical and clinical studies. Sci. Adv. 9, eade6790 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Allen, T. M. et al. Humanized immune system mouse models: progress, challenges and opportunities. Nat. Immunol. 20, 770–774 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. McKenna, M. K., Rosewell-Shaw, A. & Suzuki, M. Modeling the efficacy of oncolytic adenoviruses in vitro and in vivo: current and future perspectives. Cancers 12, 619 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Shenderov, E. et al. Generation and characterization of HLA-A2 transgenic mice expressing the human TCR 1G4 specific for the HLA-A2 restricted NY-ESO-1157-165 tumor-specific peptide. J. Immunother. Cancer 9, e002544 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Fulci, G. et al. Depletion of peripheral macrophages and brain microglia increases brain tumor titers of oncolytic viruses. Cancer Res. 67, 9398–9406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kurozumi, K. et al. Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J. Natl Cancer Inst. 99, 1768–1781 (2007).

    Article  CAS  PubMed  Google Scholar 

  196. Sánchez, D., Cesarman-Maus, G., Amador-Molina, A. & Lizano, M. Oncolytic viruses for canine cancer treatment. Cancers 10, 404 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Martín-Carrasco, C. et al. Safety and efficacy of an oncolytic adenovirus as an immunotherapy for canine cancer patients. Vet. Sci. 9, 327 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Gentschev, I. et al. Oncolytic virotherapy of canine and feline cancer. Viruses 6, 2122–2137 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Hummel, J. et al. Maraba virus-vectored cancer vaccines represent a safe and novel therapeutic option for cats. Sci. Rep. 7, 15738 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Jogler, C. et al. Replication properties of human adenovirus in vivo and in cultures of primary cells from different animal species. J. Virol. 80, 3549–3558 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Cervera-Carrascon, V. et al. Comparison of clinically relevant oncolytic virus platforms for enhancing T cell therapy of solid tumors. Mol. Ther. Oncolytics 17, 47–60 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Steel, J. C. et al. Immunocompetent syngeneic cotton rat tumor models for the assessment of replication-competent oncolytic adenovirus. Virology 369, 131–142 (2007).

    Article  CAS  PubMed  Google Scholar 

  203. Zhang, H. et al. Naturally existing oncolytic virus M1 is nonpathogenic for the nonhuman primates after multiple rounds of repeated intravenous injections. Hum. Gene Ther. 27, 700–711 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Cassady, K. A. et al. Pre-clinical assessment of C134, a chimeric oncolytic herpes simplex virus, in mice and non-human primates. Mol. Ther. Oncolytics 5, 1–10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Samson, A. et al. Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci. Transl. Med. 10, eaam7577 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Clements, D. R., Kim, Y., Gujar, S. A. & Lee, P. W. All that glitters is not gold: the need to consider desirable and undesirable immune aspects of oncolytic virus therapy. Oncoimmunology 5, e1057674 (2016).

    Article  PubMed  Google Scholar 

  207. Clements, D. R. et al. Newly recruited CD11b+, GR-1+, Ly6Chigh myeloid cells augment tumor-associated immunosuppression immediately following the therapeutic administration of oncolytic reovirus. J. Immunol. 194, 4397–4412 (2015).

    Article  CAS  PubMed  Google Scholar 

  208. Zhang, L. et al. Robust oncolytic virotherapy induces tumor lysis syndrome and associated toxicities in the MPC-11 plasmacytoma model. Mol. Ther. 24, 2109–2117 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Zhang, L. et al. Safety studies in tumor and non-tumor-bearing mice in support of clinical trials using oncolytic VSV-IFNβ-NIS. Hum. Gene Ther. Clin. Dev. 27, 111–122 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wang, Y. et al. Preclinical safety evaluation of oncolytic herpes simplex virus type 2. Hum. Gene Ther. 30, 651–660 (2019).

    Article  CAS  PubMed  Google Scholar 

  211. Abdullahi, S. et al. A novel chimeric oncolytic virus vector for improved safety and efficacy in hepatocellular carcinoma. J. Virol. 92, e01386-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Kurzrock, R. et al. Moving beyond 3+3: The future of clinical trial design. Am. Soc. Clin. Oncol. Educ. Book 41, e133–e144 (2021).

    Article  PubMed  Google Scholar 

  213. Tannenbaum, C., Ellis, R. P., Eyssel, F., Zou, J. & Schiebinger, L. Sex and gender analysis improves science and engineering. Nature 575, 137–146 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. White, J., Tannenbaum, C., Klinge, I., Schiebinger, L. & Clayton, J. The integration of sex and gender considerations into biomedical research: lessons from international funding agencies. J. Clin. Endocrinol. Metab. 106, 3034–3048 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Canadian Institutes of Health Research. How to integrate sex and gender into research CIHR https://cihr-irsc.gc.ca/e/50836.html (2018).

  216. Jang, S. R. et al. Association between sex and immune checkpoint inhibitor outcomes for patients with melanoma. JAMA Netw. Open 4, e2136823 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Carrera, C., Potrony, M. & Puig, S. Sex as a predictor of response to cancer immunotherapy. Lancet Oncol. 19, e375 (2018).

    Article  PubMed  Google Scholar 

  218. Madala, S. et al. Gender differences and their effects on survival outcomes in lung cancer patients treated with PD-1/PD-L1 checkpoint inhibitors: a systematic review and meta-analysis. Clin. Oncol. 34, 799–809 (2022).

    Article  CAS  Google Scholar 

  219. Russell, L., Peng, K. W., Russell, S. J. & Diaz, R. M. Oncolytic viruses: priming time for cancer immunotherapy. BioDrugs 33, 485–501 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Kim, Y. et al. Immune checkpoint blockade augments changes within oncolytic virus-induced cancer MHC-I peptidome, creating novel antitumor CD8 T cell reactivities. Mol. Cell. Proteom. 21, 100182 (2022).

    Article  CAS  Google Scholar 

  221. Roy, D. G. et al. Adjuvant oncolytic virotherapy for personalized anti-cancer vaccination. Nat. Commun. 12, 2626 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Ding, J. et al. Pre-existing HSV-1 immunity enhances anticancer efficacy of a novel immune-stimulating oncolytic virus. Viruses 14, 2327 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Tähtinen, S. et al. Exploiting preexisting immunity to enhance oncolytic cancer immunotherapy. Cancer Res. 80, 2575–2585 (2020).

    Article  PubMed  Google Scholar 

  224. Bourgeois-Daigneault, M.-C. et al. Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy. Sci. Transl. Med. 10, eaao1641 (2018).

    Article  PubMed  Google Scholar 

  225. Murphy, J. P. et al. Therapy-induced MHC I ligands shape neo-antitumor CD8 T cell responses during oncolytic virus-based cancer immunotherapy. J. Proteome Res. 18, 2666–2675 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  227. Koutsakos, M. et al. SARS-CoV-2 breakthrough infection induces rapid memory and de novo T cell responses. Immunity 56, 879–892.e4 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Pai, C.-C. S. et al. Clonal deletion of tumor-specific T cells by interferon-γ confers therapeutic resistance to combination immune checkpoint blockade. Immunity 50, 477–492.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Zhang, Y. et al. Enhancing CD8+ T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 32, 377–391.e9 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Chang, C.-H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Argüello, R. J. et al. SCENITH: a flow cytometry-based method to functionally profile energy metabolism with single-cell resolution. Cell Metab. 32, 1063–1075.e7 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Sharma, P. et al. The next decade of immune checkpoint therapy. Cancer Discov. 11, 838–857 (2021).

    Article  CAS  PubMed  Google Scholar 

  233. Chesney, J. A. et al. Randomized, double-blind, placebo-controlled, global phase III trial of talimogene laherparepvec combined with pembrolizumab for advanced melanoma. J. Clin. Oncol. 41, 528–540 (2023).

    Article  CAS  PubMed  Google Scholar 

  234. Chesney, J. A. et al. Talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone for advanced melanoma: 5-year final analysis of a multicenter, randomized, open-label, phase II trial. J. Immunother. Cancer 11, e006270 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Zhang, H. et al. Oncolytic adenoviruses synergistically enhance anti-PD-L1 and anti-CTLA-4 immunotherapy by modulating the tumour microenvironment in a 4T1 orthotopic mouse model. Cancer Gene Ther. 29, 456–465 (2022).

    Article  CAS  PubMed  Google Scholar 

  236. Gujar, S. A. et al. Gemcitabine enhances the efficacy of reovirus-based oncotherapy through anti-tumour immunological mechanisms. Br. J. Cancer 110, 83–93 (2014).

    Article  CAS  PubMed  Google Scholar 

  237. Ju, F. et al. Oncolytic virus expressing PD-1 inhibitors activates a collaborative intratumoral immune response to control tumor and synergizes with CTLA-4 or TIM-3 blockade. J. Immunother. Cancer 10, e004762 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  238. du Sert, N. P. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020).

    Article  Google Scholar 

  239. Zafar, S. et al. Oncolytic adenovirus type 3 coding for CD40L facilitates dendritic cell therapy of prostate cancer in humanized mice and patient samples. Hum. Gene Ther. 32, 192–202 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Zafar, S. et al. Intravenously usable fully serotype 3 oncolytic adenovirus coding for CD40L as an enabler of dendritic cell therapy. Oncoimmunology 6, e1265717 (2017).

    Article  PubMed  Google Scholar 

  241. Trinh, H. V. et al. Avidity binding of human adenovirus serotypes 3 and 7 to the membrane cofactor CD46 triggers infection. J. Virol. 86, 1623–1637 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Hemminki, O. et al. Ad3-hTERT-E1A, a fully serotype 3 oncolytic adenovirus, in patients with chemotherapy refractory cancer. Mol. Ther. 20, 1821–1830 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Agrelli, A., de Moura, R. R., Crovella, S. & Brandão, L. A. C. ZIKA virus entry mechanisms in human cells. Infect. Genet. Evol. 69, 22–29 (2019).

    Article  CAS  PubMed  Google Scholar 

  244. Hemminki, O. et al. Oncolytic adenovirus based on serotype 3. Cancer Gene Ther. 18, 288–296 (2011).

    Article  CAS  PubMed  Google Scholar 

  245. Arnberg, N. Adenovirus receptors: implications for targeting of viral vectors. Trends Pharmacol. Sci. 33, 442–448 (2012).

    Article  CAS  PubMed  Google Scholar 

  246. Gerber-Tichet Dienst, E. & Kremer, E. J. Adenovirus receptors on antigen-presenting cells of the skin. Biol. Cell 114, 297–308 (2022).

    Article  PubMed  Google Scholar 

  247. Chen, C. Y. et al. Species D adenoviruses as oncolytics against B-cell cancers. Clin. Cancer Res. 17, 6712–6722 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Wu, H. & Mei, Y.-F. An oncolytic adenovirus 11p vector expressing adenovirus death protein in the E1 region showed significant apoptosis and tumour-killing ability in metastatic prostate cells. Oncotarget 10, 1957–1974 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Dyer, A. et al. Oncolytic group B adenovirus enadenotucirev mediates non-apoptotic cell death with membrane disruption and release of inflammatory mediators. Mol. Ther. Oncolytics 4, 18–30 (2017).

    Article  CAS  PubMed  Google Scholar 

  250. Silver, J. & Mei, Y.-F. Transduction and oncolytic profile of a potent replication-competent adenovirus 11p vector (RCAd11pGFP) in colon carcinoma cells. PLoS ONE 6, e17532 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Ono, R., Takayama, K., Sakurai, F. & Mizuguchi, H. Efficient antitumor effects of a novel oncolytic adenovirus fully composed of species B adenovirus serotype 35. Mol. Ther. Oncolytics 20, 399–409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Doerner, J. et al. Novel group C oncolytic adenoviruses carrying a miRNA inhibitor demonstrate enhanced oncolytic activity in vitro and in vivo. Mol. Cancer Ther. 21, 460–470 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Zheng, H. et al. Combination IFNβ and membrane-stable CD40L maximize tumor dendritic cell activation and lymph node trafficking to elicit systemic T-cell immunity. Cancer Immunol. Res. 11, 466–485 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Gállego Pérez-Larraya, J. et al. Oncolytic DNX-2401 virus for pediatric diffuse intrinsic pontine glioma. N. Engl. J. Med. 386, 2471–2481 (2022).

    Article  PubMed  Google Scholar 

  255. Kazemi Shariat Panahi, H. et al. Oncolytic viruses as a promising therapeutic strategy against the detrimental health impacts of air pollution: the case of glioblastoma multiforme. Semin. Cancer Biol. 86, 1122–1142 (2022).

    Article  CAS  PubMed  Google Scholar 

  256. Zhang, J. et al. Efficacy and safety of recombinant human adenovirus type 5 (H101) in persistent, recurrent, or metastatic gynecologic malignancies: a retrospective study. Front. Oncol. 12, 877155 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Garcia-Carbonero, R. et al. Phase I, multicenter, open-label study of intravenous VCN-01 oncolytic adenovirus with or without nab-paclitaxel plus gemcitabine in patients with advanced solid tumors. J. Immunother. Cancer 10, e003255 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Kesari, S. et al. BETA PRIME: phase I study of AdAPT-001 as monotherapy and combined with a checkpoint inhibitor in superficially accessible, treatment-refractory solid tumors. Future Oncol. 18, 3245–3254 (2022).

    Article  CAS  PubMed  Google Scholar 

  259. Larson, C., Oronsky, B. & Reid, T. AdAPT-001, an oncolytic adenovirus armed with a TGF-β trap, overcomes in vivo resistance to PD-L1-immunotherapy. Am. J. Cancer Res. 12, 3141–3147 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Yun, C.-O., Hong, J. & Yoon, A.-R. Current clinical landscape of oncolytic viruses as novel cancer immunotherapeutic and recent preclinical advancements. Front. Immunol. 13, 953410 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Ylösmäki, E. et al. Characterization of a novel OX40 ligand and CD40 ligand-expressing oncolytic adenovirus used in the PeptiCRAd cancer vaccine platform. Mol. Ther. Oncolytics 20, 459–469 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Gao, J., Zhang, W. & Ehrhardt, A. Expanding the spectrum of adenoviral vectors for cancer therapy. Cancers 12, 1139 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Zhang, Z. et al. A tumor-targeted replicating oncolytic adenovirus Ad-TD-nsIL12 as a promising therapeutic agent for human esophageal squamous cell carcinoma. Cells 9, 2438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Cook, M. & Chauhan, A. Clinical application of oncolytic viruses: a systematic review. Int. J. Mol. Sci. 21, 7505 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Garcia-Moure, M. et al. The oncolytic adenovirus VCN-01 promotes anti-tumor effect in primitive neuroectodermal tumor models. Sci. Rep. 9, 14368 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  266. García, M. et al. A phase 1 trial of oncolytic adenovirus ICOVIR-5 administered intravenously to cutaneous and uveal melanoma patients. Hum. Gene Ther. 30, 352–364 (2019).

    Article  PubMed  Google Scholar 

  267. Garcia-Moure, M., Martinez-Vélez, N., Patiño-García, A. & Alonso, M. M. Oncolytic adenoviruses as a therapeutic approach for osteosarcoma: a new hope. J. Bone Oncol. 9, 41–47 (2017).

    Article  PubMed  Google Scholar 

  268. Dong, W. et al. ORCA-010, a novel potency-enhanced oncolytic adenovirus, exerts strong antitumor activity in preclinical models. Hum. Gene Ther. 25, 897–904 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Farzad, L. et al. Combinatorial treatment with oncolytic adenovirus and helper-dependent adenovirus augments adenoviral cancer gene therapy. Mol. Ther. Oncolytics 1, 14008 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Nasu, Y. et al. Suicide gene therapy with adenoviral delivery of HSV-tK gene for patients with local recurrence of prostate cancer after hormonal therapy. Mol. Ther. 15, 834–840 (2007).

    Article  CAS  PubMed  Google Scholar 

  271. Ries, S. & Korn, W. M. ONYX-015: mechanisms of action and clinical potential of a replication-selective adenovirus. Br. J. Cancer 86, 5–11 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Osipov, I. D. et al. Development of oncolytic vectors based on human adenovirus type 6 for cancer treatment. Viruses 15, 182 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Persson, B. D. et al. Human species D adenovirus hexon capsid protein mediates cell entry through a direct interaction with CD46. Proc. Natl Acad. Sci. USA 118, e2020732118 (2021).

    Article  CAS  PubMed  Google Scholar 

  274. Bullard, B. L., Corder, B. N. & Weaver, E. A. Species D adenoviruses as oncolytic viral vectors. Viruses 12, 1399 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Zhu, Z. et al. Zika virus targets glioblastoma stem cells through a SOX2-integrin αvβ5 Axis. Cell Stem Cell 26, 187–204.e10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Oei, S. L. & Schad, F. Are aspects of integrative concepts helpful to improve pancreatic cancer therapy? Cancers 15, 1116 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Cui, C. et al. OrienX010, an oncolytic virus, in patients with unresectable stage IIIC-IV melanoma: a phase Ib study. J. Immunother. Cancer 10, e004307 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Miller, K. E. et al. Immune activity and response differences of oncolytic viral therapy in recurrent glioblastoma: gene expression analyses of a phase IB study. Clin. Cancer Res. 28, 498–506 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Haines, B. B. et al. ONCR-177, an oncolytic HSV-1 designed to potently activate systemic antitumor immunity. Cancer Immunol. Res. 9, 291–308 (2021).

    Article  CAS  PubMed  Google Scholar 

  280. Chiocca, E. A., Nakashima, H., Kasai, K., Fernandez, S. A. & Oglesbee, M. Preclinical toxicology of rQNestin34.5v.2: an oncolytic herpes virus with transcriptional regulation of the ICP34.5 neurovirulence gene. Mol. Ther. Methods Clin. Dev. 17, 871–893 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Zhang, K.-X. et al. Intravesical treatment of advanced urothelial bladder cancers with oncolytic HSV-1 co-regulated by differentially expressed microRNAs. Gene Ther. 23, 460–468 (2016).

    Article  CAS  PubMed  Google Scholar 

  282. Fujiwara, S. et al. Carrier cell-based delivery of replication-competent HSV-1 mutants enhances antitumor effect for ovarian cancer. Cancer Gene Ther. 18, 77–86 (2011).

    Article  CAS  PubMed  Google Scholar 

  283. Lee, C. Y. F., Rennie, P. S. & Jia, W. W. G. MicroRNA regulation of oncolytic herpes simplex virus-1 for selective killing of prostate cancer cells. Clin. Cancer Res. 15, 5126–5135 (2009).

    Article  CAS  PubMed  Google Scholar 

  284. Agelidis, A. M. & Shukla, D. Cell entry mechanisms of HSV: what we have learned in recent years. Future Virol. 10, 1145–1154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Madavaraju, K., Koganti, R., Volety, I., Yadavalli, T. & Shukla, D. Herpes simplex virus cell entry mechanisms: an update. Front. Cell. Infect. Microbiol. 10, 617578 (2020).

    Article  PubMed  Google Scholar 

  286. Zhang, B. et al. Intratumoral OH2, an oncolytic herpes simplex virus 2, in patients with advanced solid tumors: a multicenter, phase I/II clinical trial. J. Immunother. Cancer 9, e002224 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Luo, S. et al. Contribution of N-linked glycans on HSV-2 gB to cell-cell fusion and viral entry. Virology 483, 72–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  288. Fu, X., Tao, L. & Zhang, X. An oncolytic virus derived from type 2 herpes simplex virus has potent therapeutic effect against metastatic ovarian cancer. Cancer Gene Ther. 14, 480–487 (2007).

    Article  CAS  PubMed  Google Scholar 

  289. Qiu, W., Ding, X., Li, S., He, Y. & Zhu, L. Oncolytic bovine herpesvirus 1 inhibits human lung adenocarcinoma A549 cell proliferation and tumor growth by inducing DNA damage. Int. J. Mol. Sci. 22, 8582 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Cuddington, B. P., Dyer, A. L., Workenhe, S. T. & Mossman, K. L. Oncolytic bovine herpesvirus type 1 infects and kills breast tumor cells and breast cancer-initiating cells irrespective of tumor subtype. Cancer Gene Ther. 20, 282–289 (2013).

    Article  CAS  PubMed  Google Scholar 

  291. Pastenkos, G., Lee, B., Pritchard, S. M. & Nicola, A. V. Bovine herpesvirus 1 entry by a low-pH endosomal pathway. J. Virol. 92, e00839-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Chai, C. et al. The effects of oncolytic pseudorabies virus vaccine strain inhibited the growth of colorectal cancer HCT-8 cells in vitro and in vivo. Animals 12, 2416 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Shiau, A.-L. et al. Development of a conditionally replicating pseudorabies virus for HER-2/neu-overexpressing bladder cancer therapy. Mol. Ther. 15, 131–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  294. Li, A. et al. Structural basis of nectin-1 recognition by pseudorabies virus glycoprotein D. PLoS Pathog. 13, e1006314 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Aligholipour Farzani, T. et al. Assessment of replication of bovine herpesvirus type 4 in human glioblastoma and breast cancer cells as a potential oncolytic virus. Virus Genes 57, 31–39 (2021).

    Article  CAS  PubMed  Google Scholar 

  296. Redaelli, M. et al. Herpes simplex virus type 1 thymidine kinase-armed bovine herpesvirus type 4-based vector displays enhanced oncolytic properties in immunocompetent orthotopic syngenic mouse and rat glioma models. Neuro Oncol. 14, 288–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Gillet, L., Dewals, B., Farnir, F., de Leval, L. & Vanderplasschen, A. Bovine herpesvirus 4 induces apoptosis of human carcinoma cell lines in vitro and in vivo. Cancer Res. 65, 9463–9472 (2005).

    Article  CAS  PubMed  Google Scholar 

  298. Macnab, S. A. et al. Herpesvirus saimiri-mediated delivery of the adenomatous polyposis coli tumour suppressor gene reduces proliferation of colorectal cancer cells. Int. J. Oncol. 39, 1173–1181 (2011).

    CAS  PubMed  Google Scholar 

  299. Stevenson, A. J. et al. Specific oncolytic activity of herpesvirus saimiri in pancreatic cancer cells. Br. J. Cancer 83, 329–332 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Ferreira, T. et al. Oncolytic H-1 parvovirus hijacks galectin-1 to enter cancer cells. Viruses 14, 1018 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Kulkarni, A. et al. Oncolytic H-1 parvovirus binds to sialic acid on laminins for cell attachment and entry. Nat. Commun. 12, 3834 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Marchini, A., Daeffler, L., Pozdeev, V. I., Angelova, A. & Rommelaere, J. Immune conversion of tumor microenvironment by oncolytic viruses: the protoparvovirus H-1PV case study. Front. Immunol. 10, 1848 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Lacroix, J. et al. Preclinical testing of an oncolytic parvovirus in Ewing sarcoma: protoparvovirus H-1 induces apoptosis and lytic infection in vitro but fails to improve survival in vivo. Viruses 10, 302 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Geletneky, K. et al. Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa glioblastoma trial. Mol. Ther. 25, 2620–2634 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Angelova, A. L., Witzens-Harig, M., Galabov, A. S. & Rommelaere, J. The oncolytic virotherapy era in cancer management: prospects of applying H-1 parvovirus to treat blood and solid cancers. Front. Oncol. 7, 93 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Angelova, A. L., Geletneky, K., Nüesch, J. P. F. & Rommelaere, J. Tumor selectivity of oncolytic parvoviruses: from in vitro and animal models to cancer patients. Front. Bioeng. Biotechnol. 3, 55 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Heinrich, B., Goepfert, K., Delic, M., Galle, P. R. & Moehler, M. Influence of the oncolytic parvovirus H-1, CTLA-4 antibody tremelimumab and cytostatic drugs on the human immune system in a human in vitro model of colorectal cancer cells. Onco Targets Ther. 6, 1119–1127 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Li, J. et al. Synergistic combination of valproic acid and oncolytic parvovirus H-1PV as a potential therapy against cervical and pancreatic carcinomas. EMBO Mol. Med. 5, 1537–1555 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Paglino, J. C., Ozduman, K. & van den Pol, A. N. LuIII parvovirus selectively and efficiently targets, replicates in, and kills human glioma cells. J. Virol. 86, 7280–7291 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Angelova, A. L. et al. Oncolytic rat parvovirus H-1PV, a candidate for the treatment of human lymphoma: in vitro and in vivo studies. Mol. Ther. 17, 1164–1172 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Grekova, S. P., Raykov, Z., Zawatzky, R., Rommelaere, J. & Koch, U. Activation of a glioma-specific immune response by oncolytic parvovirus Minute Virus of Mice infection. Cancer Gene Ther. 19, 468–475 (2012).

    Article  CAS  PubMed  Google Scholar 

  312. Halder, S. et al. Profiling of glycan receptors for minute virus of mice in permissive cell lines towards understanding the mechanism of cell recognition. PLoS ONE 9, e86909 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  313. Ricordel, M. et al. Cowpox virus: a new and armed oncolytic poxvirus. Mol. Ther. Oncolytics 7, 1–11 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  314. Chung, C. S., Hsiao, J. C., Chang, Y. S. & Chang, W. A27L protein mediates vaccinia virus interaction with cell surface heparan sulfate. J. Virol. 72, 1577–1585 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Howard, A. R., Senkevich, T. G. & Moss, B. Vaccinia virus A26 and A27 proteins form a stable complex tethered to mature virions by association with the A17 transmembrane protein. J. Virol. 82, 12384–12391 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Cousin, S. et al. Phase 2 trial of intravenous oncolytic virus JX-594 combined with low-dose cyclophosphamide in patients with advanced breast cancer. Exp. Hematol. Oncol. 11, 104 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Samson, A. et al. Neoadjuvant intravenous oncolytic vaccinia virus therapy promotes anticancer immunity in patients. Cancer Immunol. Res. 10, 745–756 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Zhang, Z. et al. CF33-hNIS-antiPDL1 virus primes pancreatic ductal adenocarcinoma for enhanced anti-PD-L1 therapy. Cancer Gene Ther. 29, 722–733 (2022).

    Article  CAS  PubMed  Google Scholar 

  319. Zuo, S. et al. An engineered oncolytic vaccinia virus encoding a single-chain variable fragment against TIGIT induces effective antitumor immunity and synergizes with PD-1 or LAG-3 blockade. J. Immunother. Cancer 9, e002843 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  320. Kloker, L. D. et al. Oncolytic vaccinia virus GLV-1h68 exhibits profound antitumoral activities in cell lines originating from neuroendocrine neoplasms. BMC Cancer 20, 628 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. O’Leary, M. P. et al. Novel oncolytic chimeric orthopoxvirus causes regression of pancreatic cancer xenografts and exhibits abscopal effect at a single low dose. J. Transl. Med. 16, 110 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  322. Peng, J. et al. Synergistic suppression effect on tumor growth of acute myeloid leukemia by combining cytarabine with an engineered oncolytic vaccinia virus. Onco Targets Ther. 11, 6887–6900 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Futami, M. et al. Efficacy and safety of doubly-regulated vaccinia virus in a mouse xenograft model of multiple myeloma. Mol. Ther. Oncolytics 6, 57–68 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Lv, C., Su, Q., Liang, Y., Hu, J. & Yuan, S. Oncolytic vaccine virus harbouring the IL-24 gene suppresses the growth of lung cancer by inducing apoptosis. Biochem. Biophys. Res. Commun. 476, 21–28 (2016).

    Article  CAS  PubMed  Google Scholar 

  325. Kim, M. Replicating poxviruses for human cancer therapy. J. Microbiol. 53, 209–218 (2015).

    Article  CAS  PubMed  Google Scholar 

  326. Guse, K., Cerullo, V. & Hemminki, A. Oncolytic vaccinia virus for the treatment of cancer. Expert Opin. Biol. Ther. 11, 595–608 (2011).

    Article  CAS  PubMed  Google Scholar 

  327. Thorne, S. H. Immunotherapeutic potential of oncolytic vaccinia virus. Immunol. Res. 50, 286–293 (2011).

    Article  CAS  PubMed  Google Scholar 

  328. Brun, J. et al. Identification of genetically modified Maraba virus as an oncolytic rhabdovirus. Mol. Ther. 18, 1440–1449 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Luteijn, R. D. et al. A genome-wide haploid genetic screen identifies heparan sulfate-associated genes and the macropinocytosis modulator TMED10 as factors supporting vaccinia virus infection. J. Virol. 93, e02160-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  330. Bengali, Z., Townsley, A. C. & Moss, B. Vaccinia virus strain differences in cell attachment and entry. Virology 389, 132–140 (2009).

    Article  CAS  PubMed  Google Scholar 

  331. Ricordel, M. et al. Oncolytic properties of non-vaccinia poxviruses. Oncotarget 9, 35891–35906 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  332. Evgin, L. et al. Potent oncolytic activity of raccoonpox virus in the absence of natural pathogenicity. Mol. Ther. 18, 896–902 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Rintoul, J. L. et al. ORFV: a novel oncolytic and immune stimulating parapoxvirus therapeutic. Mol. Ther. 20, 1148–1157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. von Buttlar, H., Siegemund, S., Büttner, M. & Alber, G. Identification of Toll-like receptor 9 as parapoxvirus ovis-sensing receptor in plasmacytoid dendritic cells. PLoS ONE 9, e106188 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  335. Mahar, R. et al. Metabolic signatures associated with oncolytic myxoma viral infections. Sci. Rep. 12, 12599 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Christie, J. D. et al. Systemic delivery of TNF-armed myxoma virus plus immune checkpoint inhibitor eliminates lung metastatic mouse osteosarcoma. Mol. Ther. Oncolytics 22, 539–554 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Rahman, M. M. & McFadden, G. Oncolytic virotherapy with myxoma virus. J. Clin. Med. 9, 171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Najarro, P. et al. Yaba-like disease virus chemokine receptor 7L, a CCR8 orthologue. J. Gen. Virol. 87, 809–816 (2006).

    Article  CAS  PubMed  Google Scholar 

  339. Würdinger, T. et al. Targeting non-human coronaviruses to human cancer cells using a bispecific single-chain antibody. Gene Ther. 12, 1394–1404 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  340. Tresnan, D. B., Levis, R. & Holmes, K. V. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J. Virol. 70, 8669–8674 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Cook, S., Castillo, D., Williams, S., Haake, C. & Murphy, B. Serotype I and II feline coronavirus replication and gene expression patterns of feline cells—building a better understanding of serotype I FIPV biology. Viruses 14, 1356 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Verheije, M. H. et al. Coronavirus genetically redirected to the epidermal growth factor receptor exhibits effective antitumor activity against a malignant glioblastoma. J. Virol. 83, 7507–7516 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Würdinger, T. et al. Soluble receptor-mediated targeting of mouse hepatitis coronavirus to the human epidermal growth factor receptor. J. Virol. 79, 15314–15322 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  344. Taguchi, F. & Hirai-Yuki, A. Mouse hepatitis virus receptor as a determinant of the mouse susceptibility to MHV infection. Front. Microbiol. 3, 68 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Chen, L. et al. Oncolytic Zika virus promotes intratumoral T cell infiltration and improves immunotherapy efficacy in glioblastoma. Mol. Ther. Oncolytics 24, 522–534 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Nair, S. et al. Zika virus oncolytic activity requires CD8+ T cells and is boosted by immune checkpoint blockade. JCI Insight 6, e144619 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  347. Lei, G. et al. Therapeutic efficacy of an oncolytic influenza virus carrying an antibody against programmed cell death 1 in hepatocellular carcinoma. Hum. Gene Ther. 33, 309–317 (2022).

    Article  CAS  PubMed  Google Scholar 

  348. Yang, H. et al. Oncolytic activity of a chimeric influenza A virus carrying a human CTLA4 antibody in hepatocellular carcinoma. Front. Oncol. 12, 875525 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Sitnik, S., Masemann, D., Leite Dantas, R., Wixler, V. & Ludwig, S. PD-1 IC inhibition synergistically improves influenza A virus-mediated oncolysis of metastatic pulmonary melanoma. Mol. Ther. Oncolytics 17, 190–204 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Penghui, Y. et al. Oncolytic activity of a novel influenza A virus carrying granulocyte-macrophage colony-stimulating factor in hepatocellular carcinoma. Hum. Gene Ther. 30, 330–338 (2019).

    Article  PubMed  Google Scholar 

  351. Masemann, D. et al. Oncolytic influenza virus infection restores immunocompetence of lung tumor-associated alveolar macrophages. Oncoimmunology 7, e1423171 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  352. Kuznetsova, I. et al. Targeting an oncolytic influenza A virus to tumor tissue by elastase. Mol. Ther. Oncolytics 7, 37–44 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Kasloff, S. B. et al. Oncolytic activity of avian influenza virus in human pancreatic ductal adenocarcinoma cell lines. J. Virol. 88, 9321–9334 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  354. Sturlan, S. et al. Endogenous expression of proteases in colon cancer cells facilitate influenza A viruses mediated oncolysis. Cancer Biol. Ther. 10, 592–599 (2010).

    Article  PubMed  Google Scholar 

  355. Sempere Borau, M. & Stertz, S. Entry of influenza A virus into host cells — recent progress and remaining challenges. Curr. Opin. Virol. 48, 23–29 (2021).

    Article  CAS  PubMed  Google Scholar 

  356. Huang, F. et al. Development of molecular mechanisms and their application on oncolytic Newcastle disease virus in cancer therapy. Front. Mol. Biosci. 9, 889403 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Liu, T. et al. Optimization of oncolytic effect of Newcastle disease virus Clone30 by selecting sensitive tumor host and constructing more oncolytic viruses. Gene Ther. 28, 697–717 (2021).

    Article  CAS  PubMed  Google Scholar 

  358. Burman, B., Pesci, G. & Zamarin, D. Newcastle disease virus at the forefront of cancer immunotherapy. Cancers 12, 3552 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Vijayakumar, G., McCroskery, S. & Palese, P. Engineering Newcastle disease virus as an oncolytic vector for intratumoral delivery of immune checkpoint inhibitors and immunocytokines. J. Virol. 94, e01677-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  360. Burke, S. et al. Oncolytic Newcastle disease virus activation of the innate immune response and priming of antitumor adaptive responses in vitro. Cancer Immunol. Immunother. 69, 1015–1027 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Schirrmacher, V. Fifty years of clinical application of Newcastle disease virus: time to celebrate! Biomedicines 4, 16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  362. Matveeva, O. V., Guo, Z. S., Shabalina, S. A. & Chumakov, P. M. Oncolysis by paramyxoviruses: multiple mechanisms contribute to therapeutic efficiency. Mol. Ther. Oncolytics 2, 15011 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Csatary, L. K. et al. MTH-68/H oncolytic viral treatment in human high-grade gliomas. J. Neurooncol. 67, 83–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  364. Phuangsab, A., Lorence, R. M., Reichard, K. W., Peeples, M. E. & Walter, R. J. Newcastle disease virus therapy of human tumor xenografts: antitumor effects of local or systemic administration. Cancer Lett. 172, 27–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  365. Reichard, K. W. et al. Newcastle disease virus selectively kills human tumor cells. J. Surg. Res. 52, 448–453 (1992).

    Article  CAS  PubMed  Google Scholar 

  366. Sánchez-Felipe, L., Villar, E. & Muñoz-Barroso, I. Entry of Newcastle Disease Virus into the host cell: role of acidic pH and endocytosis. Biochim. Biophys. Acta 1838, 300–309 (2014).

    Article  PubMed  Google Scholar 

  367. Armando, F. et al. Intratumoral canine distemper virus infection inhibits tumor growth by modulation of the tumor microenvironment in a murine xenograft model of canine histiocytic sarcoma. Int. J. Mol. Sci. 22, 3578 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Li, P. et al. Oncolytic activity of canine distemper virus in canine mammary tubular adenocarcinoma cells. Vet. Comp. Oncol. 17, 174–183 (2019).

    Article  CAS  PubMed  Google Scholar 

  369. Zhao, J. & Ren, Y. Multiple receptors involved in invasion and neuropathogenicity of canine distemper virus: a review. Viruses 14, 1520 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Suter, S. E. et al. In vitro canine distemper virus infection of canine lymphoid cells: a prelude to oncolytic therapy for lymphoma. Clin. Cancer Res. 11, 1579–1587 (2005).

    Article  CAS  PubMed  Google Scholar 

  371. Naseer, F. et al. Formulation for the targeted delivery of a vaccine strain of oncolytic measles virus (OMV) in hyaluronic acid coated thiolated chitosan as a green nanoformulation for the treatment of prostate cancer: a viro-immunotherapeutic approach. Int. J. Nanomed. 18, 185–205 (2023).

    Article  CAS  Google Scholar 

  372. Engeland, C. E. & Ungerechts, G. Measles virus as an oncolytic immunotherapy. Cancers 13, 544 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Pidelaserra-Martí, G. & Engeland, C. E. Mechanisms of measles virus oncolytic immunotherapy. Cytokine Growth Factor Rev. 56, 28–38 (2020).

    Article  PubMed  Google Scholar 

  374. Leber, M. F. et al. Engineering and combining oncolytic measles virus for cancer therapy. Cytokine Growth Factor Rev. 56, 39–48 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Maurer, S., Salih, H. R., Smirnow, I., Lauer, U. M. & Berchtold, S. Suicide gene‑armed measles vaccine virus for the treatment of AML. Int. J. Oncol. 55, 347–358 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  376. Allagui, F. et al. Modulation of the type I interferon response defines the sensitivity of human melanoma cells to oncolytic measles virus. Curr. Gene Ther. 16, 419–428 (2017).

    Article  PubMed  Google Scholar 

  377. Patel, M. R. et al. Measles vaccine strains for virotherapy of non-small-cell lung carcinoma. J. Thorac. Oncol. 9, 1101–1110 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Msaouel, P. et al. Engineered measles virus as a novel oncolytic therapy against prostate cancer. Prostate 69, 82–91 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Gonçalves-Carneiro, D., McKeating, J. A. & Bailey, D. The measles virus receptor SLAMF1 can mediate particle endocytosis. J. Virol. 91, e02255-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  380. Dhiman, N., Jacobson, R. M. & Poland, G. A. Measles virus receptors: SLAM and CD46. Rev. Med. Virol. 14, 217–229 (2004).

    Article  CAS  PubMed  Google Scholar 

  381. Tanaka, Y. et al. Sentinel lymph node-targeted therapy by oncolytic Sendai virus suppresses micrometastasis of head and neck squamous cell carcinoma in an orthotopic nude mouse model. Mol. Cancer Ther. 18, 1430–1438 (2019).

    Article  CAS  PubMed  Google Scholar 

  382. Ilyinskaya, G. V., Mukhina, E. V., Soboleva, A. V., Matveeva, O. V. & Chumakov, P. M. Oncolytic Sendai virus therapy of canine mast cell tumors (a pilot study). Front. Vet. Sci. 5, 116 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  383. Saga, K. & Kaneda, Y. Oncolytic Sendai virus-based virotherapy for cancer: recent advances. Oncolytic Virother. 4, 141–147 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  384. Bossow, S. et al. Armed and targeted measles virus for chemovirotherapy of pancreatic cancer. Cancer Gene Ther. 18, 598–608 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Kinoh, H. et al. Generation of optimized and urokinase-targeted oncolytic Sendai virus vectors applicable for various human malignancies. Gene Ther. 16, 392–403 (2009).

    Article  CAS  PubMed  Google Scholar 

  386. Kinoh, H. et al. Generation of a recombinant Sendai virus that is selectively activated and lyses human tumor cells expressing matrix metalloproteinases. Gene Ther. 11, 1137–1145 (2004).

    Article  CAS  PubMed  Google Scholar 

  387. Suzuki, Y., Suzuki, T. & Matsumoto, M. Isolation and characterization of receptor sialoglycoprotein for hemagglutinating virus of Japan (Sendai virus) from bovine erythrocyte membrane. J. Biochem. 93, 1621–1633 (1983).

    Article  CAS  PubMed  Google Scholar 

  388. Oku, N., Nojima, S. & Inoue, K. Studies on the interaction of Sendai virus with liposomal membranes. Sendai virus-induced agglutination of liposomes containing glycophorin. Biochim. Biophys. Acta 646, 36–42 (1981).

    Article  CAS  PubMed  Google Scholar 

  389. Müthing, J. Influenza A and Sendai viruses preferentially bind to fucosylated gangliosides with linear poly-N-acetyllactosaminyl chains from human granulocytes. Carbohydr. Res. 290, 217–224 (1996).

    Article  PubMed  Google Scholar 

  390. Holmgren, J., Svennerholm, L., Elwing, H., Fredman, P. & Strannegård, O. Sendai virus receptor: proposed recognition structure based on binding to plastic-adsorbed gangliosides. Proc. Natl Acad. Sci. USA 77, 1947–1950 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Suzuki, Y., Suzuki, T., Matsunaga, M. & Matsumoto, M. Gangliosides as paramyxovirus receptor. Structural requirement of sialo-oligosaccharides in receptors for hemagglutinating virus of Japan (Sendai virus) and Newcastle disease virus. J. Biochem. 97, 1189–1199 (1985).

    Article  CAS  PubMed  Google Scholar 

  392. Suzuki, T. et al. Receptor specificities of human respiroviruses. J. Virol. 75, 4604–4613 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  393. Behrens, M. D. et al. Oncolytic Urabe mumps virus: a promising virotherapy for triple-negative breast cancer. Mol. Ther. Oncolytics 27, 239–255 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Son, H. A. et al. Combination of vaccine-strain measles and mumps viruses enhances oncolytic activity against human solid malignancies. Cancer Invest. 36, 106–117 (2018).

    Article  CAS  PubMed  Google Scholar 

  395. Ammayappan, A., Russell, S. J. & Federspiel, M. J. Recombinant mumps virus as a cancer therapeutic agent. Mol. Ther. Oncolytics 3, 16019 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Gainey, M. D., Manuse, M. J. & Parks, G. D. A hyperfusogenic F protein enhances the oncolytic potency of a paramyxovirus simian virus 5 P/V mutant without compromising sensitivity to type I interferon. J. Virol. 82, 9369–9380 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  397. Wansley, E. K. & Parks, G. D. Naturally occurring substitutions in the P/V gene convert the noncytopathic paramyxovirus simian virus 5 into a virus that induces alpha/beta interferon synthesis and cell death. J. Virol. 76, 10109–10121 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  398. Bose, S. et al. Structure and mutagenesis of the parainfluenza virus 5 hemagglutinin-neuraminidase stalk domain reveals a four-helix bundle and the role of the stalk in fusion promotion. J. Virol. 85, 12855–12866 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Penza, V., Maroun, J. W., Nace, R. A., Schulze, A. J. & Russell, S. J. Polycytidine tract deletion from microRNA-detargeted oncolytic Mengovirus optimizes the therapeutic index in a murine multiple myeloma model. Mol. Ther. Oncolytics 28, 15–30 (2023).

    Article  CAS  PubMed  Google Scholar 

  400. Suryawanshi, Y. R., Nace, R. A., Russell, S. J. & Schulze, A. J. MicroRNA-detargeting proves more effective than leader gene deletion for improving safety of oncolytic Mengovirus in a nude mouse model. Mol. Ther. Oncolytics 23, 1–13 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  401. Maroun, J. W., Penza, V., Weiskittel, T. M., Schulze, A. J. & Russell, S. J. Collateral lethal effects of complementary oncolytic viruses. Mol. Ther. Oncolytics 18, 236–246 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  402. Ruiz, A. J., Hadac, E. M., Nace, R. A. & Russell, S. J. MicroRNA-detargeted mengovirus for oncolytic virotherapy. J. Virol. 90, 4078–4092 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Roos, F. C. et al. Oncolytic targeting of renal cell carcinoma via encephalomyocarditis virus. EMBO Mol. Med. 2, 275–288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Hammoumi, S., Guy, M., Eloit, M. & Bakkali-Kassimi, L. Encephalomyocarditis virus may use different pathways to initiate infection of primary human cardiomyocytes. Arch. Virol. 157, 43–52 (2012).

    Article  CAS  PubMed  Google Scholar 

  405. Smyth, M., Symonds, A., Brazinova, S. & Martin, J. Bovine enterovirus as an oncolytic virus: foetal calf serum facilitates its infection of human cells. Int. J. Mol. Med. 10, 49–53 (2002).

    CAS  PubMed  Google Scholar 

  406. Hodes, M. E., Morgan, S., Hubbard, J. D., Yu, P. L. & Lukemeyer, J. W. Tissue culture and animal studies with an oncolytic bovine enterovirus (bovine enterovirus 1). Cancer Res. 33, 2408–2414 (1973).

    CAS  PubMed  Google Scholar 

  407. Taylor, M. W., Cordell, B., Souhrada, M. & Prather, S. Viruses as an aid to cancer therapy: regression of solid and ascites tumors in rodents after treatment with bovine enterovirus. Proc. Natl Acad. Sci. USA 68, 836–840 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  408. Au, G. G., Beagley, L. G., Haley, E. S., Barry, R. D. & Shafren, D. R. Oncolysis of malignant human melanoma tumors by Coxsackieviruses A13, A15 and A18. Virol. J. 8, 22 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  409. Rossmann, M. G. Viral cell recognition and entry. Protein Sci. 3, 1712–1725 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  410. Xiao, C. et al. Interaction of coxsackievirus A21 with its cellular receptor, ICAM-1. J. Virol. 75, 2444–2451 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  411. Rudin, C. M. et al. Phase 1, open-label, dose-escalation study on the safety, pharmacokinetics, and preliminary efficacy of intravenous Coxsackievirus A21 (V937), with or without pembrolizumab, in patients with advanced solid tumors. J. Immunother. Cancer 11, e005007 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  412. Andtbacka, R. H. I. et al. Clinical responses of oncolytic Coxsackievirus A21 (V937) in patients with unresectable melanoma. J. Clin. Oncol. 39, 3829–3838 (2021).

    Article  CAS  PubMed  Google Scholar 

  413. Bradley, S. et al. Applications of coxsackievirus A21 in oncology. Oncolytic Virother. 3, 47–55 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Bahreyni, A. et al. A new miRNA-modified coxsackievirus B3 inhibits triple negative breast cancer growth with improved safety profile in immunocompetent mice. Cancer Lett. 548, 215849 (2022).

    Article  CAS  PubMed  Google Scholar 

  415. Geisler, A., Hazini, A., Heimann, L., Kurreck, J. & Fechner, H. Coxsackievirus B3—its potential as an oncolytic virus. Viruses 13, 718 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. Miyamoto, S. et al. Coxsackievirus B3 is an oncolytic virus with immunostimulatory properties that is active against lung adenocarcinoma. Cancer Res. 72, 2609–2621 (2012).

    Article  CAS  PubMed  Google Scholar 

  417. Beasley, G. M. et al. Phase I trial of intratumoral PVSRIPO in patients with unresectable, treatment-refractory melanoma. J. Immunother. Cancer 9, e002203 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  418. Desjardins, A. et al. Recurrent glioblastoma treated with recombinant poliovirus. N. Engl. J. Med. 379, 150–161 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  419. Walton, R. W., Brown, M. C., Sacco, M. T. & Gromeier, M. Engineered oncolytic poliovirus PVSRIPO subverts MDA5-dependent innate immune responses in cancer cells. J. Virol. 92, e00879-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  420. Holl, E. K. et al. Recombinant oncolytic poliovirus, PVSRIPO, has potent cytotoxic and innate inflammatory effects, mediating therapy in human breast and prostate cancer xenograft models. Oncotarget 7, 79828–79841 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  421. Atsumi, S. et al. Oncolytic virotherapy for human bone and soft tissue sarcomas using live attenuated poliovirus. Int. J. Oncol. 41, 893–902 (2012).

    Article  CAS  PubMed  Google Scholar 

  422. Haley, E. S., Au, G. G., Carlton, B. R., Barry, R. D. & Shafren, D. R. Regional administration of oncolytic Echovirus 1 as a novel therapy for the peritoneal dissemination of gastric cancer. J. Mol. Med. 87, 385–399 (2009).

    Article  PubMed  Google Scholar 

  423. Shafren, D. R., Sylvester, D., Johansson, E. S., Campbell, I. G. & Barry, R. D. Oncolysis of human ovarian cancers by echovirus type 1. Int. J. Cancer 115, 320–328 (2005).

    Article  CAS  PubMed  Google Scholar 

  424. He, Y. et al. Structure of decay-accelerating factor bound to echovirus 7: a virus-receptor complex. Proc. Natl Acad. Sci. USA 99, 10325–10329 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  425. Hietanen, E., Koivu, M. K. A. & Susi, P. Cytolytic properties and genome analysis of Rigvir® oncolytic virotherapy virus and other echovirus 7 isolates. Viruses 14, 525 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  426. Ismailov, Z. et al. A case of stage IV chromophobe renal cell carcinoma treated with the oncolytic ECHO-7 virus, Rigvir®. Am. J. Case Rep. 20, 48–52 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  427. Alberts, P., Tilgase, A., Rasa, A., Bandere, K. & Venskus, D. The advent of oncolytic virotherapy in oncology: the Rigvir® story. Eur. J. Pharmacol. 837, 117–126 (2018).

    Article  CAS  PubMed  Google Scholar 

  428. Kim, C. & Bergelson, J. M. Echovirus 7 entry into polarized intestinal epithelial cells requires clathrin and Rab7. mBio 3, e00304-11 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  429. Israelsson, S., Jonsson, N., Gullberg, M. & Lindberg, A. M. Cytolytic replication of echoviruses in colon cancer cell lines. Virol. J. 8, 473 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  430. Li, J. et al. Pathological characteristics of Echovirus 30 infection in a mouse model. J. Virol. 96, e0012922 (2022).

    Article  PubMed  Google Scholar 

  431. Li, J., Zhang, Y., Qu, Z., Ding, R. & Yin, X. ABCD3 is a prognostic biomarker for glioma and associated with immune infiltration: a study based on oncolysis of gliomas. Front. Cell. Infect. Microbiol. 12, 956801 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  432. Zhang, X. et al. Enterovirus A71 oncolysis of malignant gliomas. Mol. Ther. 28, 1533–1546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  433. Kobayashi, K. & Koike, S. Adaptation and virulence of enterovirus-A71. Viruses 13, 1661 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  434. Kobayashi, K. & Koike, S. Cellular receptors for enterovirus A71. J. Biomed. Sci. 27, 23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  435. Luo, D. et al. Senecavirus A as an oncolytic virus: prospects, challenges and development directions. Front. Oncol. 12, 839536 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  436. Schenk, E. L. et al. A randomized double-blind phase II study of the Seneca Valley virus (NTX-010) versus placebo for patients with extensive-stage SCLC (ES SCLC) who were stable or responding after at least four cycles of platinum-based chemotherapy: North Central Cancer Treatment Group (Alliance) N0923 Study. J. Thorac. Oncol. 15, 110–119 (2020).

    Article  CAS  PubMed  Google Scholar 

  437. Burke, M. J. Oncolytic Seneca Valley virus: past perspectives and future directions. Oncolytic Virother. 5, 81–89 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  438. Reddy, P. S. et al. Seneca Valley virus, a systemically deliverable oncolytic picornavirus, and the treatment of neuroendocrine cancers. J. Natl Cancer Inst. 99, 1623–1633 (2007).

    Article  CAS  PubMed  Google Scholar 

  439. Cao, L. et al. Seneca Valley virus attachment and uncoating mediated by its receptor anthrax toxin receptor 1. Proc. Natl Acad. Sci. USA 115, 13087–13092 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  440. Hou, L. et al. Seneca Valley virus enters PK-15 cells via caveolae-mediated endocytosis and macropinocytosis dependent on low-pH, dynamin, Rab5, and Rab7. J. Virol. 96, e0144622 (2022).

    Article  PubMed  Google Scholar 

  441. Li, J. K.-K. Oncolytic bluetongue viruses: promise, progress, and perspectives. Front. Microbiol. 2, 46 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  442. Hu, J. et al. Selective in vitro cytotoxic effect of human cancer cells by bluetongue virus-10. Acta Oncol. 47, 124–134 (2008).

    Article  CAS  PubMed  Google Scholar 

  443. Roy, P. Bluetongue virus assembly and exit pathways. Adv. Virus Res. 108, 249–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  444. Hassan, S. S. & Roy, P. Expression and functional characterization of bluetongue virus VP2 protein: role in cell entry. J. Virol. 73, 9832–9842 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  445. Bhattacharya, B. & Roy, P. Role of lipids on entry and exit of bluetongue virus, a complex non-enveloped virus. Viruses 2, 1218–1235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  446. Müller, L., Berkeley, R., Barr, T., Ilett, E. & Errington-Mais, F. Past, present and future of oncolytic reovirus. Cancers 12, 3219 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  447. Mahalingam, D. et al. A phase II study of pelareorep (REOLYSIN®) in combination with gemcitabine for patients with advanced pancreatic adenocarcinoma. Cancers 10, 160 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  448. Noonan, A. M. et al. Randomized phase 2 trial of the oncolytic virus pelareorep (Reolysin) in upfront treatment of metastatic pancreatic adenocarcinoma. Mol. Ther. 24, 1150–1158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  449. Danthi, P., Holm, G. H., Stehle, T. & Dermody, T. S. Reovirus receptors, cell entry, and proapoptotic signaling. Adv. Exp. Med. Biol. 790, 42–71 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  450. Kushiya, H. et al. Retroviral replicating vector Toca 511 (Vocimagene Amiretrorepvec) for prodrug activator gene therapy of lung cancer. Cancers 14, 5820 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  451. Collins, S. A., Shah, A. H., Ostertag, D., Kasahara, N. & Jolly, D. J. Clinical development of retroviral replicating vector Toca 511 for gene therapy of cancer. Expert Opin. Biol. Ther. 21, 1199–1214 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  452. Lee, E. S., Jin, S. Y., Kang, B. K. & Jung, Y.-T. Construction of replication-competent oncolytic retroviral vectors expressing R peptide-truncated 10A1 envelope glycoprotein. J. Virol. Methods 268, 32–36 (2019).

    Article  CAS  PubMed  Google Scholar 

  453. O Bryan, S. M. & Mathis, J. M. Oncolytic virotherapy for breast cancer treatment. Curr. Gene Ther. 18, 192–205 (2018).

    Article  CAS  PubMed  Google Scholar 

  454. Cloughesy, T. F. et al. Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. Sci. Transl. Med. 8, 341ra75 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  455. Rein, A. Murine leukemia viruses: objects and organisms. Adv. Virol. 2011, 403419 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  456. Budzik, K. M., Nace, R. A., Ikeda, Y. & Russell, S. J. Evaluation of the stability and intratumoral delivery of foreign transgenes encoded by an oncolytic Foamy Virus vector. Cancer Gene Ther. 29, 1240–1251 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  457. Budzik, K. M., Nace, R. A., Ikeda, Y. & Russell, S. J. Oncolytic Foamy Virus—generation and properties of a nonpathogenic replicating retroviral vector system that targets chronically proliferating cancer cells. J. Virol. 95, e00015-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  458. Berka, U., Hamann, M. V. & Lindemann, D. Early events in foamy virus-host interaction and intracellular trafficking. Viruses 5, 1055–1074 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  459. McGray, A. J. R. et al. Oncolytic Maraba virus armed with tumor antigen boosts vaccine priming and reveals diverse therapeutic response patterns when combined with checkpoint blockade in ovarian cancer. J. Immunother. Cancer 7, 189 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  460. Tong, J. G. et al. Evidence for differential viral oncolytic efficacy in an in vitro model of epithelial ovarian cancer metastasis. Mol. Ther. Oncolytics 2, 15013 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  461. Tong, J. G. et al. Spatial and temporal epithelial ovarian cancer cell heterogeneity impacts Maraba virus oncolytic potential. BMC Cancer 17, 594 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  462. Porosnicu, M., Quinson, A.-M., Crossley, K., Luecke, S. & Lauer, U. M. Phase I study of VSV-GP (BI 1831169) as monotherapy or combined with ezabenlimab in advanced and refractory solid tumors. Future Oncol. 18, 2627–2638 (2022).

    Article  CAS  PubMed  Google Scholar 

  463. Wedge, M.-E. et al. Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nat. Commun. 13, 1898 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  464. Zhang, Y. & Nagalo, B. M. Immunovirotherapy based on recombinant vesicular stomatitis virus: where are we? Front. Immunol. 13, 898631 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  465. Innao, V., Rizzo, V., Allegra, A. G., Musolino, C. & Allegra, A. Oncolytic viruses and hematological malignancies: a new class of immunotherapy drugs. Curr. Oncol. 28, 159–183 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  466. Nagalo, B. M. et al. Oncolytic virus with attributes of vesicular stomatitis virus and measles virus in hepatobiliary and pancreatic cancers. Mol. Ther. Oncolytics 18, 546–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  467. Felt, S. A. & Grdzelishvili, V. Z. Recent advances in vesicular stomatitis virus-based oncolytic virotherapy: a 5-year update. J. Gen. Virol. 98, 2895–2911 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  468. Nguyen, A. et al. HDACi delivery reprograms tumor-infiltrating myeloid cells to eliminate antigen-loss variants. Cell Rep. 24, 642–654 (2018).

    Article  CAS  PubMed  Google Scholar 

  469. Shen, W., Patnaik, M. M., Ruiz, A., Russell, S. J. & Peng, K.-W. Immunovirotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia. Blood 127, 1449–1458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  470. Naik, S., Nace, R., Barber, G. N. & Russell, S. J. Potent systemic therapy of multiple myeloma utilizing oncolytic vesicular stomatitis virus coding for interferon-β. Cancer Gene Ther. 19, 443–450 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  471. Finkelshtein, D., Werman, A., Novick, D., Barak, S. & Rubinstein, M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc. Natl Acad. Sci. USA 110, 7306–7311 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  472. Lundstrom, K. Alphaviruses in immunotherapy and anticancer therapy. Biomedicines 10, 2263 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  473. Muhuri, M. & Gao, G. Oncolytic virus Alphavirus M1: a new and promising weapon to fight cancer. Hum. Gene Ther. 32, 136–137 (2021).

    Article  CAS  PubMed  Google Scholar 

  474. Liang, J. et al. Inhibition of the mevalonate pathway enhances cancer cell oncolysis mediated by M1 virus. Nat. Commun. 9, 1524 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  475. Lin, Y. et al. Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. Proc. Natl Acad. Sci. USA 111, E4504–E4512 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  476. Wang, N. et al. Attenuation of Getah virus by a single amino acid substitution at residue 253 of the E2 protein that might be part of a new heparan sulfate binding site on alphaviruses. J. Virol. 96, e0175121 (2022).

    Article  PubMed  Google Scholar 

  477. Herrador-Cañete, G. et al. Galectin-3 inhibition boosts the therapeutic efficacy of Semliki Forest virus in pediatric osteosarcoma. Mol. Ther. Oncolytics 26, 246–264 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  478. Martikainen, M. et al. IFN-I-tolerant oncolytic Semliki Forest virus in combination with anti-PD1 enhances T cell response against mouse glioma. Mol. Ther. Oncolytics 21, 37–46 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  479. Quetglas, J. I. et al. Virotherapy with a Semliki Forest virus-based vector encoding IL12 synergizes with PD-1/PD-L1 blockade. Cancer Immunol. Res. 3, 449–454 (2015).

    Article  CAS  PubMed  Google Scholar 

  480. Ma, J. et al. Concurrent expression of HP-NAP enhances antitumor efficacy of oncolytic vaccinia virus but not for Semliki Forest virus. Mol. Ther. Oncolytics 21, 356–366 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  481. Martikainen, M. et al. Oncolytic alphavirus SFV-VA7 efficiently eradicates subcutaneous and orthotopic human prostate tumours in mice. Br. J. Cancer 117, 51–55 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  482. Ketola, A. et al. Oncolytic Semliki Forest virus vector as a novel candidate against unresectable osteosarcoma. Cancer Res. 68, 8342–8350 (2008).

    Article  CAS  PubMed  Google Scholar 

  483. Ylösmäki, E., Martikainen, M., Hinkkanen, A. & Saksela, K. Attenuation of Semliki Forest virus neurovirulence by microRNA-mediated detargeting. J. Virol. 87, 335–344 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  484. Ruotsalainen, J. J. et al. Clonal variation in interferon response determines the outcome of oncolytic virotherapy in mouse CT26 colon carcinoma model. Gene Ther. 22, 65–75 (2015).

    Article  CAS  PubMed  Google Scholar 

  485. Vähä-Koskela, M. J. V. et al. Oncolytic capacity of attenuated replicative Semliki Forest virus in human melanoma xenografts in severe combined immunodeficient mice. Cancer Res. 66, 7185–7194 (2006).

    Article  PubMed  Google Scholar 

  486. Lu, Y. E., Cassese, T. & Kielian, M. The cholesterol requirement for sindbis virus entry and exit and characterization of a spike protein region involved in cholesterol dependence. J. Virol. 73, 4272–4278 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  487. Schroeder, C. Cholesterol-binding viral proteins in virus entry and morphogenesis. Subcell. Biochem. 51, 77–108 (2010).

    Article  CAS  PubMed  Google Scholar 

  488. Clark, L. E. et al. VLDLR and ApoER2 are receptors for multiple alphaviruses. Nature 602, 475–480 (2022).

    Article  CAS  PubMed  Google Scholar 

  489. Zimmerman, O., Holmes, A. C., Kafai, N. M., Adams, L. J. & Diamond, M. S. Entry receptors—the gateway to alphavirus infection. J. Clin. Invest. 133, e165307 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  490. Opp, S., Hurtado, A., Pampeno, C., Lin, Z. & Meruelo, D. Potent and targeted Sindbis virus platform for immunotherapy of ovarian cancer. Cells 12, 77 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  491. Scherwitzl, I. et al. Sindbis virus with anti-OX40 overcomes the immunosuppressive tumor microenvironment of low-immunogenic tumors. Mol. Ther. Oncolytics 17, 431–447 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  492. Scherwitzl, I. et al. Systemically administered Sindbis virus in combination with immune checkpoint blockade induces curative anti-tumor immunity. Mol. Ther. Oncolytics 9, 51–63 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  493. Takenouchi, A. et al. Oncolytic viral therapy for neuroblastoma cells with Sindbis virus AR339 strain. Pediatr. Surg. Int. 31, 1151–1159 (2015).

    Article  PubMed  Google Scholar 

  494. Sargent, A. L. et al. Quantitatively assessing the respiratory burst in innate immune cells. Methods Mol. Biol. 2614, 47–70 (2023).

    Article  CAS  PubMed  Google Scholar 

  495. Xu, B. et al. An oncolytic virus expressing a full-length antibody enhances antitumor innate immune response to glioblastoma. Nat. Commun. 12, 5908 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  496. Boero, E. et al. Use of flow cytometry to evaluate phagocytosis of Staphylococcus aureus by human neutrophils. Front. Immunol. 12, 635825 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  497. Li, X. et al. CXCL10-armed oncolytic adenovirus promotes tumor-infiltrating T-cell chemotaxis to enhance anti-PD-1 therapy. Oncoimmunology 11, 2118210 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  498. Benencia, F. et al. HSV oncolytic therapy upregulates interferon-inducible chemokines and recruits immune effector cells in ovarian cancer. Mol. Ther. 12, 789–802 (2005).

    Article  CAS  PubMed  Google Scholar 

  499. Zhang, Y. et al. Attenuated, oncolytic, but not wild-type measles virus infection has pleiotropic effects on human neutrophil function. J. Immunol. 188, 1002–1010 (2012).

    Article  CAS  PubMed  Google Scholar 

  500. Hamdan, F. et al. Novel oncolytic adenovirus expressing enhanced cross-hybrid IgGA Fc PD-L1 inhibitor activates multiple immune effector populations leading to enhanced tumor killing in vitro, in vivo and with patient-derived tumor organoids. J. Immunother. Cancer 9, e003000 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  501. Leung, E. Y. L. et al. NK cells augment oncolytic adenovirus cytotoxicity in ovarian cancer. Mol. Ther. Oncolytics 16, 289–301 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  502. Floerchinger, A. et al. A vector-encoded bispecific killer engager to harness virus-activated NK cells as anti-tumor effectors. Cell Death Dis. 14, 104 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  503. Ma, R. et al. An oncolytic virus expressing IL15/IL15Rα combined with off-the-shelf EGFR-CAR NK cells targets glioblastoma. Cancer Res. 81, 3635–3648 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  504. Bhat, R., Dempe, S., Dinsart, C. & Rommelaere, J. Enhancement of NK cell antitumor responses using an oncolytic parvovirus. Int. J. Cancer 128, 908–919 (2011).

    Article  CAS  PubMed  Google Scholar 

  505. Svensson-Arvelund, J. et al. Expanding cross-presenting dendritic cells enhances oncolytic virotherapy and is critical for long-term anti-tumor immunity. Nat. Commun. 13, 7149 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  506. Krug, A. et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  507. Dalod, M. et al. Dendritic cell responses to early murine cytomegalovirus infection: subset functional specialization and differential regulation by interferon alpha/beta. J. Exp. Med. 197, 885–898 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  508. Cella, M., Facchetti, F., Lanzavecchia, A. & Colonna, M. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat. Immunol. 1, 305–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  509. Guillerme, J.-B. et al. Measles virus vaccine-infected tumor cells induce tumor antigen cross-presentation by human plasmacytoid dendritic cells. Clin. Cancer Res. 19, 1147–1158 (2013).

    Article  CAS  PubMed  Google Scholar 

  510. Boudreau, J. E. et al. Recombinant vesicular stomatitis virus transduction of dendritic cells enhances their ability to prime innate and adaptive antitumor immunity. Mol. Ther. 17, 1465–1472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  511. Gauvrit, A. et al. Measles virus induces oncolysis of mesothelioma cells and allows dendritic cells to cross-prime tumor-specific CD8 response. Cancer Res. 68, 4882–4892 (2008).

    Article  CAS  PubMed  Google Scholar 

  512. Ilett, E. J. et al. Internalization of oncolytic reovirus by human dendritic cell carriers protects the virus from neutralization. Clin. Cancer Res. 17, 2767–2776 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  513. Schierer, S. et al. Human dendritic cells efficiently phagocytose adenoviral oncolysate but require additional stimulation to mature. Int. J. Cancer 130, 1682–1694 (2012).

    Article  CAS  PubMed  Google Scholar 

  514. van den Bossche, W. B. L. et al. Oncolytic virotherapy in glioblastoma patients induces a tumor macrophage phenotypic shift leading to an altered glioblastoma microenvironment. Neuro Oncol. 20, 1494–1504 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  515. Zhang, L. et al. Reshaping the immune microenvironment by oncolytic herpes simplex virus in murine pancreatic ductal adenocarcinoma. Mol. Ther. 29, 744–761 (2021).

    Article  CAS  PubMed  Google Scholar 

  516. Tan, Z. et al. Virotherapy-recruited PMN-MDSC infiltration of mesothelioma blocks antitumor CTL by IL-10-mediated dendritic cell suppression. Oncoimmunology 8, e1518672 (2019).

    Article  PubMed  Google Scholar 

  517. Finak, G. et al. Standardizing flow cytometry immunophenotyping analysis from the human immunophenotyping consortium. Sci. Rep. 6, 20686 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  518. Woodruff, M. C. et al. Response under pressure: deploying emerging technologies to understand B-cell-mediated immunity in COVID-19. Nat. Methods 19, 387–391 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  519. Izadi, N. & Hauk, P. J. Cellular assays to evaluate B-cell function. J. Immunol. Methods 512, 113395 (2023).

    Article  CAS  PubMed  Google Scholar 

  520. Ogbe, A. et al. T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses. Nat. Commun. 12, 2055 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  521. Ansari, A. et al. An efficient immunoassay for the B cell help function of SARS-CoV-2-specific memory CD4+ T cells. Cell Rep. Methods 2, 100224 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  522. Huseni, M. A. et al. CD8+ T cell-intrinsic IL-6 signaling promotes resistance to anti-PD-L1 immunotherapy. Cell Rep. Med 4, 100878 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  523. Nakajima, Y., Chamoto, K., Oura, T. & Honjo, T. Critical role of the CD44lowCD62Llow CD8+ T cell subset in restoring antitumor immunity in aged mice. Proc. Natl Acad. Sci. USA 118, e2103730118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  524. Sottile, R. et al. Human cytomegalovirus expands a CD8+ T cell population with loss of BCL11B expression and gain of NK cell identity. Sci. Immunol. 6, eabe6968 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  525. Notarangelo, G. et al. Oncometabolite d-2HG alters T cell metabolism to impair CD8+ T cell function. Science 377, 1519–1529 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  526. Dijkstra, K. K. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174, 1586–1598.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  527. Nelson, N. et al. A cell-engineered system to assess tumor cell sensitivity to CD8+ T cell-mediated cytotoxicity. Oncoimmunology 8, 1599635 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  528. Zhu, J., Cao, J., Liesz, A. & Roth, S. A macrophage-T cell coculture model for severe tissue injury-induced T cell death. STAR Protoc. 2, 100983 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.G. is supported by grants from the CIHR, the Canadian Cancer Society (CCS), the Canada Foundation for Innovation-John R. Evans Leaders Fund (CFI-JELF), Research Nova Scotia (RNS), the Cancer Research Society (CRS) and the Dalhousie Medical Research Foundation (DMRF). V.K. was supported through the Cancer Research Training Program (CRTP) of the Beatrice Hunter Cancer Research Institute (BHCRI). P.K. was funded by the Killam Predoctoral Scholarship. J.G.P. is supported by the Site de Recherche intégrée sur le Cancer (SIRIC) Cancer Research and Personalized Medicine (CARPEM), Institut National du Cancer (INCa), Cancer ITMO (Multi-Organisation Thematic Institute) of the French Alliance for Life Sciences and Health (AVIESAN) and Fondation pour la Recherche Médicale (FRM). G.K. is supported by the Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR) – Projets blancs; AMMICa US23/CNRS UMS3655; Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; European Research Council Advanced Investigator Grant “ICD-Cancer”, FRM; a donation by Elior; Equipex Onco-Pheno-Screen; European Joint Programme on Rare Diseases (EJPRD); European Research Council (ICD-Cancer), European Union Horizon 2020 Projects Oncobiome and Crimson; Fondation Carrefour; Institut National du Cancer (INCa); Institut Universitaire de France; LabEx Immuno-Oncology (ANR-18-IDEX-0001); a Cancer Research ASPIRE Award from the Mark Foundation; the RHU Immunolife; Seerave Foundation; SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); and SIRIC CARPEM. This study contributes to the IdEx Université de Paris ANR-18-IDEX-0001. J.C.B. is supported by the CIHR, the CCS, BioCanRx and the Terry Fox Research Institute (TFRI).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was performed by S.G., J.G.P., J.C.B. and G.K. Writing and editing was done by S.G., J.G.P., V.K., P.K., M.L.-G., J.C.B. and G.K. Project administration was handled by S.G., J.G.P., J.C.B. and G.K.

Corresponding authors

Correspondence to Guido Kroemer or John C. Bell.

Ethics declarations

Competing interests

J.G.P. is named as an inventor on patents for cancer vaccination involving an oncolytic rhabdovirus. These patents have been licensed to Turnstone Biologics. G.K. holds research contracts with Daiichi Sankyo, Eleor, Kaleido, Lytix Pharma, PharmaMar, Osasuna Therapeutics, Samsara Therapeutics, Sanofi, Tollys and Vascage. G.K. consults for Reithera. G.K. is on the Board of Directors of the Bristol Myers Squibb Foundation France. G.K. is a scientific co-founder of everImmune, Osasuna Therapeutics, Samsara Therapeutics and Therafast Bio. G.K. is on the scientific advisory boards of Hevolution, Institut Servier and Longevity Vision Funds. G.K. is the inventor of patents covering therapeutic targeting of aging, cancer, cystic fibrosis and metabolic disorders. J.C.B. is a co-founder of Turnstone Biologics and Esphera Synbio. J.C.B. holds multiple patents involving the development of OV-based therapeutics. J.C.B. is on the advisory boards of Transgene, Cytonus, Abalos and hCBioscience.

Peer review

Peer review information

Nature Protocols thanks Howard Kaufman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gujar, S., Pol, J.G., Kumar, V. et al. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-00985-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-00985-1

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing