Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ultracold chemistry as a testbed for few-body physics

Abstract

Ultracold atoms, molecules and ions provide a unique playground to explore chemistry at ultracold temperatures. In this Review, we discuss what makes these systems particularly appealing as controlled quantum systems and the theoretical challenges that their study poses. We discuss recent progress in the field, focusing on chemical processes such as bimolecular chemical reactions, three-body recombination, charge transfer reactions and photochemistry. We emphasize the synergy between theory and experiment, highlighting the predictive power of theory and future directions in ultracold chemistry research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Length and energy scales in ultracold molecular systems.
Fig. 2: Trap photochemistry of ultracold molecules.
Fig. 3: Shielding.
Fig. 4: Ultralong-range Rydberg molecules.
Fig. 5: Ion–atom complex formation in a Paul trap.
Fig. 6: Ion–atom–atom three-body recombination.

Similar content being viewed by others

References

  1. Brown, R. H. & Twiss, R. Q. Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956).

    ADS  Google Scholar 

  2. Glauber, R. J. Photon correlations. Phys. Rev. Lett. 10, 84–86 (1963).

    ADS  MathSciNet  Google Scholar 

  3. Getting, I. Perspective/navigation-the global positioning system. IEEE Spectr. 30, 36–38 (1993).

    Google Scholar 

  4. Acín, A. et al. The quantum technologies roadmap: a European community view. New J. Phys. 20, 080201 (2018).

    MathSciNet  Google Scholar 

  5. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637 (2015).

    ADS  Google Scholar 

  6. Collaboration, A. Improved limit on the electric dipole moment of the electron. Nature 562, 355–360 (2018).

    ADS  Google Scholar 

  7. Roussy, T. S. et al. An improved bound on the electron’s electric dipole moment. Science 381, 46–50 (2023).

    ADS  Google Scholar 

  8. Häffner, H., Roos, C. & Blatt, R. Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008).

    ADS  MathSciNet  Google Scholar 

  9. Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

    ADS  Google Scholar 

  10. Wurtz, J. et al. Aquila: QuEra’s 256-qubit neutral-atom quantum computer. Preprint at https://arxiv.org/abs/2306.11727 (2023).

  11. Cornish, S. L., Tarbutt, M. R. & Hazzard, K. R. A. Quantum computation and quantum simulation with ultracold molecules. Nat. Phys. https://doi.org/10.1038/s41567-024-02453-9 (2024).

  12. Doyle, J., Friedrich, B., Krems, R. V. & Masnou-Seeuws, F. Quo vadis, cold molecules? Eur. Phys. J. D 31, 149–164 (2004).

    ADS  Google Scholar 

  13. Krems, R. V. Molecules near absolute zero and external field control of atomic and molecular dynamics. Int. Rev. Phys. Chem. 24, 99–118 (2005).

    Google Scholar 

  14. Krems, R. V. Cold controlled chemistry. Phys. Chem. Chem. Phys. 10, 4079–4092 (2008).

    Google Scholar 

  15. Carr, L. D., DeMille, D., Krems, R. V. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009).

    ADS  Google Scholar 

  16. Tomza, M. et al. Cold hybrid ion-atom systems. Rev. Mod. Phys. 91, 035001 (2019).

    ADS  MathSciNet  Google Scholar 

  17. Pérez-Ríos, J. An Introduction to Cold and Ultracold Chemistry: Atoms, Molecules, Ions and Rydbergs (Springer, 2020).

  18. Deiß, M., Willitsch, S. & Hecker Denschlag, J. Cold trapped molecular ions and hybrid platforms for ions and neutral particles. Nat. Phys. https://doi.org/10.1038/s41567-024-02440-0 (2024).

  19. Craddock, A. N. et al. Quantum interference between photons from an atomic ensemble and a remote atomic ion. Phys. Rev. Lett. 123, 213601 (2019).

    ADS  Google Scholar 

  20. Bissbort, U. et al. Emulating solid-state physics with a hybrid system of ultracold ions and atoms. Phys. Rev. Lett. 111, 080501 (2013).

    ADS  Google Scholar 

  21. Bell, M. T. & Softley, T. P. Ultracold molecules and ultracold chemistry. Mol. Phys. 107, 99–132 (2009).

    ADS  Google Scholar 

  22. Qum´éner, G. & Julienne, P. S. Ultracold molecules under control! Chem. Rev. 112, 4949–5011 (2012).

    Google Scholar 

  23. Balakrishnan, N. Ultracold molecules and the dawn of cold controlled chemistry. J. Chem. Phys. 145, 150901 (2016).

    ADS  Google Scholar 

  24. Krems, R., Friedrich, B. & Stwalley, W. E. Cold Molecules: Theory, Experiment, Applications (CRC Press, 2009).

  25. Yan, Z. Z. et al. Resonant dipolar collisions of ultracold molecules induced by microwave dressing. Phys. Rev. Lett. 125, 063401 (2020).

    ADS  Google Scholar 

  26. Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327, 853–857 (2010).

    ADS  Google Scholar 

  27. Devolder, A., Brumer, P. & Tscherbul, T. V. Complete quantum coherent control of ultracold molecular collisions. Phys. Rev. Lett. 126, 153403 (2021).

    ADS  Google Scholar 

  28. Hu, M.-G. et al. Nuclear spin conservation enables state-to-state control of ultracold molecular reactions. Nat. Chem. 13, 435–440 (2021).

    Google Scholar 

  29. Soley, M. B. & Heller, E. J. Classical approach to collision complexes in ultracold chemical reactions. Phys. Rev. A 98, 052702 (2018).

    ADS  Google Scholar 

  30. Greene, C. H., Rau, A. & Fano, U. General form of the quantum-defect theory. II. Phys. Rev. A 26, 2441 (1982).

    ADS  Google Scholar 

  31. Seaton, M. Quantum defect theory. Rep. Prog. Phys. 46, 167 (1983).

    ADS  Google Scholar 

  32. Mies, F. H. A multichannel quantum defect analysis of diatomic predissociation and inelastic atomic scattering. J. Chem. Phys. 80, 2514–2525 (1984).

    ADS  Google Scholar 

  33. Gao, B., Tiesinga, E., Williams, C. J. & Julienne, P. S. Multichannel quantum-defect theory for slow atomic collisions. Phys. Rev. A 72, 042719 (2005).

    ADS  Google Scholar 

  34. Gronowski, M., Koza, A. M. & Tomza, M. Ab initio properties of the NaLi molecule in the a3Σ+ electronic state. Phys. Rev. A 102, 020801 (2020).

    ADS  Google Scholar 

  35. Idziaszek, Z. & Julienne, P. S. Universal rate constants for reactive collisions of ultracold molecules. Phys. Rev. Lett. 104, 113202 (2010).

    ADS  Google Scholar 

  36. Ni, K. K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    ADS  Google Scholar 

  37. Żuchowski, P. S. & Hutson, J. M. Reactions of ultracold alkali-metal dimers. Phys. Rev. A 81, 060703 (2010).

    ADS  Google Scholar 

  38. Ni, K.-K. et al. Dipolar collisions of polar molecules in the quantum regime. Nature 464, 1324–1328 (2010).

    ADS  Google Scholar 

  39. Liu, Y. et al. Precision test of statistical dynamics with state-to-state ultracold chemistry. Nature 593, 379–384 (2021).

    ADS  Google Scholar 

  40. Takekoshi, T. et al. Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. Phys. Rev. Lett. 113, 205301 (2014).

    ADS  Google Scholar 

  41. Molony, P. K. et al. Creation of ultracold 87Rb133Cs molecules in the rovibrational ground state. Phys. Rev. Lett. 113, 255301 (2014).

    ADS  Google Scholar 

  42. Guo, M. et al. Creation of an ultracold gas of ground-state dipolar 23Na87Rb molecules. Phys. Rev. Lett. 116, 205303 (2016).

    ADS  Google Scholar 

  43. Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).

    ADS  Google Scholar 

  44. Son, H., Park, J. J., Ketterle, W. & Jamison, A. O. Collisional cooling of ultracold molecules. Nature 580, 197–200 (2020).

    ADS  Google Scholar 

  45. Valtolina, G. et al. Dipolar evaporation of reactive molecules to below the Fermi temperature. Nature 588, 239–243 (2020).

    ADS  Google Scholar 

  46. Matsuda, K. et al. Resonant collisional shielding of reactive molecules using electric fields. Science 370, 1324–1327 (2020).

    ADS  Google Scholar 

  47. Li, J.-R. et al. Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas. Nat. Phys. 17, 1144–1148 (2021).

    Google Scholar 

  48. Schindewolf, A. et al. Evaporation of microwave-shielded polar molecules to quantum degeneracy. Nature 607, 677–681 (2022).

    ADS  Google Scholar 

  49. Yang, H. et al. Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K + 40K collisions. Science 363, 261–264 (2019).

    ADS  Google Scholar 

  50. Yang, H. et al. Evidence for the association of triatomic molecules in ultracold 23Na40K+ 40K mixtures. Nature 602, 229–233 (2022).

    ADS  Google Scholar 

  51. Son, H. et al. Control of reactive collisions by quantum interference. Science 375, 1006–1010 (2022).

    ADS  Google Scholar 

  52. Su, Z. et al. Resonant control of elastic collisions between 23Na40K molecules and 40K atoms. Phys. Rev. Lett. 129, 033401 (2022).

    ADS  Google Scholar 

  53. Mayle, M., Ruzic, B. P. & Bohn, J. L. Statistical aspects of ultracold resonant scattering. Phys. Rev. A 85, 062712 (2012).

    ADS  Google Scholar 

  54. Mayle, M., Quéméner, G., Ruzic, B. P. & Bohn, J. L. Scattering of ultracold molecules in the highly resonant regime. Phys. Rev. A 87, 012709 (2013).

    ADS  Google Scholar 

  55. Rice, O. K. & Ramsperger, H. C. Theories of unimolecular gas reactions at low pressures. J. Am. Chem. Soc. 49, 1617 (1927).

    Google Scholar 

  56. Kassel, L. S. Studies in homogeneous gas reactions. J. Chem. Phys. 32, 225 (1928).

    Google Scholar 

  57. Eyring, H. The activated complex and the absolute rate of chemical reactions. J. Chem. Phys. 3, 107 (1935).

    ADS  Google Scholar 

  58. Marcus, R. A. Unimolecular dissociations and free radical recombination reactions. J. Chem. Phys. 20, 359 (1952).

    ADS  Google Scholar 

  59. Christianen, A., Zwierlein, M. W., Groenenboom, G. C. & Karman, T. Photoinduced two-body loss of ultracold molecules. Phys. Rev. Lett. 123, 123402 (2019).

    ADS  Google Scholar 

  60. Liu, Y. et al. Photo-excitation of long-lived transient intermediates in ultracold reactions. Nat. Phys. 16, 1132 (2020).

    ADS  Google Scholar 

  61. Gregory, P. D., Blackmore, J. A., Bromley, S. L. & Cornish, S. L. Loss of ultracold 87Rb133Cs molecules via optical excitation of long-lived two-body collision complexes. Phys. Rev. Lett. 124, 163402 (2020).

    ADS  Google Scholar 

  62. Christianen, A., Karman, T. & Groenenboom, G. C. Quasiclassical method for calculating the density of states of ultracold collision complexes. Phys. Rev. A 100, 032708 (2019).

    ADS  Google Scholar 

  63. Gersema, P. et al. Probing photoinduced two-body loss of ultracold nonreactive bosonic 23Na87Rb and 23Na39K molecules. Phys. Rev. Lett. 127, 163401 (2021).

    ADS  Google Scholar 

  64. Bause, R. et al. Collisions of ultracold molecules in bright and dark optical dipole traps. Phys. Rev. Res. 3, 033013 (2021).

    Google Scholar 

  65. Croft, J. F. E., Bohn, J. L. & Quéméner, G. Unified model of ultracold molecular collisions. Phys. Rev. A 102, 033306 (2020).

    ADS  MathSciNet  Google Scholar 

  66. Christianen, A., Groenenboom, G. C. & Karman, T. Lossy quantum defect theory of ultracold molecular collisions. Phys. Rev. A 104, 043327 (2021).

    ADS  Google Scholar 

  67. Man, M. P., Groenenboom, G. C. & Karman, T. Symmetry breaking in sticky collisions between ultracold molecules. Phys. Rev. Lett. 129, 243401 (2022).

    ADS  Google Scholar 

  68. Quéméner, G., Croft, J. F. & Bohn, J. L. Electric field dependence of complex-dominated ultracold molecular collisions. Phys. Rev. A 105, 013310 (2022).

    ADS  MathSciNet  Google Scholar 

  69. Jachymski, K., Gronowski, M. & Tomza, M. Collisional losses of ultracold molecules due to intermediate complex formation. Phys. Rev. A 106, L041301 (2022).

    ADS  Google Scholar 

  70. Croft, J. F. E., Bohn, J. L. & Quéméner, G. Anomalous lifetimes of ultracold complexes decaying into a single channel. Phys. Rev. A 107, 023304 (2023).

    ADS  Google Scholar 

  71. Bause, R., Christianen, A., Schindewolf, A., Bloch, I. & Luo, X.-Y. Ultracold sticky collisions: theoretical and experimental status. J. Phys. Chem. A 127, 729 (2023).

    Google Scholar 

  72. Langen, T., Valtolina, G., Wang, D. & Ye, J. Quantum state manipulation and cooling of ultracold molecules. Nat. Phys. https://doi.org/10.1038/s41567-024-02423-1 (2024).

  73. Suominen, K.-A., Holland, M. J., Burnett, K. & Julienne, P. Optical shielding of cold collisions. Phys. Rev. A 51, 1446 (1995).

    ADS  Google Scholar 

  74. Quéméner, G. & Bohn, J. L. Shielding 2Σ ultracold dipolar molecular collisions with electric fields. Phys. Rev. A 93, 012704 (2016).

    ADS  Google Scholar 

  75. Karman, T. & Hutson, J. M. Microwave shielding of ultracold polar molecules. Phys. Rev. Lett. 121, 163401 (2018).

    ADS  Google Scholar 

  76. Lassablière, L. & Quéméner, G. Controlling the scattering length of ultracold dipolar molecules. Phys. Rev. Lett. 121, 163402 (2018).

    ADS  Google Scholar 

  77. González-Martínez, M. L., Bohn, J. L. & Quéméner, G. Adimensional theory of shielding in ultracold collisions of dipolar rotors. Phys. Rev. A 96, 032718 (2017).

    ADS  Google Scholar 

  78. Xie, T. et al. Optical shielding of destructive chemical reactions between ultracold ground-state NaRb molecules. Phys. Rev. Lett. 125, 153202 (2020).

    ADS  Google Scholar 

  79. Karam, C. et al. Two-photon optical shielding of collisions between ultracold polar molecules. Phys. Rev. Res. 5, 033074 (2023).

    Google Scholar 

  80. Augustovičová, L. D. & Bohn, J. L. Ultracold collisions of polyatomic molecules: CaOH. New J. Phys. 21, 103022 (2019).

    ADS  Google Scholar 

  81. Anderegg, L. et al. Observation of microwave shielding of ultracold molecules. Science 373, 779 (2021).

    ADS  Google Scholar 

  82. Bigagli, N. et al. Collisionally stable gas of bosonic dipolar ground state molecules. Nat. Phys. 19, 1579–1584 (2023).

    Google Scholar 

  83. Lin, J. et al. Microwave shielding of bosonic NaRb molecules. Phys. Rev. Lett. 13, 031032 (2023).

    Google Scholar 

  84. Bigagli, N. et al. Observation of Bose–Einstein condensation of dipolar molecules. Preprint at https://arxiv.org/abs/2312.10965 (2023).

  85. Huang, S.-J. et al. Field-induced long-lived supermolecules. Phys. Rev. A 85, 055601 (2012).

    ADS  Google Scholar 

  86. Avdeenkov, A. V. & Bohn, J. L. Field-linked states of ultracold polar molecules. Phys. Rev. A 69, 012710 (2004).

    ADS  Google Scholar 

  87. Quéméner, G., Bohn, J. L. & Croft, J. F. Electro-association of ultracold dipolar molecules into tetramer field-linked states. Phys. Rev. Lett. 131, 043402 (2023).

    ADS  Google Scholar 

  88. Chen, X.-Y. et al. Ultracold field-linked tetratomic molecules. Nature 626, 283–287 (2024).

    Google Scholar 

  89. Chen, X.-Y. et al. Field-linked resonances of polar molecules. Nature 614, 59–63 (2023).

    ADS  Google Scholar 

  90. Greene, C. H., Dickinson, A. S. & Sadeghpour, H. R. Creation of polar and nonpolar ultra-long-range Rydberg molecules. Phys. Rev. Lett. 85, 2458–2461 (2000).

    ADS  Google Scholar 

  91. Hamilton, E. L., Greene, C. H. & Sadeghpour, H. R. Shape-resonance-induced long-range molecular Rydberg states. J. Phys. B 35, L199 (2002).

    ADS  Google Scholar 

  92. Bendkowsky, V. et al. Observation of ultralong-range Rydberg molecules. Nature 458, 1005–1008 (2009).

    ADS  Google Scholar 

  93. Niederprüm, T. et al. Observation of pendular butterfly Rydberg molecules. Nat. Commun. 7, 12820 (2016).

    ADS  Google Scholar 

  94. Giannakeas, P., Eiles, M. T., Robicheaux, F. & Rost, J. M. Dressed ion-pair states of an ultralong-range Rydberg molecule. Phys. Rev. Lett. 125, 123401 (2020).

    ADS  Google Scholar 

  95. González-Férez, R., Shertzer, J. & Sadeghpour, H. R. Ultralong-range Rydberg bimolecules. Phys. Rev. Lett. 126, 043401 (2021).

    ADS  Google Scholar 

  96. Saßmannshausen, H. & Deiglmayr, J. Observation of Rydberg-atom macrodimers: micrometer-sized diatomic molecules. Phys. Rev. Lett. 117, 083401 (2016).

    ADS  Google Scholar 

  97. Zuber, N. et al. Observation of a molecular bond between ions and Rydberg atoms. Nature 605, 453–456 (2022).

    ADS  Google Scholar 

  98. Miller, W. H. Theory of Penning ionization. I. Atoms. J. Chem. Phys. 52, 3563–3572 (2003).

    ADS  Google Scholar 

  99. Schlagmüller, M. et al. Ultracold chemical reactions of a single Rydberg atom in a dense gas. Phys. Rev. X 6, 031020 (2016).

    Google Scholar 

  100. Kanungo, S. K. et al. Loss rates for high-n, 49 n 150, 5sns (3S1) Rydberg atoms excited in an 84Sr Bose–Einstein condensate. Phys. Rev. A 102, 063317 (2020).

    ADS  Google Scholar 

  101. Hirzler, H. et al. Controlling the nature of a charged impurity in a bath of Feshbach dimers. Phys. Rev. Res. 2, 033232 (2020).

    Google Scholar 

  102. Pérez-Ríos, J. Cold chemistry: a few-body perspective on impurity physics of a single ion in an ultracold bath. Mol. Phys. 119, e1881637 (2021).

    ADS  Google Scholar 

  103. Hirzler, H., Trimby, E., Gerritsma, R., Safavi-Naini, A. & Pérez-Ríos, J. Trap-assisted complexes in cold atom-ion collisions. Phys. Rev. Lett. 130, 143003 (2023).

    ADS  Google Scholar 

  104. Pérez-Ríos, Jesús A single ion immersed in an ultracold gas: from cold chemistry to impurity physics. Europhys. News 54, 28–31 (2023).

    Google Scholar 

  105. Pinkas, M., Katz, O., Wengrowicz, J., Akerman, N. & Ozeri, R. Trap-assisted formation of atom–ion bound states. Nat. Phys. 19, 1573–1578 (2023).

    Google Scholar 

  106. Hirzler, H. & Pérez-Ríos, J. Rydberg atom–ion collisions in cold environments. Phys. Rev. A 103, 043323 (2021).

    ADS  Google Scholar 

  107. Pérez-Ríos, J. & Greene, C. H. Classical threshold law for ion-neutral-neutral three-body recombination. J. Chem. Phys. 143, 041105 (2015).

    ADS  Google Scholar 

  108. Krükow, A. et al. Energy scaling of cold atom-atom-ion three-body recombination. Phys. Rev. Lett. 116, 193201 (2016).

    ADS  Google Scholar 

  109. Mohammadi, A. et al. Life and death of a cold BaRb+ molecule inside an ultracold cloud of Rb atoms. Phys. Rev. Res. 3, 013196 (2021).

    Google Scholar 

  110. Pérez-Ríos, J. & Greene, C. H. Universal temperature dependence of the ion–neutral–neutral three-body recombination rate. Phys. Rev. A 98, 062707 (2018).

    ADS  Google Scholar 

  111. Mirahmadi, M. & Pérez-Ríos, J. Ion–atom–atom three-body recombination: from the cold to the thermal regime. J. Chem. Phys. 158, 024103 (2023).

    ADS  Google Scholar 

  112. Weckesser, P. et al. Observation of Feshbach resonances between a single ion and ultracold atoms. Nature 600, 429–433 (2021).

    ADS  Google Scholar 

  113. de Jongh, T. et al. Imaging the onset of the resonance regime in low-energy NO–He collisions. Science 368, 626–630 (2020).

    ADS  Google Scholar 

  114. Paliwal, P. et al. Determining the nature of quantum resonances by probing elastic and reactive scattering in cold collisions. Nat. Chem. 13, 94–98 (2021).

    Google Scholar 

  115. Margulis, B. et al. Tomography of Feshbach resonance states. Science 380, 77 (2023).

    ADS  Google Scholar 

  116. Tang, G. et al. Quantum state-resolved molecular dipolar collisions over four decades of energy. Science 379, 1031 (2023).

    ADS  Google Scholar 

  117. Liu, Y., Grimes, D. D., Hu, M.-G. & Ni, K.-K. Probing ultracold chemistry using ion spectrometry. Phys. Chem. Chem. Phys. 22, 4861–4874 (2020).

    Google Scholar 

  118. Kirste, M. et al. Quantum-state resolved bimolecular collisions of velocity-controlled OH with NO radicals. Science 338, 1060 (2012).

    ADS  Google Scholar 

  119. Frye, M. D. & Hutson, J. M. Complexes formed in collisions between ultracold alkali-metal diatomic molecules and atoms. New J. Phys. 23, 125008 (2021).

    ADS  Google Scholar 

  120. Frye, M. D. & Hutson, J. M. Long-range states and Feshbach resonances in collisions between ultracold alkali-metal diatomic molecules and atoms. Phys. Rev. Res. 5, 023001 (2023).

    Google Scholar 

  121. Park, J. J. et al. Spectrum of Feshbach resonances in NaLi + Na collisions. Phys. Rev. X 13, 031018 (2023).

    Google Scholar 

  122. Karman, T. et al. Ab initio calculation of the spectrum of Feshbach resonances in NaLi + Na collisions. Phys. Rev. A 108, 023309 (2023).

    ADS  Google Scholar 

  123. Park, J. J., Lu, Y.-K., Jamison, A. O., Tscherbul, T. V. & Ketterle, W. A Feshbach resonance in collisions between triplet ground-state molecules. Nature 614, 54–58 (2023).

    ADS  Google Scholar 

  124. Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    ADS  MathSciNet  Google Scholar 

  125. DeMille, D., Hutzler, N. R., Rey, A. M. & Zelevinsky, T. Quantum sensing and metrology for fundamental physics with molecules. Nat. Phys. https://doi.org/10.1038/s41567-024-02499-9 (2024).

Download references

Acknowledgements

We acknowledge discussions at the workshop ‘New directions in cold and ultracold chemistry’ at the Lorentz Center Leiden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tijs Karman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karman, T., Tomza, M. & Pérez-Ríos, J. Ultracold chemistry as a testbed for few-body physics. Nat. Phys. 20, 722–729 (2024). https://doi.org/10.1038/s41567-024-02467-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-024-02467-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing