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cerebrospinalfluid tests
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Published online: 21 February 2024 With the emergence of Alzheimer’s disease (AD) disease-modifying therapies,
identifying patients who could benefit from these treatments becomes
critical. Inthis study, we evaluated whether a precise blood test could perform
aswellas established cerebrospinal fluid (CSF) testsin detecting amyloid-3
(APB) plaques and tau tangles. Plasma %p-tau217 (ratio of phosporylated-tau2l7
tonon-phosphorylated tau) was analyzed by mass spectrometryin the
Swedish BioFINDER-2 cohort (n =1,422) and the US Charles F. and Joanne
Knight Alzheimer Disease Research Center (Knight ADRC) cohort (n=337).
Matched CSF samples were analyzed with clinically used and FDA-approved
automated immunoassays for AB42/40 and p-taul81/Ap42. The primary

and secondary outcomes were detection of brain AP or tau pathology,
respectively, using positron emission tomography (PET) imaging as the
reference standard. Main analyses were focused on individuals with cognitive
impairment (mild cognitive impairment and mild dementia), whichis the
target population for available disease-modifying treatments. Plasma
%p-tau2l7 was clinically equivalent to FDA-approved CSF tests in classifying
AP PET status, with an area under the curve (AUC) for both between 0.95 and
0.97. Plasma %p-tau217 was generally superior to CSF tests in classification

of tau-PET with AUCs of 0.95-0.98. In cognitively impaired subcohorts
(BioFINDER-2: n=720; Knight ADRC: n =50), plasma %p-tau217 had an
accuracy, a positive predictive value and a negative predictive value of 89-90%
for AB PET and 87-88% for tau PET status, which was clinically equivalent

to CSF tests, further improving to 95% using a two-cutoffs approach. Blood
plasma %p-tau217 demonstrated performance that was clinically equivalent
or superior to clinically used FDA-approved CSF tests in the detection of

AD pathology. Use of high-performance blood tests in clinical practice can
improve access to accurate AD diagnosis and AD-specific treatments.

W Check for updates

Dementia affects more than 40 million people worldwide', and institutionalization and mortality. Alzheimer’s disease (AD) accounts
its prevalence is projected to rise to 130 million by the year 2050%.  for 60-70% of all dementia cases’ and is characterized by the deposi-
The annual global cost associated with dementia is approximately  tionofamyloid-f3 (AB)-containing plaquesinthe extracellular space of
$1trillion US dollars?, making it amajor global contributor to disability,  the brain parenchyma and the formation of intraneuronal tau tangle
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Table 1| Participant characteristics

BioFINDER-2 Knight ADRC
All(n=1,422) Cognitively Cognitively impaired  All(n=337) Cognitively Cognitively
unimpaired (n=720) (n=702) unimpaired (n=287) impaired (n=50)
Age, years 69.3 (10.6) 66.3 (12.1) 72.3(7.9) 69.8 (8.3) 69.0 (8.3) 74.6 (6.5)
Women, n (%) 708 (49.8%) 393 (54.6%) 315 (44.9%) 175 (51.9%) 155 (54.0%) 20 (40.0%)
APOE-g4 carriers, n (%) 659 (51.5%) 278 (47.8%) 381(54.6%) 128 (38.0%) 101(35.2%) 27 (54.0%)
Years of education® 12.7(3.9) 12.9 (3.6) 12.4(4.2) 16.4 (2.4) 16.5 (2.3) 15.6 (2.6)
Race (Black/White/ N.A. N.A. N.A. 24/308/5 24/259/4 0/491
Other), n
MMSE® 267(3.9) 28.9(1.2) 24.4(4.4) 28.8(2.1) 29.3(11) 261(3.7)
AB PET, Centiloids® 19.2 (41.8) 7.99 (31.9) 45.0 (49.7) 25.0 (35.6) 17.3(27.2) 69.3 (44.8)
AB PET positive, n (%) 258 (25.8%) 107 (15.3%) 151 (49.7%) 85 (25.2%) 48 (16.7%) 37 (74.0%)
Tau PET, SUVR® 1.36 (0.47) 118 (0.17) 1.56 (0.59) 1.20(0.19) 116 (0.09) 1.47 (0.35)
Tau PET positive® 355 (25.0%) 49 (6.8%) 306 (43.6%) 35 (10.4%) 7 (2.4%) 28 (56.0%)
AD diagnosis, n (%) 346 (24.3%) 0 (0%) 346 (49.3%) 50 (14.8%) 0 (0%) 50 (100%)
Severity of cognitive 720/366/336 720/0/0 0/366/336 287/37/13 287/0/0 0/37/13

impairment (CU/MCI/
dementia)

All measures represent mean (s.d.) unless otherwise stated. Percentages are calculated from the sample available for each variable. A PET positivity was defined as Centiloids>37. Tau PET
positivity was defined using previously validated in-house thresholds (SUVR >1.32 for both cohorts). Race was not collected in the BioFINDER-2 cohort. : 143 participants missing in BioFINDER-2
b: 31 participants missing in BioFINDER-2 °: 1 participant missing in BioFINDER-2 “: 421 participants missing in BioFINDER-2 ®: 54 participants missing in BioFINDER-2 : 432 participants missing in
BioFINDER-2 CU, cognitively unimpaired; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; N.A., not applicable; SUVR, standardized uptake value ratio.

aggregates. During an extended pre-symptomatic phase, which lasts
10-20 years, AB plaques firstaccumulate in the cortex and are thought
to facilitate the subsequent spread of tau pathology from the medial
temporal lobe to neocortical areas*. The presence of tau pathology
in the neocortex is correlated with the clinical phase of the disease,
whichis marked by progressive cognitive impairment and dementia’.

Several phase 3 trials demonstrated that anti-amyloid antibod-
ies can clear AB plaques from the brain®®, which leads to a slowing of
cognitive and functional decline in individuals with mild cognitive
impairment (MCI) and mild dementia due to AD. Recently, lecanemab
received traditional approval from the US Food & Drug Administra-
tion (FDA) for treatment of patients with MCl and mild dementia with
biomarker-proven AP pathology®, and other immunotherapies are
expectedtofollow. The presence of Ap pathology can be determined by
positron emission tomography (PET), which visualizes AB depositionin
thebrain, or cerebrospinal fluid (CSF) assays, which measure CSF levels
of AB42asaratiowith AB40, phosphorylated tau (p-tau) or total tau** ™.
Biomarker testing reduces dementia misdiagnoses: when biomarkers
arenotused, the rate of misdiagnosis is approximately 25-35% in spe-
cialty clinics and even higher in primary care clinics*'>*. Additionally,
PET and CSF can identify cognitively unimpaired individuals at high
risk of future cognitive decline and progression to AD dementia'*".
However, although safe, the widespread clinical use of PET and CSF
has been hampered by high costs, reliance on expensive equipment
and specially trained personnel and perceived invasiveness'. As a
result, thereisanurgent need for scalable and cost-effective methods
to detect AD pathology in routine clinical practice.

In the last several years, blood-based markers (BBMs) capable of
detecting AD pathology have been developed'® . Plasmalevels of p-tau
are strongly associated with PET and CSF biomarkers of AD pathol-
ogy"” ™, neuropathological changes associated with AD***?*?” and the
subsequent development of AD dementia®*****, Among different p-tau
variants, tau phosphorylated at threonine 217 (p-tau217) has demon-
strated the highest accuracy in detecting AD pathology and predict-
ing future cognitive decline?®”?~*', However, certain comorbidities,
especially kidney disease, can lead to false elevations in plasma p-tau
levels***, although this can be mitigated by using the ratio of p-tau217
tothe non-phosphorylated levels of the same tau peptide (%p-tau217)*.

Potentially because %p-tau217is less affected by confounding factors,
this blood test has the highest performance yet demonstratediniden-
tifying individuals with AD pathology®.

Despite BBMs being used in clinical practice in some countries,
including the United States, they have not been recommended as
standalone diagnostic tests due to a lack of studies demonstrating
their equivalence to clinically used CSF and PET methods'***, There-
fore, we compared the diagnostic performance of plasma %p-tau217
with clinically used and FDA-approved CSF assays (CSF A42/40 from
Fujirebio and p-taul81/AB42 from Roche) in independent Swedish
and US cohorts. Because confirmation of Ap positivity is required for
initiation of anti-amyloid immunotherapies, the primary outcome
was the detection of AP pathology as determined by Af3 PET imaging.
Secondary outcomes included the classification of brain tau aggre-
gates as determined by tau PET imaging, which has also been used by
sometrialsin the selection of patients suitable for anti-amyloid immu-
notherapy”*®, and agreement with a clinical AD diagnosis. Our main
analyses were focused onindividuals with cognitive impairment (MCI
and mild dementia), because the clinical use of anti-amyloid therapies
iscurrently approved for cases where cognitive impairment is deemed
to be caused by AD pathology.

Results

Study participants

TheBioFINDER-2 cohortincluded 1,422 participants witha mean (stand-
ard deviation (s.d.)) age of 69.3 (10.6) years, of whom 708 (49.8%) were
female and 702 (49.3%) were cognitively impaired as defined by either
MClor dementia (Table1). The CharlesF. and Joanne Knight Alzheimer
Disease Research Center (Knight ADRC) cohort included 337 partici-
pants with a mean age of 69.8 (8.3) years, of whom 175 (51.9%) were
female and 50 (14.8%) were cognitively impaired.

Classification of Ap or tau PET status by fluid biomarkers

We first compared the areaunder the curve (AUC) of plasma %p-tau217
with clinically used CSF biomarkers in classification of AB PET (Cen-
tiloids > 37) or tau PET status (standardized uptake value ratio
(SUVR) >1.32in Braak I-IV region of interest (ROI) for both cohorts)
(Fig.1and Extended Data Table 1). The diagnostic performances of two
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Fig.1| Concordance of fluid and imaging biomarkers of amyloid and tau
pathologies. a,b,d,e, Concordance of fluid biomarkers with Ap and tau PET
positivity in BioFINDER-2 (a and d) and Knight ADRC (b and e) participants.

ROC curvesincluding all participants are included in the first row. AUCs for all,
cognitively impaired and cognitively unimpaired groups are shown in the next
three columns, respectively. ¢,f, Bootstrapped differences (n =1,000 resamples
with replacement stratifying by the output) between the statistics using plasma
%p-tau2l7 (reference) and CSF biomarkers are shownin ¢ and ffor both the
BioFINDER-2 cohort (left) and the Knight ADRC (right) cohort. The horizontal
dashed lineis plotted at zero, representing the lack of difference between plasma

and CSF biomarkers. We considered plasma and CSF biomarkers clinically
equivalentifthe 95% Cl of the mean difference included zero and clinically
superiorifitdid notinclude zero and favored plasma (>0). Dots and error bars
represent the actual statistic and 95% CI (from bootstrapped n =1,000 samples
with replacement), respectively. Vertical dashed lines represent the maximal
AUC value possible (1). AB PET positivity was assessed as Centiloids > 37. Tau
PET positivity was assessed using previously validated in-house thresholds
(SUVR >1.32inBraak I-1V for both cohorts). AUC, area under the curve; Cl,
cognitively impaired; CSF, cerebrospinal fluid; CU, cognitively unimpaired;
SUVR, standardized uptake value ratio; Cl, confidence interval.
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Fig.2| Comparison among fluid biomarkers on predicting Ap PET positivity in
cognitively impaired patients of the BioFINDER-2 cohort. a,b, Prediction of A
PET positivity in cognitively impaired participants (n = 304) from the BioFINDER-2
cohort, using a single-cutoff (a) and a two-cutoffs (b) approach, respectively. In
thefirstapproach, the threshold was calculated, maximizing sensitivity and fixing
specificity at 90%. In the second approach, the lower threshold was obtained by
maximizing specificity with sensitivity fixed at 95%, whereas the upper threshold
was obtained by maximizing sensitivity while fixing specificity at 95%. Participants
who fall between these two cutoffs were classified in the intermediate group.

Dots and error bars represent the actual statistic and 95% CI (from bootstrapped
n=1,000samples with replacement), respectively. ¢, Bootstrapped differences
(n=1,000 resamples with replacement stratifying by the output) between the
statistics using plasma %p-tau217 (reference) and CSF biomarkers are shownin
cforbothsingle cutoffand two cutoffs. The horizontal dashed line is plotted at

zero, representing the lack of difference between plasma and CSF biomarkers. We
considered plasmaand CSF biomarkers clinically equivalent if the 95% Cl of the
mean difference included zero and clinically superior if it did not include zero and
favored plasma (>0). Differences in the number of participantsin theintermediate
group were scaled to amaximum of 1to be comparable with the other differences.
Dots and error bars represent the mean and 95% Cl estimate from a bootstrapped
sample. Vertical dashed lines represent the maximal statistical value possible (1).
For the intermediate value plots, colored bars represent the actual percentage
and the error bar the 95% CI. d, Histograms represent the distribution of the
datacolored by theimaging biomarker status. The vertical black line represents
the threshold derived from the first approach (a), and red lines represent the
lower and upper thresholds from the second approach (b). AB PET positivity was
assessed as Centiloids > 37. CSF, cerebrospinal fluid; CI, confidence interval; NPV,
negative predictive value; PPV, positive predictive value.

biomarkers were considered clinically equivalent when the range of 95%
confidenceintervals (Cls) of the mean difference included zero. Supe-
riority was considered when the range of 95% CI did not include zero
andfavored the plasmabiomarker. In classification of A PET statusin
the entire BioFINDER-2 cohort, plasma %p-tau217 had very high perfor-
mance (AUC =0.97,95% Cl: 0.95,0.98), which was clinically equivalent to

that of CSF Elecsys p-taul81/A342 (AUC = 0.97,95% CI: 0.96, 0.98) or CSF
Elecsys Ap42/40 (AUC = 0.96,95% CI: 0.95,0.97) (Fig. 1a and Extended
DataTable1). Similar results were obtained for classification of AB PET
statusin the entire Knight ADRC cohort: plasma %p-tau217 had an AUC
(0.97,95% Cl:0.95,0.99) that was clinically equivalent to CSF Lumipulse
AB42/40 (AUC =0.96,95% Cl: 0.94,0.98) and CSF Lumipulse p-taul81/
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Table 2 | Comparison among fluid biomarkers on predicting A positivity in cognitively impaired BioFINDER-2 patients with

in-bag estimates

Single-cutoff approach

Accuracy PPV NPV Sensitivity
Mean Difference Mean Difference Mean Difference Mean Difference
Plasma %p-tau217 0.90 Ref. 0.91 Ref. 0.89 Ref. 0.89 Ref.
(0.86,0.93) (0.88,0.93) (0.81,0.96) (0.80, 0.96)
CSF p-tau/Ap42 0.91 -0.01 0.91 0.00 0.91 -0.02 0.91 -0.02
(0.86,0.94) (-0.06, 0.05) (0.88,0.93) (-0.02,0.02) (0.82,0.97) (-0.10, 0.08) (0.81,0.97)  (-0.12, 0.10)
CSF AB42/40 0.87 0.03(-0.04,0.13) 0.90 0.01 0.85 0.04(-0.08,0.19) 0.83 0.05
(0.77,0.93) (0.87,0.93) (-0.02, 0.04) (0.71,0.96) (0.64,0.96) (-0.09, 0.26)
Two-cutoffs approach
Accuracy PPV NPV Number of intermediate
participants
Mean Difference Mean Difference Mean Difference Mean Difference*
Plasma %p-tau217 0.95 Ref. 0.95 Ref. 0.96 Ref. 16.3 Ref.
(0.94,0.97) (0.94,0.97) (0.94,0.98) (5.9, 25.3)
CSF p-tau/Ap42 0.95 0.00(-0.01,0.02) 0.94 0.01(-0.02,0.04) 0.95 0.00 16.5 0.00 (-013, 0.18)
(0.94, 0.96) (0.91,0.96) (0.95,097) (-0.02, 0.03) (4.6,33.6)
CSF AB42/40 0.94 0.01(-0.01,0.03) 0.93 0.03(-0.01,0.08) 0.95 0.00 254 0.09 (-0.07, 0.27)
(0.93,0.96) (0.88, 0.95) (0.95, 0.97) (-0.02,0.02) (8.9, 421)

Comparison estimates among fluid biomarkers on predicting AB PET positivity in BioFINDER-2 cognitively impaired individuals. For the single-cutoff approach, cutoffs of fluid biomarkers
were derived by maximizing sensitivity and fixing specificity at 90% against each imaging outcome. For the two-cutoffs approach, the lower cutoff was obtained by maximizing specificity
with sensitivity fixed at 95%, whereas the upper cutoff was obtained by maximizing sensitivity and fixing specificity at 95%. Participants who fall between these two cutoffs were classified

in the intermediate group. Differences between the statistics using plasma %p-tau217 (reference) and CSF biomarkers are shown together with the mean values. We considered plasma and
CSF biomarkers clinically equivalent if the 95% Cl of the mean difference included zero and clinically superior if it did not include zero and favored plasma (>0). *Differences in the number of
participants in the intermediate group were scaled to a maximum of 1to be comparable with the other differences. AB PET positivity was assessed as Centiloids > 37. CSF, cerebrospinal fluid;

NPV, negative predictive value; PPV, positive predictive value; Cl, confidence interval.

AB42 (AUC =0.97,95% Cl: 0.96, 0.99) (Fig. 1b). The AUCs were similar
when cognitively impaired and cognitively unimpaired groups were
analyzed separately (Fig.1a,b and Extended Data Table 1). Differences
between the AUCs of plasma %p-tau217 and CSF biomarker ratios are
showninFig. 1cand Extended Data Table 1.

Inclassification of tau PET statusin the entire BioFINDER-2 cohort,
plasma %p-tau217 had very high performance (AUC = 0.95,95% Cl: 0.94,
0.97), which was superior to CSF Elecsys p-taul81/AB42 (AUC = 0.93,
95% CI: 0.92, 0.95) and CSF Elecsys AB42/40 (AUC = 0.88, 95% CI:
0.86,0.90) (Fig.1c). Similar results were obtained in the entire Knight
ADRC cohort: plasma %p-tau217 had a higher AUC (0.98, 95% CI: 0.97,
0.99) compared to CSF Lumipulse p-taul81/Ap42 (AUC = 0.96; 95%
Cl: 0.94, 0.98) or CSF Lumipulse Ap42/40 (AUC = 0.90; 95% Cl: 0.87,
0.94) (Fig. 1d). The AUCs were similar when cognitively impaired and
cognitively unimpaired groups were analyzed separately (Fig. 1c,d and
Extended Data Table1).

Accuracy and predictive value of fluid biomarkers

Next, we focused onindividuals with cognitive impairment (either MCI
or dementia) who could be candidates for anti-A immunotherapies
if amyloid biomarker testing were positive. We evaluated clinically
relevant diagnostic metrics for plasma %p-tau217, CSF p-taul81/Ap42
and CSF AB42/40 when using a cutoff resulting in a specificity of 90%
for AP PET status (=37 Centiloids). In the BioFINDER-2 cohort, we found
that plasma %p-tau217 predicted A PET status withan overall accuracy
0f90% (95% Cl: 86%,93%), a positive predictive value (PPV) of 91% (95%
Cl:88%,93%) and a negative predictive value (NPV) of 89% (95% Cl: 81%,
96%). Notably, the performance of plasma %p-tau217in prediction of A
PET status was not different from CSF Elecsys p-taul81/AB42 (accuracy,
91% (95% CI: 86%, 94%); PPV, 91% (95% CI: 88%, 93%); NPV, 91% (95% Cl:
82%,97%)) and CSF Elecsys AB42/40 (accuracy, 87% (95% Cl:77%,93%);
PPV, 90% (95% Cl: 87%, 93%); NPV, 85% (95% CI: 71%, 96%)) (Fig. 2a and
Table 2). Similar results were obtained when using clinical visual reads
to determine AP PET status (Extended Data Fig.1aand Supplementary

Table 1). Similar results were also found in the Knight ADRC cohort,
where plasma %p-tau217 had an overall accuracy of 94% (95% Cl: 72%,
100%), a PPV of 99% (95% Cl: 97%,100%) and an NPV of 89% (95% CI:
48%,100%), which was clinically equivalent to the performances of
FDA-approved CSF Lumipulse AB42/40 (accuracy, 78% (95% Cl: 44%,
98%); PPV, 98% (95% Cl: 96%,100%); NPV, 62% (95% CI: 32%,100%)) and
CSF Lumipulse p-taul81/ApB42 (accuracy, 91% (95% CI: 68%,100%); PPV,
99% (95% Cl: 97%,100%); NPV, 82% (95% Cl: 45%,100%)) (Supplementary
Fig.1laand Supplementary Table 2).

When predicting tau PET status in cognitively impaired patients
inthe BioFINDER-2 cohort, plasma %p-tau217 had an overall accuracy
of 88% (95% Cl: 85%, 91%), a PPV of 88% (95% Cl: 86%, 90%) and an NPV
of 88% (95% ClI: 82%, 94%), which was superior to the performance of
CSF Elecsys p-taul81/APB42 (accuracy, 82% (95% Cl: 76%, 87%); PPV,
86% (95% CI: 83%, 89%); NPV, 79% (95% CI: 72%, 87%)) and CSF Elecsys
APB42/40 (accuracy, 68% (95% Cl: 62%,76%); PPV, 79% (95% Cl: 73%, 84%);
NPV, 65% (95% CI: 59%, 72%)) (Fig. 3a,c and Table 3). In the Knight ADRC
cohort, the diagnostic metrics of plasma %p-tau217 were clinically
equivalent to those of the CSF measures (Supplementary Fig. 2a,c and
Supplementary Table 3).

Use of a two-cutoffs approach to improve diagnostic accuracy

We also evaluated for potentialimprovements in diagnosticaccuracy
by applying an approach with two cutoffs, which divides results into
three categories: those with clearly normal values, those with clearly
abnormal values and those with intermediate values. The upper cutoff
was set at avalueyielding a specificity of 95%, while maximizing sensi-
tivity, and the lower cutoff was set at a value resulting in a sensitivity of
95%, while maximizing specificity. When the two-cutoffs approach was
appliedto predict AB PET positivity in cognitively impaired patientsin
the BioFINDER-2 cohort, plasma %p-tau217 had an overall accuracy of
95% (95% Cl: 94%, 97%), a PPV of 95% (95% CI: 94%, 97%) and an NPV of
96% (95% Cl: 94%,98%), which were clinically equivalent to the perfor-
mances of CSF Elecsys p-taul81/AB42 (accuracy, 95% (95% Cl: 94%,96%);
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Fig.3| Comparison among fluid biomarkers on predicting tau PET positivity
in cognitively impaired patients of the BioFINDER-2 cohort. a,b, Prediction
oftau PET positivity in cognitively impaired participants from the BioFINDER-2
cohort (n=663), using a single-cutoff (a) and a two-cutoffs (b) approach,
respectively. In the first approach, the threshold was calculated, maximizing
sensitivity and fixing specificity at 90%. In the second approach, the lower
threshold was obtained by maximizing specificity with sensitivity fixed at 95%,
whereas the upper threshold was obtained by maximizing sensitivity and fixing
specificity at 95%. Participants who fall between these two cutoffs were classified
intheintermediate group. Dots and error bars represent the actual statistic

and 95% CI, respectively. Vertical dashed lines represent the maximal statistical
value possible (1). For the intermediate value plots, colored bars represent the
actual percentage and the error bar the 95% Cl. ¢, Bootstrapped differences
(n=1,000 resamples with replacement stratifying by the output) between the
statistics using plasma %p-tau217 (reference) and CSF biomarkers are shown in

cforboth single cutoff and two cutoffs. The horizontal dashed line s plotted at
zero, representing the lack of difference between plasma and CSF biomarkers.
We considered plasma and CSF biomarkers clinically equivalent if the 95% CI of
the mean difference included zero. Differences in the number of participantsin
theintermediate group were scaled to amaximum of 1to be comparable with the
other differences. Dots and error bars represent the mean and 95% Cl estimate
from abootstrapped sample. d, Histograms represent the distribution of the
data colored by the imaging biomarker status. The vertical black line represents
the threshold derived from the first approach (a), and red lines represent the
lower and upper thresholds from the second approach (b). Tau PET positivity
was assessed using an in-house previously validated threshold (SUVR > 1.32).
Three individuals were excluded from the histograms ind (only for visualization
purposes) due to very low values of plasma %p-tau217. CSF, cerebrospinal fluid;
ClI, confidence interval; NPV, negative predictive value; PPV, positive predictive
value; SUVR, standardized uptake value ratio.

PPV, 94% (95% CI:91%, 96%); NPV, 95% (95% CI: 95%, 97%)) and CSF Elec-
sys AB42/40 (accuracy, 94% (95% Cl: 93%,96%); PPV, 93% (95% Cl: 88%,
95%); NPV, 95% (95% Cl: 95%,97%)) (Fig. 2b and Table 2). The percentage
of individuals with intermediate values was 16% (95% Cl: 6%, 25%) for
plasma %p-tau217,17% (95% CI: 5%, 34%) for CSF Elecsys p-taul81/Ap42
and 25% (95% CI: 9%, 42%) for CSF Elecsys AB42/40 (Fig. 2b). Similar

results were obtained when FDA-approved visual reads were used to
determine the AP PET status (Extended DataFig. 1b and Supplementary
Table 1) and in the Knight ADRC cohort (Supplementary Fig. 1b and
Supplementary Table 2).

When predicting tau PET status in cognitively impaired individuals
in the BioFINDER-2 cohort using the two-cutoffs approach, we found
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Table 3 | Comparison among fluid biomarkers on predicting tau PET positivity in cognitively impaired patients with in-bag

estimates

Single-cutoff approach

Accuracy PPV NPV Sensitivity
Mean Difference Mean Difference Mean Difference Mean Difference
Plasma %p-tau217 0.88 Ref. 0.88 Ref. 0.88 Ref. 0.86 Ref.
(0.85,0.91) (0.86, 0.90) (0.82,0.94) (0.78, 0.93)
CSF p-tau/AB42 0.82 0.06 (0.01, 0.12) 0.86 0.02 0.79 0.09 (0.01, 0.16) 0.72 0.4 (0.02, 0.25)
(0.76, 0.87) (0.83,0.89) (0.00, 0.04) (0.72,0.87) (0.60, 0.84)
CSF AB42/40 0.68 0.20(0.14, 0.26) 0.79 0.0 (0.05, 0.15) 0.65 0.24 (016, 0.31) 0.42 0.44(0.29, 0.56)
(0.62,0.76) (0.73,0.84) (0.59, 0.72) (0.31,0.57)
Two-cutoffs approach
Accuracy PPV NPV Number of intermediate
participants
Mean Difference Mean Difference Mean Difference Mean Difference*
Plasma %p-tau217 0.94 Ref. 0.93 Ref. 0.95 Ref. 19.5 Ref.
(0.94, 0.95) (0.92,0.94) (0.94, 0.96) (11.6, 27.5)
CSF p-tau/AB42 0.93 0.01(0.00,0.02) 0.90 0.04(0.01,0.08) 0.95 0.00(-0.01,0.01) 34.0 0.4 (0.04, 0.24)
(0.92,0.94) (0.85,0.92) (0.94, 0.96) (24., 42.8)
CSF AB42/40 0.91 0.03(0.02,0.05) 0.81 012(0.06,0.25) 0.94 0.01(0.00,0.02) 491 0.30(0.20, 0.39)
(0.89,0.92) (0.68, 0.88) (0.94,0.95) (41.9,57.0)

Comparison estimates among fluid biomarkers on predicting tau PET positivity in cognitively impaired patients from the BioFINDER-2 cohort. For the single-cutoff approach, the cutoffs of fluid
biomarkers were derived by maximizing sensitivity and fixing specificity at 90% against each imaging outcome. For the two-cutoffs approach, the lower cutoff was obtained by maximizing
specificity with sensitivity fixed at 95%, whereas the upper cutoff was obtained by maximizing sensitivity and fixing specificity at 95%. Participants who fall between these two cutoffs were
classified in the intermediate group. Differences between the statistics using plasma %p-tau217 (reference) and CSF biomarkers are shown together with the mean values. We considered
plasma and CSF biomarkers clinically equivalent if the 95% Cl of the mean difference included zero and clinically superior if it did not include zero and favored plasma (>0). *Differences in the
number of participants in the intermediate group were scaled to a maximum of 1to be comparable with the other differences. Tau PET positivity was assessed using an in-house previously
validated cutoff (SUVR>1.32 for both cohorts in Braak I-1V). CSF, cerebrospinal fluid; NPV, negative predictive value; PPV, positive predictive value; SUVR, standardized uptake value ratio;

Cl, confidence interval

that plasma %p-tau217 had an overall accuracy of 94% (95% Cl: 94%, 95%),
a PPV of 93% (95% CI: 92%, 94%) and an NPV of 95% (95% CI: 94%, 96%),
which was superior to the performances of CSF Elecsys p-taul81/Ap42
(accuracy, 93% (95% Cl:92%, 94%); PPV, 90% (95% Cl: 85%, 92%); NPV, 95%
(95% Cl:94%,96%)) and CSF Elecsys AB42/40 (accuracy, 91% (95% Cl: 89%,
92%); PPV, 0.81% (95% CI: 68%, 88%); NPV, 94% (95% CI: 94%, 95%)) (Fig.3b
and Table 3). The percentage of individuals with intermediate values
was lower for plasma %p-tau217 (20%, 95% Cl: 12%, 28%) compared to
those for CSF Elecsys p-taul81/Af42 (34%, 95% CI: 24%, 43%) and for CSF
Elecsys AB42/40 (49%,95% Cl: 42%,57%) (Fig.3b). The results obtained
in Knight ADRC showed a similar performance between plasma and
CSF biomarkers (Supplementary Fig. 2b and Supplementary Table 3).
We investigated whether the groups with intermediate fluid bio-
marker values also had intermediate values for the reference standard—
thatis, AB PET Centiloids or tau PET SUVR. We found that individuals with
intermediate plasma %p-tau217 values had values for ABPET and tau PET
that were near the cutoffs for abnormality (Extended Data Fig. 2). Addi-
tionally, the group withintermediate plasma %p-tau217 valueshad AB PET
and tau PET values that were higher than the normal plasma %p-tau217
group and lower than the abnormal plasma %p-tau217 group (P < 0.001
in all cases). In the BioFINDER-2 cohort, the mean (s.d.) Centiloids was
0.4(20.3) for the %p-tau217 negative group, 49.1(36.5) for the %p-tau217
intermediate group and 91.4 (30.1) for the %p-tau217 positive group.

Comparison to aclinical AD diagnosis

Finally, we examined the accuracy of plasma %p-tau217 for clinical diag-
nosis of symptomatic AD versus other neurodegenerative diseases. This
diagnosis was made based on clinical symptoms assessed by a dementia
specialistandincluded consideration of AD biomarker testing by either
CSFor ABPET.Itisimportant to highlight that, if the clinical symptoms
were notrelated to AD, the participant was classified in the other neu-
rodegenerative diseases group even with positive AD biomarkers, as
these results may indicate concomitant AD pathology. A description
of specific diagnosis for the cognitively impaired participants is shown

in Supplementary Table 4. In cognitively impaired individuals in the
BioFINDER-2 cohort, we found that blood plasma %p-tau217 exhibited
an AUC of 0.94 (95% CI: 0.92, 0.96) in distinguishing individuals with
and without symptomatic AD (Supplementary Table 5), which was
clinically equivalent to CSF p-taul81/Ap42 (95%, 95% CI: 93%, 96%) and
CSF APB42/40(93%,95% Cl: 91%, 95%). Furthermore, plasma %p-tau217
had an overall accuracy of 86% (95% Cl: 82%, 89%), a PPV of 89% (95%
Cl: 87%, 91%) and an NPV of 84% (95% Cl: 77%, 89%) (Supplementary
Table 6). Applying the two-cutoffs approachincreased the diagnostic
metrics to 93-94%, with 24% of the participants in the intermediate
group (Supplementary Table 6).

Sensitivity analyses

Several sensitivity analyses were performed to support the results
reported above. First, we assessed out-of-bag statistics in the
BioFINDER-2 cohort for Ap and tau PET positivity, in which the cutoffs
and the statistics were derived in different individuals from the same
cohort. Theseresults were in line with the previous analyses, showing
that plasma %p-tau217 was clinically equivalent to CSF biomarkers for
predicting AP PET positivity using a single-cutoff approach (Supple-
mentary Fig. 3aand Supplementary Table 7) and a two-cutoffs approach
(Supplementary Fig. 3b and Supplementary Table 8). For tau PET, we
generally observed higher estimates of plasma %p-tau217 compared
to the two CSF biomarkers (Supplementary Fig. 4 and Supplementary
Tables 7 and 8).

Second, we derived fluid biomarker cutoffs in independent
cohortsandtested themin BioFINDER-2 participants. Plasma %p-tau217
cutoffs were derived in Knight ADRC participants and CSF biomarker
cutoffsin participants fromthe University of California, San Francisco
(UCSF) (Supplementary Methods). The obtained results were similar
tothose detailed in the previous sections. Inbrief, the performances of
plasma %p-tau217 were clinically equivalent to or slightly higher than
those of CSF biomarkers when using both the single-cutoff approach
(Extended DataFig.3aand Supplementary Table 7) and the two-cutoffs
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approach (Extended Data Fig. 3b and Supplementary Table 8) for
prediction of AP positivity.

Additionally, we examined whether the use of plasma p-tau217
as predictor with non-phosphorylated tau as covariate (rather than
the ratio of p-tau217/non-phosphorylated tau (%p-tau217)) resulted
in any significant change in our results. In summary, the differences
between these two approaches were very small, as can be observed
inSupplementary Figs.5and 6 and in Supplementary Tables 9 and 10.

Finally, we also tested the consistency across time of our resultsin
asubcohort of 40 Knight ADRC participants with available longitudi-
nal plasma %p-tau217 measures (mean (s.d.) time = 3.03 (0.65) years).
Only one (2.5%) of these participants changed %ptau217 biomarker
status during follow-up testing, supporting the consistency of plasma
%p-tau2l7 measures when plasma sampling and %ptau217 testing is
repeated (Supplementary Fig. 7).

Discussion

The major finding of this study was that plasma %p-tau217 classifies both
AP and tau PET status with very high accuracy (AUCs of 0.96 and 0.98)
across two independent cohorts. When compared to clinically used
and FDA-approved CSF tests, the performance of plasma %p-tau217 was
clinically equivalentin classification of A PET status and was superior
inclassification of tau PET status. Notably, in the cognitively impaired
subcohorts, the PPV of plasma %p-tau217 was equivalent to the CSF
tests, demonstrating that the blood test could confirm the presence
of AB pathology as accurately as CSF tests. Ablood test with such high
performance could replace CSF testing or AB PET when determining the
presence of brain Ap pathology in patients with cognitive symptoms.
Giventhewidespread acceptance and accessibility of blood collection,
high-performance blood tests could enable AD biomarker testing on
agreater scale thanis currently possible and to amuch broader popu-
lation, thereby enabling more accurate diagnosis of AD worldwide.

In patients with MCI and mild dementia who may be candidates
for anti-amyloid treatments, plasma %p-tau217 classified AB PET sta-
tus with an accuracy, a PPV and an NPV of approximately 90% when a
standard approach using a single cutoff was applied. Accuracies of
90-95% are considered excellent or outstanding for the detection of
pathology and match or exceed clinically used CSF tests. Forinstance,
the FDA-approved Elecsys CSF p-taul81/Ap42 test has, in previous
studies, classified AP PET status with overall accuracies of 89-90%
(refs. 39-41), which was replicated in the present study. The perfor-
mance of the FDA-approved Lumipulse CSF Ap42/40 testis more com-
plex to evaluate because different approaches have been applied,
including using two cutoffs*>**, butin one large study the test classified
AP PET status withan AUC of 0.97 (ref. 44). Notably, AB PET and tau PET
are not perfectly accurate in detection of neuropathology**¢, and, in
the small proportion of cases that have discordant CSF and PET results,
itisnot clear whether thisis due toinaccuracy of CSF or PET measures.
Givensomeimprecisionin the reference standard for amyloid positiv-
ity, FDA-appproved CSF assays as well as plasma %p-tau217 may be
performing at the maximum level that is achievable.

Plasma %p-tau217 also correctly classified A PET positivity status
for cognitively unimpaired participants with AUCs of 0.96 in both
BioFINDER-2 and Knight ADRC. This is also consistent with a recent
report from the AHEAD 3-45 study*’ supporting the utility of plasma
%p-tau2l7 as a screening test for preclinical AD using a similar mass
spectrometry platform. With such high performance, these blood tests
have the potential to support Af3 pathology identificationamong pre-
clinical populations and in participant recruitment for preventive trials
assessing anti-amyloid drugs. Detection of AP positivity using mass
spectrometry %p-tau217 in cognitively normal cohorts appears better
than what hasbeen reported when using plasma p-tau217 immunoas-
says, although this must be confirmed in head-to-head studies®>****~°,

Inthis study, we used Centiloids > 37 as the primary measure of Ap
PET positivity based onthe inclusion criteria of recent clinical trials for

donanemab’. Given that Ap PET status is normally assessed by visual
assessment in clinical care, and the FDA and the European Medicines
Agency (EMA) have approved visual reads of AB PET, we also included
visual read as an additional outcome in the main cohort. The obtained
results were very similar for both A PET outcomes, demonstrating
very high accuracy of plasma %p-tau217 for detecting Ap pathology,
which was clinically equivalent to that of CSF biomarkers. Notably,
there was very high agreement between quantitative and visual read
for AB PET statusin our cohort (-95%), consistent with previous studies
showing very high agreement between visual assessment and A PET
quantification**'"*,

In addition to highly accurate classification of Ap PET status,
plasma %p-tau217 classified tau PET status with an overall accuracy, a
PPVandanNPV of 87-88% in the cognitively impaired group of the main
cohort. The CSF assays were also able to classify tau PET status but were
inferior to plasma %p-tau217. Because tau PET is an excellent indicator
of symptomatic AD’, the superior classification of tau PET status by
plasma %p-tau217 suggests that this measure may have additional value
indetermining whether cognitive impairmentislikely to be due to AD.
Overall, the high performance of plasma %p-tau217in classifying AB and
tau PET statusindicates that this BBM may be able to replace approved
CSF and PET measures in the diagnostic workup of AD.

As expected, the performance of plasma %p-tau217 improved
after applying an approach using two cutoffs to categorize individuals
as positive, negative or intermediate. Use of this approach for plasma
%p-tau217 resulted in a PPV and an NPV of 95% for A3 PET status with
fewer than 20% of participants in the intermediate zone, which was
clinically equivalent to the CSF assays. Notably, individuals with inter-
mediate values of plasma %p-tau217 alsohad AB PET values close to the
threshold used to determine AP PET status: they have borderline values
across multiple modalities, indicating that they may have early AD brain
pathological changes. For a more definitive result, these individuals
couldeitherrepeat the same test atalater time or undergo testing with
another type of diagnostic test (for example, PET or CSF). Notably, the
two-cutoffs approach is currently employed for the FDA-approved
CSF Lumipulse test*** and has been suggested for AD BBMs'"**, espe-
cially when very high accuracy is needed. Very high confidence in AR
status is especially important for patients who might be eligible for
anti-amyloid immunotherapies, especially given the high costs asso-
ciated with such therapies as well as the clinical resources required,
including repeated infusions and magnetic resonance imaging scans.
Tests with a PPV of at least 95% would be preferable so that fewer than
5% of patients receiving treatment would be amyloid negative. Such
an approach using two cutoffs could also enable much faster and less
expensive enrollment of participants into clinical trials because A
status could be determined using plasma %p-tau217 alone for the large
majority of individuals®™.

The main strength of this study includes the use of a high-
performance plasma %p-tau217 assay in combination with clini-
cally used CSF and AP and tau PET biomarkers across two large and
well-phenotyped cohorts. We also reported PPV and NPV estimates, in
addition to sensitivity, as they are more clinically informative. None-
theless, we acknowledge that these measures are influenced by the
prevalence of the disease or pathology detected. In the present study,
the AP positivity ranged between 50% and 74% in the two cognitively
impaired populations, which agrees with most other memory clinic
cohorts of patients with MCI or mild dementia. For example, in the
large-scale IDEAS study, 55% of MCI and 70% of dementia cases were
amyloid positive®™. Limitations include the relatively few individuals
inthe Knight ADRC cohort with cognitiveimpairmentandthelack ofa
sufficiently large group of individuals withboth antemortem biomarker
and postmortem data available. In addition, although hundreds of
millions of mass spectrometry clinical tests are run every year for
several clinicalapplications (for example, newbornscreening, analysis
of drugs of abuse and steroid analysis)*, they typically have a higher

Nature Medicine | Volume 30 | April 2024 | 1085-1095

1092


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-02869-z

cost per assay than immunoassays, and the corresponding analytical
platforms are also less widely available and require more technical
and operational expertise. Nonetheless, to date, mass spectrometry
measures of plasma p-tau217 have shown the best performance for
assessing the presence of A pathology compared toimmunoassays®.
Future head-to-head comparisons may address whether the benefits
from higher accuracy provided by mass spectrometry assays outweigh
the relative practicability and scalability offered by immunoassays.
Finally, minoritized populations were not well enough represented
in the study cohorts, even though many study participants had lower
education levels and many comorbidities. Future studies should
investigate the performance of plasma %p-tau217 in broader primary
care-based populations.

In summary, plasma %p-tau217 can be used to determine Af sta-
tuswith a PPV and an accuracy of 95% in more than 80% of cognitively
impaired patients and shows clinically equivalent or superior perfor-
mance to clinically used FDA-approved CSF-based tests in classifica-
tion of AP and tau PET status. Implementation of blood %p-tau217 in
clinical practice would substantially reduce the need for PET or CSF
testing, thereby enhancing access to accurate AD diagnosis in clinics
worldwide, and enable determination of amyloid status in patients
with MCI or mild dementia who might benefit from anti-amyloid
immunotherapies.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
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Methods

Study design

This study included participants from two independent observa-
tional cohorts: the BioFINDER-2 study from Sweden and the Knight
ADRC study from the United States. The Swedish BioFINDER-2 study
(NCT03174938) was described previously in detail*®. The participants
were recruited at Skine University Hospital and the Hospital of Ang-
elholm in Sweden (dates of enrollment: April 2017 to June 2022) and
includedindividuals who were cognitively unimpaired (either no cog-
nitive concerns or subjective cognitive decline (SCD)) or cognitively
impaired (classified as having MCI, AD dementia or various other neuro-
degenerative diseases)®. Participants were categorized as having MCl if
they performed worse than-1.5s.d.inany cognitive domainaccording
to age and education stratified test norms, as previously described*®.
AD dementiawas diagnosed if the individual was Ap positive by PET or
CSF and met the Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition, criteriafor AD*’. The Knight ADRC cohort was previously
described and enrolls individuals into longitudinal observational
research studies of memory and aging; most participants live in the
greater metropolitan area of St. Louis, Missouri, USA**. Samples used
for the currentstudy were collected from participants between 6 February
2013 and 12 March 2020. Participants were assessed with the Clinical
Dementia Rating (CDR)*°, and individualsincludedinthe current study
were either cognitively unimpaired (CDR = 0) or cognitively impaired
(CDR > 0) withaclinical syndrome typical of AD (either MCl or demen-
tia) based onstandard criteria®. Additionally, participantsincluded had
undergonebothan AP PET and atau PET scanwithin 2 years of CSF and
had sufficient plasmaavailable for analysis.

Fluid biomarkers

CSF AD biomarker measurements. CSF samples were collected and
handled according to current international recommendations**®%,
In the Swedish BioFINDER-2 study, CSF concentrations of Af42 and
p-taul81 were measured using Roche Elecsys CSF electrochemilumi-
nescence immunoassays onafully automated cobas e 601instrument
(Roche Diagnostics). AB40 concentrations were measured with the
Roche NeuroToolKit oncobas e411and e 601 instruments (Roche Diag-
nostics). Theratio of CSF p-taul81to AB42 (p-taul81/Ap42) as measured
by Elecsys assays was validated®® and FDA approved in December 2022
for the detection of AP plaques associated with AD for individuals with
cognitive impairment. The Elecsys AB42/40 ratio was also examined.
In the Knight ADRC cohort, CSF AB42, AB40 and p-taul81 concen-
trations were measured with an automated immunoassay platform
(Lumipulse G1200, Fujirebio). The ratio of CSF AB42 to AB40 (A342/40)
as measured by Lumipulse assays was validated®* and FDA approved
in May 2022 for the detection of AP plaques associated with AD for
individuals with cognitiveimpairment, and, in addition, the Lumipulse
APB42/p-taul8lratio was also examined.

Blood %p-tau217 measurement. At the same session as CSF collection,
blood was also collected from participants in a tube containing EDTA
and centrifuged to separate plasma as previously described®. Blood
plasma p-tau217 and non-p-tau217 were measured by liquid chroma-
tography-tandem high-resolution mass spectrometry (LC-MS/HRMS)
analysis as detailed in the Supplementary Methods. The %p-tau217
measure was calculated as the ratio of tau phosphorylated at residue 217
divided by the concentration of non-phosphorylated mid-region tau.

Imaging biomarker outcomes. Detailed descriptions of imaging pro-
ceduresinthe BioFINDER-2 and Knight ADRC cohorts were previously
reported®°**’. AB PET was performed with the EMA/FDA-approved
tracer [*F]flutemetamol in the BioFINDER-2 cohort and with the
FDA-approved tracer ['*F]florbetapir (AV45) or ["C]Pittsburgh Com-
pound B (PiB) in the Knight ADRC cohort. Mean cortical SUVR was
calculated using the average signal from neocortical ROIs (bilateral

orbitofrontal, medial orbitofrontal, rostral middle frontal, superior
frontal, superior temporal, middle temporal and precuneus) with cer-
ebellar gray matter as reference. SUVR values were then transformed
to Centiloids, which harmonizes measures from different tracers and
studies®®. AB PET positivity was set at =37 Centiloids based on inclusion
criteria in the TRAILBLAZER-ALZ studies that evaluated the clinical
effects of the anti-Afl immunotherapy donanemab’. Additionally, in
the BioFINDER-2 study, [**F]flutemetamol scans were also evaluated
by visual read according to an FDA-approved protocol®.

Tau PET scans were acquired with the ['*FIRO948 tracer in the
BioFINDER-2 cohort and with the FDA-approved [*®F]flortaucipir tracer
inthe Knight ADRC cohort. These two tau PET tracers are structurally
very similar and provide similar results in the cortex according to
head-to-head comparisons’. SUVR values were calculated in a com-
monly used temporal meta-ROI, whichincludes the Braak I-1V regions
and captures the regions most affected by tau, with the inferior cerebel-
lar gray matter as reference. Previously determined thresholds were
used to determine tau PET positivity (SUVR > 1.32inboth cohorts)**"",

Endpoints. The primary outcome was the classification of amyloid
pathology as determined by A PET imaging. Secondary outcomes
included the detection of brain tau aggregates as determined by tau
PET imaging and agreement with a clinical AD diagnosis based on clini-
calsymptoms and clinically obtained biomarker results. Main analyses
were performed in cognitively impaired participants as they are the
population currently eligible for anti-amyloid treatments.

Statistical analysis. Blood plasma %p-tau217, CSF p-taul81/Ap42
and CSF AB42/40 were used as predictors inindependent models. To
evaluate the performance of the three fluid biomarkers in predicting
the main outcomes (A} and tau PET status and clinical AD diagnosis),
we used receiver operating characteristic (ROC) curves (pROC pack-
age’).AUCs were calculated inall participants as well as for cognitively
impaired (MCland dementia) and cognitively unimpaired (controls and
SCD) subgroups. DeLong’s testincluded in the same R package was used
to calculate mean and 95% Cl differences of the plasmaand CSF AUCs.

Next, we evaluated the performance of these biomarkers using only
cognitively impaired participants, as this group ismore relevant to the
intended use of these testsinclinical practice. We used two approaches
to categorize patients based on their fluid biomarkers. First, we cre-
ated two groups (that is, positive and negative) based on a threshold
derived by maximizing the sensitivity while fixing the specificity at
90% against each outcome independently (cutpointr package”). For
this approach, we compared the accuracy, PPV, NPV and sensitivity of
plasma %p-tau217 to the FDA-approved CSF biomarkers. In a second
approach, we created three groups of participants (that is, positive,
negative and intermediate) using two different thresholds, as recently
described”. This was implemented independently for every outcome
and cohort. The lower threshold was obtained by maximizing the speci-
ficity with the sensitivity fixed at 95%, whereas the upper threshold was
obtained by the maximizing sensitivity with the specificity fixed at
95%. Participants withbiomarker levels between these two thresholds
were categorized asintermediate. For this approach, we compared the
accuracy, PPVand NPV and the number of patients categorized as inter-
mediate. Inthisapproach, accuracy, PPVand NPV only tookinto account
participants in the negative and positive groups as the intermediate
group was assessed by the percentage of participants categorized onit.

Statistics were calculated as the mean of bootstrapped sample
(n=1,000 resamples with replacement stratifying by the output), from
which we also calculated the 95% CI. The bootstrapped sample was
also used to calculate the difference of all plasma %p-tau217 statistics
(reference) and those from the CSF biomarkers. We considered plasma
and CSF biomarkers clinically equivalent if the 95% Cl of the mean dif-
ference included zero and superior if the 95% CI did not include zero
while favoring plasma results.
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All statistics were calculated using the same sample in which the
cutoffwas derived (in-bag), due to the small sample size in the replica-
tion cohort. To assess the effect of deriving the cutoffin anindepend-
entsample, we performed two sensitivity analyses in the BioFINDER-2
cohort. First, we performed the bootstrap approach as done in the
cutpointrpackage”. This method derives the cutoffs inabootstrapped
sample (same sample size with replacement) and calculates the statis-
ticsin theindividuals notincluded in the derivation of the cutoff. This
completely independent remaining sample will include, on average,
36.8% of all individuals in the original sample when this procedure is
done multiple times (n=1,000 here)™. Second, we also derived the
plasma %p-tau217 cutoffs in the Knight ADRC cohort and tested them
in the BioFINDER-2 cohort (Supplementary Methods). Given that the
CSF biomarkers were measured using two different FDA-approved
assaysinthe two cohorts (Roche Elecsys in BioFINDER-2 and Fujirebio
Lumipulse inKnight ADRC), we derived the CSF biomarker cutoffs for
the Roche Elecsys assay in a third independent cohort from UCSF”
(Supplementary Methods), following the same approach.

As a sensitivity analysis, we also calculated the estimates
using plasma p-tau2l7 as predictor while adjusting for plasma
non-phosphorylated mid-region tau, instead of calculating the plasma
ratio (that is, occupancy), using a logistic regression model.

AllstatisticalanalyseswereperformedinRversion4.1.0 (https:/www.
r-project.org/).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Pseudonymized data from the BioFINDER-2 study will be shared upon
request from a qualified academic investigator for the sole purpose
of replicating procedures and results presented in this article and as
long as the data transfer is in agreement with European Union legis-
lation on general data protection regulations and decisions by the
Swedish Ethical Review Authority and Region Skane, which should
be regulated in a material transfer agreement. Knight ADRC data are
available to qualified investigators who have a proposal approved
by an institutional committee that meets monthly (https://knight-
adrc.wustl.edu/Research/ResourceRequest.htm). The study must be
approved by an institutional review board to ensure ethical research
practices, and investigators must agree to the terms and conditions
of the data use agreement, which includes not distributing the data
without permission.
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Extended Data Fig. 1| Comparison among fluid biomarkers on predicting
AP PET visual read positivity in cognitively impaired patients of the
BioFINDER-2 cohort with in-bag estimates. Prediction of AR PET visual read
positivity in cognitively impaired participants from the BioFINDER-2 cohort,
using asingle cut-off (a) and two cut-offs (b) approaches, respectively. In the first
approach, the cut-off was calculated maximizing sensitivity fixing specificity

at 90%. In the second approach, the lower cut-off was obtained by maximizing
specificity with sensitivity fixed at 95%, whereas the upper cut-off was obtained
by maximizing sensitivity fixing specificity at 95%. Participants that fall between
these two cut-offs were classified in the intermediate group. Dots and error bars
represent the actual statistic and 95%Cl, respectively. Bootstrapped differences
(n=1,000 resamples with replacement stratifying by the output) between the
statistics using plasma %p-tau217 (reference) and CSF biomarkers are shown in
(c) for both single and two cut-offs. A horizontal dashed line is plotted at zero
representing the lack of difference between plasma and CSF biomarkers.

We considered plasma and CSF biomarkers clinically equivalent if the 95%CI of
the mean difference included zero and clinically superior if it did not include
zero and favored plasma (>0). Differences in number of participantsin the
intermediate group have been scaled to amaximum of one to be comparable

to the other differences. Dots and error bars represent the mean and 95%Cl
estimate from abootstrapped sample. Vertical dashed lines represent the
maximal statistical value possible (1). For the intermediate values plots, coloured
barsrepresent the actual percentage and error bar the 95%Cl. Histograms (d)
represent the distribution of the data coloured by the imaging biomarker status
(coloured represent the positive group). Vertical black line represents the
cut-off derived from the first approach (a), and red lines represent the lower and
upper cut-offs from the second approach (B). Abbreviations: AB, amyloid-f3,

ClI, confidence interval; CSF, cerebrospinal fluid; NPV, negative predictive value;
PPV, positive predictive value.
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Extended Data Fig. 2| Continuous Ap and tau PET measures by categorized
fluid biomarkers groups. Comparison between categorised fluid biomarkers
levels and continuous measures of AB- (Centiloids, a, b) and tau PET (SUVR,

¢, d) quantification. Fluid biomarkers were categorised using the two-cut-off
approach. The lower cut-off was obtained by maximizing specificity with
sensitivity fixed at 95%, whereas the upper cut-off was obtained by maximizing
sensitivity fixing specificity at 95%. Participants that fall between these two
cut-offs were classified in the intermediate group. Dots represent individual

participants. In all cases, central band of the boxplot represents the median of
the group, the lower and upper hinges correspond to the first and third quartiles,
and the whiskers represent the maximum/minimum value or the 1.51QR from
the hinge, whatever is lower. Horizontal dashed lines represent the cut-off of
positivity for each imaging marker (A PET: >37 Centiloids, Tau PET: >1.32 SUVR
for both cohorts). Abbreviations: AB, amyloid-f; CI, confidence interval; CSF,
cerebrospinal fluid; IQR, inter-quantile range; NPV, negative predictive value;
PPV, positive predictive value; SUVR, standardized uptake value ratio.
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Bootstrapped differences (n =1,000 resamples with replacement stratifying by predictive value.
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Extended Data Table 1| Concordance of fluid and imaging biomarkers of A and tau pathologies

Al Cognitively impaired Cognitively unimpaired
AUC AUC AUC
Ctrl Case Difference Ctrl Case Difference Ctrl Case Difference
[95%C1) [95%c1) [95%C1)
AP PET positive
BioFINDER-2
s 0.97 0.96 0.96
743 | 258 Ref. 153 | 151 Ref. 590 107 Ref.
%p-tau217 (0.95,0.98) [0.94,0.98) [0.94,0.98)
= 0.97 -0.01 0.96 0.00 0.97 0.01
wofABe2 743 | 258 153 | 151 590 107
e [0.96,0.98) (-0.02, 0.01] (0.94,0.98) (-0.02, 0.02) [0.95,0.98] | [-0.02,0.01)
CSF 0.96 0.01 0.94 0.02 0.96 0.00
ABAiiG 743 | 258 153 | 151 590 107
paz/ [0.95,0.97) (-0.01, 0.02) [0.92,0.97) (-0.01, 0.04) (0.95,0.97) | [-0.02,0.02)
Knight ADRC
P 0.97 0.98 0.96
sotanis | 252 85 Ref. 13 37 Ref. 239 a8 Ref.
a0 [0.95,0.99) (0.94,1.00) [0.93,0.98)
CSF 0.97 0.00 0.96 0.02 0.97 -0.01
cou/apaz | 252 85 13 37 239 a8
p-tau/Ap [0.96,0.99) (-0.02, 0.01) [0.91,1.00) (-0.05, 0.09) [0.95,0.99) | [-0.03,0.01)
CSF 0.96 0.01 0.92 0.06 0.96 0.00
ABABIRG 252 85 13 37 239 a8
paz/ (0.94,0.98) (-0.01, 0.03) (0.81,1.00) (-0.05, 0.18] (0.93,098) | [-0.03,0.03)
Tau PET positive
BioFINDER-2
- 0.95 0.95 0.90
%oteu217 | 1013 | 355 Ref. 357 | 306 Ref. 656 49 Ref.
p-tau (0.94,0.97) [0.93,0.97) (0.85,0.95)
p 0.93 0.02 0.91 0.04 0.89 0.01
/apaz | 1013 | 355 357 | 306 656 49
p-tau/Ap (0.92,0.95) [0.01,0.03) [0.89,0.94) [0.02, 0.05) (0.83,095) | [-0.03,0.05)
CSF 0.88 0.07 0.86 0.09 0.83 0.07
AB42/40 1013 | 355 357 | 306 656 49
[0.86,0.90) [0.05, 0.08) [0.83,0.88) (0.07,0.12) [0.76,091) | (0.02,0.12)
Knight ADRC
Plasma 0.98 0.94 0.97
302 35 Ref. 22 28 Ref. 280 7 Ref.
%p-tau217 [0.97,0.99] [0.88,1.00) [0.94,1.00)
e 0.96 0.02 0.90 0.04 0.96 0.01
e B 35 2 28 280 7
P-tau/Ap (0.94,0.98] (0.00, 0.04) (0.81,0.99) (-0.06, 0.14) (0.93,099) | (-0.01,0.02)
SE 0.90 0.07 0.76 0.18 0.94 0.03
i 302 35 22 28 280 7
paz/ (0.87,0.94) [0.04,0.11) [0.62,0.91) (0.03,0.32) (0.91,097) | [0.00,0.07)

Concordance of fluid biomarkers with AR and tau PET positivity in BioFINDER-2 and Knight ADRC participants. AUCs for all, cognitively impaired and cognitively unimpaired groups are
shown from left to right. The number of negative (controls) and positive (cases) imaging-based groups are shown in each case. Differences between the statistics using plasma %p-tau217
(reference) and CSF biomarkers are shown together with the mean values. We considered plasma and CSF biomarkers clinically equivalent if the 95% CI of the mean difference included zero
and clinically superior if it did not include zero and favored plasma (>0). AB PET positivity was assessed as Centiloids > 37. Tau PET positivity was assessed using in-house previously validated
cutoffs (SUVR>1.32 for both cohorts in Braak I-IV). Ctrl, control.
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Antibodies
Antibodies used Taul (generated by Drs Nicholas Kanaan) and HJ series (HJ8.5, HJ8.7, HJ32.11 and HJ34.8) antibodies (generated by Dr. David
Holtzman) were used. Detailed information of the immunoassays in the manuscript has been published previously (and is referred to
in the manuscript).
Validation Taul, HJ8.5 and HJ8.7 were validated in the following studies:
-Barthélemy NR, et al. Site-specific cerebrospinal fluid tau hyperphosphorylation in response to Alzheimer's disease brain patholgy:
Not all tau phospho-sites are hyperphosphorylated. Journal of Alzheimer's disease, 2022, 85(1): 415-29.
-Sato, et al. Tau kinetic in neurons and the human central nervous sytem. Neuron 2018. 98(4): 861-4.
HJ32.11 and HJ34.8 were newly generated antibodies and we confirmed that immunoprecipitation procedures using there antibodies
worked well by the two replicate cohorts analyses.
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Clinical trial registration  NCT03174938 (BioFINDER-2)
Study protocol For BioFINDER-2: www.biofinder.se.

Data collection BioFINDER-2 data are collected at the memory clinics of Skane University Hospital and Angelholm's hospital in Sweden between April
2017 and June 2022. Participants in Knight ADRC cohort were community-dwelling volunteers enrolled in studies of memory and
aging between February 2013 and March 2020.

Qutcomes The primary outcome is amyloid status assessed by PET. Secondary outcomes include tau status assessed by PET and Alzheimer's
disease diagnosis.
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