Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular Diagnostics

Epigenetic activation of SOX11 is associated with recurrence and progression of ductal carcinoma in situ to invasive breast cancer

Abstract

Background

Risk of recurrence and progression of ductal carcinoma in situ (DCIS) to invasive cancer remains uncertain, emphasizing the need for developing predictive biomarkers of aggressive DCIS.

Methods

Human cell lines and mouse models of disease progression were analyzed for candidate risk predictive biomarkers identified and validated in two independent DCIS cohorts.

Results

RNA profiling of normal mammary and DCIS tissues (n = 48) revealed that elevated SOX11 expression correlates with MKI67, EZH2, and DCIS recurrence score. The 21T human cell line model of DCIS progression to invasive cancer and two mouse models developing mammary intraepithelial neoplasia confirmed the findings. AKT activation correlated with chromatin accessibility and EZH2 enrichment upregulating SOX11 expression. AKT and HER2 inhibitors decreased SOX11 expression along with diminished mammosphere formation. SOX11 was upregulated in HER2+ and basal-like subtypes (P < 0.001). Longitudinal DCIS cohort (n = 194) revealed shorter recurrence-free survival in SOX11+ than SOX11− patients (P = 0.0056 in all DCIS; P < 0.0001 in HER2+ subtype) associated with increased risk of ipsilateral breast event/IBE (HR = 1.9, 95%CI = 1.2–2.9; P = 0.003).

Discussion

Epigenetic activation of SOX11 drives recurrence of DCIS and progression to invasive cancer, suggesting SOX11 as a predictive biomarker of IBE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Elevated SOX11 and EZH2 in DCIS with high DCIS recurrence score.
Fig. 2: Upregulation of SOX11 and EZH2 during progression of DCIS to invasive breast cancer in transgenic mouse models.
Fig. 3: Cell growth and mammosphere formation regulated by SOX11.
Fig. 4: Epigenetic mechanisms of SOX11 expression in DCIS-IDC cell line.
Fig. 5: Inhibitions of HER2 and AKT reduced cell growth and mammosphere formation with increased apoptosis.
Fig. 6: Elevated SOX11 expression in DCIS recurrence and progression to IDC.
Fig. 7: Proposed model of epigenetically elevated expression of SOX11 during recurrence of DCIS and progression to IDC.

Similar content being viewed by others

Data availability

NCBI GEO Super Series (GSE214094) are available with the accession numbers GSE214093 for Raw RCC files of nCounter expression and GSE213977 for ATAC-seq. Raw and normalized expression data will be available in GEO upon publication. Additional data that support the findings of this study is available in the SUPPLEMENTARY SECTION in the online supplement.

References

  1. Co M, Kwong A. Ductal carcinoma in situ of the breast - Long term results from a twenty-year cohort. Cancer Treat Res Commun. 2018;14:17–20.

    Article  PubMed  Google Scholar 

  2. Virnig BA, Tuttle TM, Shamliyan T, Kane RL. Ductal carcinoma in situ of the breast: a systematic review of incidence, treatment, and outcomes. J Natl Cancer Inst. 2010;102:170–8.

    Article  PubMed  Google Scholar 

  3. Thorat MA, Levey PM, Jones JL, Pinder SE, Bundred NJ, Fentiman IS et al. Prognostic and Predictive Value of HER2 Expression in Ductal Carcinoma In Situ: Results from the UK/ANZ DCIS Randomized Trial. Clin Cancer Res. 2021;27:5317–24.

  4. Shee K, Muller KE, Marotti J, Miller TW, Wells WA, Tsongalis GJ. Ductal Carcinoma in Situ Biomarkers in a Precision Medicine Era: Current and Future Molecular-Based Testing. Am J Pathol. 2019;189:956–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lin CY, Mooney K, Choy W, Yang SR, Barry-Holson K, Horst K, et al. Will oncotype DX DCIS testing guide therapy? A single-institution correlation of oncotype DX DCIS results with histopathologic findings and clinical management decisions. Mod Pathol. 2018;31:562–8.

    Article  CAS  PubMed  Google Scholar 

  6. Bremer T, Whitworth PW, Patel R, Savala J, Barry T, Lyle S, et al. A Biological Signature for Breast Ductal Carcinoma In Situ to Predict Radiotherapy Benefit and Assess Recurrence Risk. Clin Cancer Res. 2018;24:5895–901.

    Article  PubMed  Google Scholar 

  7. Oliemuller E, Kogata N, Bland P, Kriplani D, Daley F, Haider S, et al. SOX11 promotes invasive growth and ductal carcinoma in situ progression. J Pathol. 2017;243:193–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oliemuller E, Newman R, Tsang SM, Foo S, Muirhead G, Noor F, et al. SOX11 promotes epithelial/mesenchymal hybrid state and alters tropism of invasive breast cancer cells. Elife. 2020;9:e58374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shepherd JH, Uray IP, Mazumdar A, Tsimelzon A, Savage M, Hilsenbeck SG, et al. The SOX11 transcription factor is a critical regulator of basal-like breast cancer growth, invasion, and basal-like gene expression. Oncotarget. 2016;7:13106–21.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dodonova SO, Zhu F, Dienemann C, Taipale J, Cramer P. Nucleosome-bound SOX2 and SOX11 structures elucidate pioneer factor function. Nature. 2020;580:669–72.

    Article  CAS  PubMed  Google Scholar 

  11. Wansbury O, Mackay A, Kogata N, Mitsopoulos C, Kendrick H, Davidson K, et al. Transcriptome analysis of embryonic mammary cells reveals insights into mammary lineage establishment. Breast Cancer Res. 2011;13:R79.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zvelebil M, Oliemuller E, Gao Q, Wansbury O, Mackay A, Kendrick H, et al. Embryonic mammary signature subsets are activated in Brca1-/- and basal-like breast cancers. Breast Cancer Res. 2013;15:R25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Solin LJ, Gray R, Baehner FL, Butler SM, Hughes LL, Yoshizawa C, et al. A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J Natl Cancer Inst. 2013;105:701–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shaaban AM, Hilton B, Clements K, Provenzano E, Cheung S, Wallis MG, et al. Pathological features of 11,337 patients with primary ductal carcinoma in situ (DCIS) and subsequent events: results from the UK Sloane Project. Br J Cancer. 2021;124:1009–17.

    Article  CAS  PubMed  Google Scholar 

  15. Clements K, Dodwell D, Hilton B, Stevens-Harris I, Pinder S, Wallis MG, et al. Cohort profile of the Sloane Project: methodology for a prospective UK cohort study of >15 000 women with screen-detected non-invasive breast neoplasia. BMJ Open. 2022;12:e061585.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27:1160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28:2784–95.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31:3997–4013.

    Article  PubMed  Google Scholar 

  19. Allred DC, Harvey JM, Berardo M, Clark GM. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol. 1998;11:155–68.

    CAS  PubMed  Google Scholar 

  20. Rakha EA, Pinder SE, Bartlett JM, Ibrahim M, Starczynski J, Carder PJ, et al. Updated UK Recommendations for HER2 assessment in breast cancer. J Clin Pathol. 2015;68:93–99.

    Article  PubMed  Google Scholar 

  21. Souter LH, Andrews JD, Zhang G, Cook AC, Postenka CO, Al-Katib W, et al. Human 21T breast epithelial cell lines mimic breast cancer progression in vivo and in vitro and show stage-specific gene expression patterns. Lab Invest. 2010;90:1247–58.

    Article  CAS  PubMed  Google Scholar 

  22. Miller FR, Santner SJ, Tait L, Dawson PJ. MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. J Natl Cancer Inst. 2000;92:1185–6.

    Article  CAS  PubMed  Google Scholar 

  23. Ignatoski KM, Ethier SP. Constitutive activation of pp125fak in newly isolated human breast cancer cell lines. Breast Cancer Res Treat. 1999;54:173–82.

    Article  CAS  PubMed  Google Scholar 

  24. Li G, Robinson GW, Lesche R, Martinez-Diaz H, Jiang Z, Rozengurt N, et al. Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development. 2002;129:4159–70.

    Article  CAS  PubMed  Google Scholar 

  25. Treekitkarnmongkol W, Solis LM, Sankaran D, Gagea M, Singh PK, Mistry R, et al. eEF1A2 promotes PTEN-GSK3beta-SCF complex-dependent degradation of Aurora kinase A and is inactivated in breast cancer. Sci Signal. 2024;17:eadh4475.

    Article  CAS  PubMed  Google Scholar 

  26. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA. 1992;89:10578–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT, et al. Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science. 2005;310:306–10.

    Article  CAS  PubMed  Google Scholar 

  28. Lee ST, Li Z, Wu Z, Aau M, Guan P, Karuturi RK, et al. Context-specific regulation of NF-kappaB target gene expression by EZH2 in breast cancers. Mol Cell. 2011;43:798–810.

    Article  CAS  PubMed  Google Scholar 

  29. Gonzalez ME, DuPrie ML, Krueger H, Merajver SD, Ventura AC, Toy KA, et al. Histone methyltransferase EZH2 induces Akt-dependent genomic instability and BRCA1 inhibition in breast cancer. Cancer Res. 2011;71:2360–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gonzalez ME, Moore HM, Li X, Toy KA, Huang W, Sabel MS, et al. EZH2 expands breast stem cells through activation of NOTCH1 signaling. Proc Natl Acad Sci USA. 2014;111:3098–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dravis C, Chung CY, Lytle NK, Herrera-Valdez J, Luna G, Trejo CL, et al. Epigenetic and Transcriptomic Profiling of Mammary Gland Development and Tumor Models Disclose Regulators of Cell State Plasticity. Cancer Cell. 2018;34:466–82.e466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chung CY, Ma Z, Dravis C, Preissl S, Poirion O, Luna G, et al. Single-Cell Chromatin Analysis of Mammary Gland Development Reveals Cell-State Transcriptional Regulators and Lineage Relationships. Cell Rep. 2019;29:495–510.e496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nordstrom L, Andersson E, Kuci V, Gustavsson E, Holm K, Ringner M, et al. DNA methylation and histone modifications regulate SOX11 expression in lymphoid and solid cancer cells. BMC Cancer. 2015;15:273.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Spangle JM, Dreijerink KM, Groner AC, Cheng H, Ohlson CE, Reyes J, et al. PI3K/AKT Signaling Regulates H3K4 Methylation in Breast Cancer. Cell Rep. 2016;15:2692–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lesurf R, Aure MR, Mork HH, Vitelli V, Oslo Breast Cancer Research C, Lundgren S, et al. Molecular Features of Subtype-Specific Progression from Ductal Carcinoma In Situ to Invasive Breast Cancer. Cell Rep. 2016;16:1166–79.

    Article  CAS  PubMed  Google Scholar 

  36. Sock E, Rettig SD, Enderich J, Bosl MR, Tamm ER, Wegner M. Gene targeting reveals a widespread role for the high-mobility-group transcription factor Sox11 in tissue remodeling. Mol Cell Biol. 2004;24:6635–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gil Del Alcazar CR, Huh SJ, Ekram MB, Trinh A, Liu LL, Beca F, et al. Immune Escape in Breast Cancer During In Situ to Invasive Carcinoma Transition. Cancer Discov. 2017;7:1098–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Risom T, Glass DR, Averbukh I, Liu CC, Baranski A, Kagel A, et al. Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. Cell. 2022;185:299–310.e218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Strand SH, Rivero-Gutierrez B, Houlahan KE, Seoane JA, King LM, Risom T, et al. Molecular classification and biomarkers of clinical outcome in breast ductal carcinoma in situ: Analysis of TBCRC 038 and RAHBT cohorts. Cancer Cell. 2022;40:1521–36.e1527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gibson SV, Roozitalab RM, Allen MD, Jones JL, Carter EP, Grose RP. Everybody needs good neighbours: the progressive DCIS microenvironment. Trends Cancer. 2023;9:326–38.

    Article  CAS  PubMed  Google Scholar 

  41. Udayasiri RI, Luo T, Gorringe KL, Fox SB. Identifying recurrences and metastasis after ductal carcinoma in situ (DCIS) of the breast. Histopathology. 2023;82:106–18.

    Article  PubMed  Google Scholar 

  42. Curtius K, Wright NA, Graham TA. An evolutionary perspective on field cancerization. Nat Rev Cancer. 2018;18:19–32.

    Article  CAS  PubMed  Google Scholar 

  43. Casasent AK, Schalck A, Gao R, Sei E, Long A, Pangburn W, et al. Multiclonal Invasion in Breast Tumors Identified by Topographic Single Cell Sequencing. Cell. 2018;172:205–17.e212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wei R, He S, Bai S, Sei E, Hu M, Thompson A, et al. Spatial charting of single-cell transcriptomes in tissues. Nat Biotechnol. 2022;40:1190–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lomakin A, Svedlund J, Strell C, Gataric M, Shmatko A, Rukhovich G, et al. Spatial genomics maps the structure, nature and evolution of cancer clones. Nature. 2022;611:594–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lips EH, Kumar T, Megalios A, Visser LL, Sheinman M, Fortunato A, et al. Genomic analysis defines clonal relationships of ductal carcinoma in situ and recurrent invasive breast cancer. Nat Genet. 2022;54:850–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the patients in the US and the UK who consented to share their tissue and clinical data for this study. We also acknowledge the collaborating institutions, and in particular the departments of pathology, personnel involved in banking, annotating tissues and processing data analysis. We also thank Dr. Akiko Sakai for her help in SOX11 promoter analysis.

Funding

This work was supported by grants to SS by MD Anderson Cancer Center, AMT by Cancer Research UK (C38317/A24043) and KWF Kankerbestrijding, EJS by Breast Cancer Now (TAP379) and Cancer Research UK (C38317/A24043), and MD Anderson core facility by NCI cancer center support grant (P30CA016672).

Author information

Authors and Affiliations

Authors

Contributions

W. Treekitkarnmongkol: Conceptualization, formal analysis, supervision, investigation, methodology, writing–original draft, writing–review and editing. V. Shah: Data curation, formal analysis, validation, investigation, writing-review and editing. K. Kai: Conceptualization, formal analysis, investigation, writing–review and editing. H. Katayama: Conceptualization, formal analysis, validation, methodology, writing–review and editing. J. Wong: Software, formal analysis, investigation, methodology, writing–review and editing. F.A. Ladha: Data curation, validation, investigation. T. Nguyen: Data curation, validation, investigation. B. Menegaz: Resources, writing-review and editing. W. Lu: Investigation, methodology. F. Yang: Formal analysis, investigation, visualization. B. Mino: Investigation, methodology. X. Tang: Visualization, methodology. M. Gagea: Investigation, visualization. H. Batra: Data curation, visualization. M.G. Raso: Resources, data curation, visualization. I.I. Wistuba: Funding acquisition, writing–review and editing. S. Krishnamurthy: Formal analysis, investigation, visualization. S.E. Pinder: Conceptualization, resources, formal analysis, visualization, writing–review and editing. E.J. Sawyer: Conceptualization, resources, supervision, funding acquisition, writing–review and editing., A.M. Thompson: Conceptualization, resources, supervision, funding acquisition, project administration, writing–review and editing. S. Sen: Conceptualization, resources, supervision, funding acquisition, project administration, writing–review and editing.

Corresponding authors

Correspondence to Alastair M. Thompson or Subrata Sen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Biospecimen and data collection are approved by both the University of Texas MD Anderson Cancer Center and King’s College London institutional review boards.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treekitkarnmongkol, W., Shah, V., Kai, K. et al. Epigenetic activation of SOX11 is associated with recurrence and progression of ductal carcinoma in situ to invasive breast cancer. Br J Cancer (2024). https://doi.org/10.1038/s41416-024-02697-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41416-024-02697-5

Search

Quick links