Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MDM2 accelerated renal senescence via ubiquitination and degradation of HDAC1

Abstract

Senescence, an intricate and inevitable biological process, characterized by the gradual loss of homeostasis and declining organ functions. The pathological features of cellular senescence, including cell cycle arrest, metabolic disruptions, and the emergence of senescence-associated secretory phenotypes (SASP), collectively contribute to the intricate and multifaceted nature of senescence. Beyond its classical interaction with p53, murine double minute gene 2 (MDM2), traditionally known as an E3 ubiquitin ligase involved in protein degradation, plays a pivotal role in cellular processes governing senescence. Histone deacetylase (HDAC), a class of histone deacetylases mainly expressed in the nucleus, has emerged as a critical contributor to renal tissues senescence. In this study we investigated the interplay between MDM2 and HDAC1 in renal senescence. We established a natural aging model in mice over a 2-year period that was verified by SA-β-GAL staining and increased expression of senescence-associated markers such as p21, p16, and TNF-α in the kidneys. Furthermore, we showed that the expression of MDM2 was markedly increased, while HDAC1 expression underwent downregulation during renal senescence. This phenomenon was confirmed in H2O2-stimulated HK2 cells in vitro. Knockout of renal tubular MDM2 alleviated renal senescence in aged mice and in H2O2-stimulated HK2 cells. Moreover, we demonstrated that MDM2 promoted renal senescence by orchestrating the ubiquitination and subsequent degradation of HDAC1. These mechanisms synergistically accelerate the aging process in renal tissues, highlighting the intricate interplay between MDM2 and HDAC1, underpinning the age-related organ function decline.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Elevated MDM2 levels in renal senescence.
Fig. 2: Upregulated MDM2 expression in a renal senescence model in HK2 cells.
Fig. 3: Conditional knockout of renal tubular MDM2 alleviated renal senescence.
Fig. 4: MDM2 knockdown in HK2 cells alleviated renal senescence.
Fig. 5: HDAC1 undergoes ubiquitination-dependent degradation during renal senescence.
Fig. 6: MDM2 accelerates renal senescence by regulating the ubiquitination and degradation of HDAC1.

Similar content being viewed by others

References

  1. Childs BG, Durik M, Baker DJ, Van Deursen JM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015;21:1424–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15:482–96.

    Article  PubMed  Google Scholar 

  3. Sturmlechner I, Durik M, Sieben CJ, Baker DJ, Van Deursen JM. Cellular senescence in renal ageing and disease. Nat Rev Nephrol. 2017;13:77–89.

    Article  CAS  PubMed  Google Scholar 

  4. Noodén LD, Guiamét JJ, John I. Senescence mechanisms. Physiol Plant. 1997;101:746–53.

    Article  Google Scholar 

  5. Herranz N, Gil J. Mechanisms and functions of cellular senescence. J Clin Invest. 2018;128:1238–46.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Young AR, Narita M. SASP reflects senescence. EMBO Rep. 2009;10:228–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Birch J, Gil J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 2020;34:1565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iwakuma T, Lozano G. MDM2, an introduction. Mol Cancer Res. 2003;1:993–1000.

    CAS  PubMed  Google Scholar 

  9. Wiley CD, Schaum N, Alimirah F, Lopez-Dominguez JA, Orjalo AV, Scott G, et al. Small-molecule MDM2 antagonists attenuate the senescence-associated secretory phenotype. Sci Rep. 2018;8:2410.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mulay SR, Thomasova D, Ryu M, Anders H-J. MDM2 (murine double minute-2) links inflammation and tubular cell healing during acute kidney injury in mice. Kidney Int. 2012;81:1199–211.

    Article  CAS  PubMed  Google Scholar 

  11. Wu D, Prives C. Relevance of the p53–MDM2 axis to aging. Cell Death Differ. 2018;25:169–79.

    Article  CAS  PubMed  Google Scholar 

  12. Boutelle AM, Attardi LD. p53 and tumor suppression: it takes a network. Trends Cell Biol. 2021;31:298–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Piette J, Neel H, Maréchal V. Mdm2: keeping p53 under control. Oncogene. 1997;15:1001–10.

    Article  CAS  PubMed  Google Scholar 

  14. Bhattacharya S, Chaum E, Johnson DA, Johnson LR. Age-related susceptibility to apoptosis in human retinal pigment epithelial cells is triggered by disruption of p53–Mdm2 association. Invest Ophthalmol Vis Sci. 2012;53:8350–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ye C, Tang H, Zhao Z, Lei CT, You CQ, Zhang J, et al. MDM2 mediates fibroblast activation and renal tubulointerstitial fibrosis via a p53-independent pathway. Am J Physiol Ren Physiol. 2017;312:F760–F8.

    Article  CAS  Google Scholar 

  16. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370:737–49.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Willis-Martinez D, Richards HW, Timchenko NA, Medrano EE. Role of HDAC1 in senescence, aging, and cancer. Exp Gerontol. 2010;45:279–85.

    Article  CAS  PubMed  Google Scholar 

  18. Liu M, Zhang Y, Zhan P, Sun W, Dong C, Liu X, et al. Histone deacetylase 9 exacerbates podocyte injury in hyperhomocysteinemia through epigenetic repression of Klotho. Pharmacol Res. 2023;198:107009.

    Article  CAS  PubMed  Google Scholar 

  19. Guo J, Wang Z, Wu J, Liu M, Li M, Sun Y, et al. Endothelial SIRT6 is vital to prevent hypertension and associated cardiorenal injury through targeting Nkx3. 2-GATA5 signaling. Circ Res. 2019;124:1448–61.

    Article  CAS  PubMed  Google Scholar 

  20. Rangel PXM, Cross E, Liu C, Pedigo CE, Tian X, Gutiérrez-Calabrés E, et al. Cell cycle and senescence regulation by podocyte histone deacetylase 1 and 2. J Am Soc Nephrol. 2023;34:433–50.

    Article  Google Scholar 

  21. Inoue K, Gan G, Ciarleglio M, Zhang Y, Tian X, Pedigo CE, et al. Podocyte histone deacetylase activity regulates murine and human glomerular diseases. J Clin Invest. 2019;129:1295–313.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang G-L, Salisbury E, Shi X, Timchenko L, Medrano EE, Timchenko NA. HDAC1 cooperates with C/EBPα in the inhibition of liver proliferation in old mice. J Biol Chem. 2008;283:26169–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pasyukova EG, Vaiserman AM. HDAC inhibitors: a new promising drug class in anti-aging research. Mech Ageing Dev. 2017;166:6–15.

    Article  CAS  PubMed  Google Scholar 

  24. Kwon D-H, Eom GH, Ko JH, Shin S, Joung H, Choe N, et al. MDM2 E3 ligase-mediated ubiquitination and degradation of HDAC1 in vascular calcification. Nat Commun. 2016;7:10492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Itahana K, Dimri G, Campisi J. Regulation of cellular senescence by p53. Eur J Biochem. 2001;268:2784–91.

    Article  CAS  PubMed  Google Scholar 

  26. Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A. Role of p53 in the regulation of cellular senescence. Biomolecules. 2020;10:420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brooks CL, Gu W. p53 ubiquitination: Mdm2 and beyond. Mol Cell. 2006;21:307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moll UM, Petrenko O. The MDM2-p53 interaction. Mol Cancer Res. 2003;1:1001–8.

    CAS  PubMed  Google Scholar 

  29. Ganguli G, Wasylyk B. p53-independent functions of MDM2. Mol Cancer Res. 2003;1:1027–35.

    CAS  PubMed  Google Scholar 

  30. Baboota RK, Rawshani A, Bonnet L, Li X, Yang H, Mardinoglu A, et al. BMP4 and Gremlin 1 regulate hepatic cell senescence during clinical progression of NAFLD/NASH. Nat Metab. 2022;4:1007–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu B, Yi J, Yang X, Liu L, Lou X, Zhang Z, et al. MDM2-mediated degradation of WRN promotes cellular senescence in a p53-independent manner. Oncogene. 2019;38:2501–15.

    Article  CAS  PubMed  Google Scholar 

  32. Liu M, Liang K, Zhen J, Zhou M, Wang X, Wang Z, et al. Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat Commun. 2017;8:1–15.

    Google Scholar 

  33. Wang X, Liu J, Zhen J, Zhang C, Wan Q, Liu G, et al. Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy. Kidney Int. 2014;86:712–25.

    Article  CAS  PubMed  Google Scholar 

  34. Shi W, Wei X, Wang Z, Han H, Fu Y, Liu J, et al. HDAC 9 exacerbates endothelial injury in cerebral ischaemia/reperfusion injury. J Cell Mol Med. 2016;20:1139–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang Y, Yang Y, Yang F, Liu X, Zhan P, Wu J, et al. HDAC9-mediated epithelial cell cycle arrest in G2/M contributes to kidney fibrosis in male mice. Nat Commun. 2023;14:3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, et al. MDM2–HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J. 2002;21:6236–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Minamoto T, Buschmann T, Habelhah H, Matusevich E, Tahara H, Boerresen-Dale AL, et al. Distinct pattern of p53 phosphorylation in human tumors. Oncogene. 2001;20:3341–7.

    Article  CAS  PubMed  Google Scholar 

  38. Vaziri H, Dessain SK, Eaton EN, Imai SI, Frye RA, Pandita TK, et al. hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell. 2001;107:149–59.

    Article  CAS  PubMed  Google Scholar 

  39. Wang D, Kon N, Lasso G, Jiang L, Leng W, Zhu WG, et al. Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode. Nature. 2016;538:118–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Luo J, Nikolaev AY, Imai SI, Chen D, Su F, Shiloh A, et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell. 2001;107:137–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (82370728, 81974096, 82202911, 81800610 and 82170773), the National Key Research and Development Program of China (2021YFC2500200), and the Key Research and Development Program of Hubei Province (2023BCB034).

Author information

Authors and Affiliations

Authors

Contributions

CZ and HLX designed the experiments. HLX performed the experiments and wrote the manuscript. QY reviewed and edited the manuscript. JYZ, ZYX, and HZZ collected the data. JH, ANS and JX analyzed the data. All the authors made editorial suggestions and approved the final version.

Corresponding author

Correspondence to Chun Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Hl., Yuan, Q., Zeng, Jy. et al. MDM2 accelerated renal senescence via ubiquitination and degradation of HDAC1. Acta Pharmacol Sin (2024). https://doi.org/10.1038/s41401-024-01294-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41401-024-01294-9

Keywords

Search

Quick links