Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

To slide or not to slide: key role of the hexasome in chromatin remodeling revealed

Abstract

Hexasomes are non-canonical nucleosomes that package DNA with six instead of eight histones. First discovered 40 years ago as a consequence of transcription, two near-atomic-resolution cryo-EM structures of the hexasome in complex with the chromatin remodeler INO80 have now started to unravel its mechanistic impact on the regulatory landscape of chromatin. Loss of one histone H2A–H2B dimer converts inactive nucleosomes into distinct and favorable substrates for ATP-dependent chromatin remodeling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Discovery of the hexasome.
Fig. 2: Hexasome–INO80 complex reveals structural basis of nucleosome remodeling.

Similar content being viewed by others

References

  1. Menolfi, D. & Rhodes, D. 70 years of the DNA double helix: an interview with Daniela Rhodes. Mol. Cell 83, 1200–1203 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).

    Article  CAS  PubMed  Google Scholar 

  3. Olins, A. L. & Olins, D. E. Spheroid chromatin units (v bodies). Science 183, 330–332 (1974).

    Article  CAS  PubMed  Google Scholar 

  4. Van Holde, K. E. Chromatin (Springer Science & Business Media, 2012).

  5. Richmond, T. J., Finch, J. T., Rushton, B., Rhodes, D. & Klug, A. Structure of the nucleosome core particle at 7 Å resolution. Nature 311, 532–537 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Baer, B. W. & Rhodes, D. Eukaryotic RNA polymerase II binds to nucleosome cores from transcribed genes. Nature 301, 482–488 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Liu, Y. et al. FACT caught in the act of manipulating the nucleosome. Nature 577, 426–431 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Farnung, L., Ochmann, M., Garg, G., Vos, S. M. & Cramer, P. Structure of a backtracked hexasomal intermediate of nucleosome transcription. Mol. Cell 82, 3126–3134 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Kireeva, M. L. et al. Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol. Cell 9, 541–552 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Ramachandran, S., Ahmad, K. & Henikoff, S. Transcription and remodeling produce asymmetrically unwrapped nucleosomal intermediates. Mol. Cell 68, 1038–1053 (2017).

  12. Clapier, C. R., Iwasa, J., Cairns, B. R. & Peterson, C. L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 18, 407–422 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hargreaves, D. C. & Crabtree, G. R. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 21, 396–420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, C. Chromatin remodeling and the control of gene expression. J. Biol. Chem. 272, 28171–28174 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Eustermann, S., Patel, A. B., Hopfner, K. P., He, Y. & Korber, P. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat. Rev. Mol. Cell Biol. 25, 309–332 (2024).

  16. Wu, H. et al. Reorientation of INO80 on hexasomes reveals basis for mechanistic versatility. Science 381, 319–324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, M. et al. Hexasome–INO80 complex reveals structural basis of noncanonical nucleosome remodeling. Science 381, 313–319 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Hsieh, L. J. et al. A hexasome is the preferred substrate for the INO80 chromatin remodeling complex, allowing versatility of function. Mol. Cell 82, 2098–2112 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ebbert, R., Birkmann, A. & Schuller, H. J. The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. Mol. Microbiol. 32, 741–751 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Shen, X., Mizuguchi, G., Hamiche, A. & Wu, C. A chromatin remodelling complex involved in transcription and DNA processing. Nature 406, 541–544 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Krietenstein, N. et al. Genomic nucleosome organization reconstituted with pure proteins. Cell 167, 709–721 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Poli, J., Gasser, S. M. & Papamichos-Chronakis, M. The INO80 remodeller in transcription, replication and repair. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160290 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yen, K., Vinayachandran, V. & Pugh, B. F. SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes. Cell 154, 1246–1256 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oberbeckmann, E. et al. Ruler elements in chromatin remodelers set nucleosome array spacing and phasing. Nat. Commun. 12, 3232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oberbeckmann, E. et al. Genome information processing by the INO80 chromatin remodeler positions nucleosomes. Nat. Commun. 12, 3231 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McGinty, R. K. & Tan, S. Principles of nucleosome recognition by chromatin factors and enzymes. Curr. Opin. Struct. Biol. 71, 16–26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eustermann, S. et al. Structural basis for ATP-dependent chromatin remodelling by the INO80 complex. Nature 556, 386–390 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ayala, R. et al. Structure and regulation of the human INO80–nucleosome complex. Nature 556, 391–395 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Woodcock, C. L., Skoultchi, A. I. & Fan, Y. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 14, 17–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Udugama, M., Sabri, A. & Bartholomew, B. The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol. Cell. Biol. 31, 662–673 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Shimada, M. et al. Gene-specific H1 eviction through a transcriptional activator→p300→NAP1→H1 pathway. Mol. Cell 74, 268–283 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, G., Levitus, M., Bustamante, C. & Widom, J. Rapid spontaneous accessibility of nucleosomal DNA. Nat. Struct. Mol. Biol. 12, 46–53 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Davey, C. A., Sargent, D. F., Luger, K., Maeder, A. W. & Richmond, T. J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 319, 1097–1113 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank S. Eustermann for invaluable help with the preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Rhodes.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editor Recognition Statement

Primary Handling Editors: Sara Osman and Carolina Perdigoto, in collaboration with the Nature Structural and Molecular Biology team.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhodes, D. To slide or not to slide: key role of the hexasome in chromatin remodeling revealed. Nat Struct Mol Biol 31, 742–746 (2024). https://doi.org/10.1038/s41594-024-01278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-024-01278-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing