Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Correspondence
  • Published:

Protean role of epigenetic mechanisms and their impact in regulating the Tregs in TME

Abstract

Constitutive expression of Foxp3+ Tregs in the tumor microenvironment (TME) specifically renders immune suppression in the tumor tissues. Being highly stable and self-tolerant, Tregs may be influenced by various epigenetic-associated mechanisms while exhibiting their functions. DNA methylation, histone acetylation, epigenetic silencing, alteration in chromatin networks, etc., are some of the main factors underlying the epigenetic-based Treg cell functional modulations in the TME. The possible reasons on why these epigenetic modulations should be specifically targeted are thus discussed, so that enhanced anti-tumor immunity in TME can be achieved.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epigenetics-based regulation of Tregs portraying suitable targets or pathways in modulating anti-tumor immunity in TME.

References

  1. Liyanage UK, Moore TT, Joo H-G, Tanaka Y, Herrmann V, Doherty G, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002;169:2756–61.

    Article  CAS  PubMed  Google Scholar 

  2. Khattri R, Cox T, Yasayko S-A, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol. 2003;4:337–42.

    Article  CAS  PubMed  Google Scholar 

  3. Salama P, Phillips M, Grieu F, Moris M, Zepts N, Joseph D, et al. Tumor-infiltrating Foxp3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009;27:186–92.

    Article  PubMed  Google Scholar 

  4. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 2005;65:2457–64.

    Article  CAS  PubMed  Google Scholar 

  5. Siddiqui SA, Frigola X, Bonne-Annee S, Mercader M, Kuntz SM, et al. Tumor-infiltrating Foxp3-CD4+CD25+ T cells predict poor survival in renal cell carcinoma. Clin Cancer Res. 2007;13:2075–81.

    Article  CAS  PubMed  Google Scholar 

  6. Heimberger AB, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Sun W, Qiao W, et al. Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res. 2008;14:5166–72.

    Article  CAS  PubMed  Google Scholar 

  7. Matkowski R, Gisterek I, Halon A, Lacko A, Szewczyk K, Staszek U, et al. The prognostic role of tumor-infiltrating CD4 and CD8 T lymphocytes in breast cancer. Anticancer Res. 2009;29:2445–51.

    CAS  PubMed  Google Scholar 

  8. Schreiber TH. The use of FoxP3 as a biomarker and prognostic factor for malignant human tumors. Cancer Epidemiol Biomark Prev. 2007;16:1931–4.

    Article  CAS  Google Scholar 

  9. Walker LucySK. Treg and CTLA-4: two intertwining pathways to immune tolerance. J Autoimmun. 2013;45:49–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Curtin JF, Candolfi M, Fakhouri TM, Liu C, Alden A, Edwards M, et al. Treg depletion inhibits efficacy of cancer immunotherapy: implications for clinical trials. PLoS ONE. 2008;3:e1983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Pastrana JL, Shao Y, Chernaya V, Wang H, Yang X-f. Epigenetic enzymes are the therapeutic targets for CD4+CD25+/highFoxp3+ regulatory T cells. Transl Res. 2015;165:221–40.

    Article  CAS  Google Scholar 

  12. Devaud C, Westwood JA, Teng MWL, John LB, Yong CSM, Duong CPM, et al. Differential potency of regulatory T cell-mediated immunosuppression in kidney tumors compared to subcutaneous tumors. Oncoimmunology. 2014;3:e963395.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017;27:109–18.

    Article  CAS  PubMed  Google Scholar 

  14. Huehn J, Polansky JK, Hamann A. Epigenetic control of Foxp3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol. 2009;9:83–9.

    Article  CAS  PubMed  Google Scholar 

  15. Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature. 2010;463:808–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, Zheng Y, et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature. 2012;482:395–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Toker A, Engelbert D, Garg G, Polansky JK, Floess S, Miyao T, et al. Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J Immunol. 2013;190:3180–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res. 1982;10:2709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, Ito Y, et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity. 2012;37:785–99.

    Article  CAS  PubMed  Google Scholar 

  20. Schmidl C, Klug M, Boeld TJ, Andreesen R, Hoffmann P, Edinger M, et al. Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity. Genome Res. 2009;19:1165–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Feng Y, van der Veeken J, Shugay M, Putintseva EV, Osmanbeyoglu HU, Dikiy S, et al. A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. Nature. 2015;528:132–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kitagawa Y, Ohkura N, Kidani Y, Vandenbon A, Hirota K, Kawakami R, et al. Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat Immunol. 2017;18:173–83.

    Article  CAS  PubMed  Google Scholar 

  23. Wang L, Liu Y, Han R, Beier UH, Bhatti TR, Akimova T, et al. Foxp3+ regulatory T cell development and function require histone/protein deacetylase 3. J Clin Investig. 2015;125:1111–23.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Placek K, Hu G, Cui K, Zhang D, Ding Y, Lee JE, et al. MLL4 prepares the enhancer landscape for Foxp3 induction via chromatin looping. Nat Immunol. 2017;18:1035–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vos LD, Grünwald I, Bawden EG, Dietrich J, Scheckenbach K. The landscape of CD28, CD80, CD86, CTLA4, and ICOS DNA methylation in head and neck squamous cell carcinomas. Epigenetics. 2020;15:1195–212.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cribbs AP, Kennedy A, Penn H, Read JE, Amjadi P, Green P, et al. Treg cell function in rheumatoid arthritis is compromised by ctla-4 promoter methylation resulting in a failure to activate the indoleamine 2,3-dioxygenase pathway. Arthritis Rheumatol. 2014;66:2344–54.

    Article  CAS  PubMed  Google Scholar 

  27. Tseng Wen-Yi, Huang Yi-Shu, Clanchy Felix, McNamee Kay, Perocheau Dany, Shu JoyOgbechi. TNF receptor 2 signaling prevents DNA methylation at the Foxp3 promoter and prevents pathogenic conversion of regulatory T cells. PNAS. 2019;116:21666–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang H, Lee S, Lo Nigro C, Lattanzio L, Merlano M, Monteverde M. NT5E (CD73) is epigenetically regulated in malignant melanoma and associated with metastatic site specificity. Br J Cancer. 2012;106:1446–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Antonioli L, Blandizzi C, Pacher P, Haskó G. Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer. 2013;13:842–57.

    Article  CAS  PubMed  Google Scholar 

  30. Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat Rev Immunol. 2002;2:933–44.

    Article  CAS  PubMed  Google Scholar 

  31. Avni O, Lee D, Macian F, Szabo SJ, Glimcher LH, Rao AT. (H) cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat Immunol. 2002;3:643–51.

    Article  CAS  PubMed  Google Scholar 

  32. Topper MJ, Vaz M, Chiappinelli KB, DeStefano Shields CE. Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung. Cancer Cell. 2017;171:1284–1300.

    CAS  Google Scholar 

  33. Wang Y, Shu Y, Xiao Y, Wang Q, Kanekura T, Li Y, et al. Hypomethylation and overexpression of ITGAL (CD11a) in CD4(+) T cells in systemic sclerosis. Clin Epigenet. 2014;6:25.

    Article  CAS  Google Scholar 

  34. Lu Q, Wu A, Ray D, Deng C, Attwood J, Hanash S. DNA methylation and chromatin structure regulate T cell perforin gene expression. J Immunol. 2003;170:5124–32.

    Article  CAS  PubMed  Google Scholar 

  35. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD- 1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharm. 2017;8:561.

    Article  CAS  Google Scholar 

  36. Wu Y, Sang M, Liu F, Zhang J, Li W, Li Z, et al. Epigenetic modulation combined with PD-1/PD-L1 blockade enhances immunotherapy based on MAGE-A11 antigen-specific CD8+T cells against esophageal carcinoma. Carcinogenesis. 2020;41:894–903.

    Article  CAS  PubMed  Google Scholar 

  37. Hirschhorn-Cymerman D, Rizzuto GA, Merghoub T, Cohen AD, Avogadri F, Lesokhin AM, et al. OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. J Exp Med. 2009;206:1103–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu W, Almo SC, Zang X. Co-stimulate or co-inhibit regulatory T cells, which side to go? Immunol Invest. 2016;45:813–31.

    Article  CAS  PubMed  Google Scholar 

  39. Han S, Toker A, Liu ZQ, Ohashi PS. Turning the tide against regulatory T cells. Front Oncol. 2019;9:279.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sugiyama D, Nishikawa H, Maeda Y, Nishioka M, Tanemura A, Katayama I, et al. Anti-CCR4 mAb selectively depletes effector-type Foxp3+ CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc Natl Acad Sci USA. 2013;110:17945–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yadav SS, Prasad SB, Das M, Kumari S, Pandey LK, Singh S, et al. Epigenetic silencing of CXCR4 promotes loss of cell adhesion in cervical cancer. Biomed Res Int. 2014;2014:581403.

    PubMed  PubMed Central  Google Scholar 

  42. Zhou Xiaofei, Sun Shao-Cong. Targeting ubiquitin signaling for cancer immunotherapy. Signal Transduct Target Ther. 2021;6:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fu J, Liao L, Balaji S, Wei C, Kim J, Peng J. Epigenetic modification and a role for the E3 ligase RNF40 in cancer development and metastasis. Oncogene. 2021;40:465–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No financial support was received.

Author information

Authors and Affiliations

Authors

Contributions

ASSG made (1) substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work; (2) drafted the work or revised it critically for important intellectual content; (3) approved the version to be published; and (4) agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to A. S. Smiline Girija.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical declarations

There are no ethical issues involved.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smiline Girija, A.S. Protean role of epigenetic mechanisms and their impact in regulating the Tregs in TME. Cancer Gene Ther 29, 661–664 (2022). https://doi.org/10.1038/s41417-021-00371-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00371-z

This article is cited by

Search

Quick links