Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-coding RNA in infantile hemangioma

Abstract

Infantile hemangioma (IH) is the most common benign vascular tumor of infancy, but its pathogenesis has not been fully discovered. From the cellular perspective, CD133+ stem cells orchestrate the proliferation and development of IH. Regarding molecular mechanisms, hypoxia inducible factor-1α, renin-angiotensin system, and vascular endothelial growth factor are current study hotspots, while non-coding RNAs (ncRNAs) might be essential factors participating in this network. Therefore, this article reviewed published studies concerning the roles of ncRNAs in IH and listed noted miRNAs, lncRNAs, and circRNAs. Other ncRNAs, such as snRNAs, snoRNAs, and tsRNAs, though have not been examined in IH, are mentioned as well to discuss their potential functions. Due to the continuous development of sequencing technologies and computational pipelines for ncRNAs annotation, relevant studies will provide evidence to gradually enhance acknowledgments of ncRNAs’ role in IH. The pathogenesis of IH might be revealed and the treatment protocol would be optimized in the future.

Impact

  • Non-coding RNAs (ncRNAs) play critical roles in infantile hemangioma. This article thoroughly reviewed all ncRNAs (miRNAs, lncRNAs, and circRNAs) mentioned in previous studies regarding the pathogenesis of infantile hemangioma. Other ncRNAs are promising subjects for further investigation. This review introduced the emerging ncRNAs that need to be explored in IH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Solman, L. et al. Oral propranolol in the treatment of proliferating infantile haemangiomas: British Society for paediatric dermatology consensus guidelines. Br. J. Dermatol. 179, 582–589 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Wu, H. W. et al. Topical timolol vs. oral propranolol for the treatment of superficial infantile hemangiomas. Front. Oncol. 8, 605 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liu, C., Zhao, Z., Ji, Z., Jiang, Y. & Zheng, J. Mir-187-3p enhances propranolol sensitivity of hemangioma stem cells. Cell Struct. Funct. 44, 41–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, Q. Z., Zhao, Z. L., Liu, C. & Zheng, J. W. Exosome-derived Mir-196b-5p facilitates intercellular interaction in infantile hemangioma via down-regulating Cdkn1b. Ann. Transl. Med. 9, 394 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leaute-Labreze, C. et al. A randomized, controlled trial of oral propranolol in infantile hemangioma. N. Engl. J. Med. 372, 735–746 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Bayart, C. B., Tamburro, J. E., Vidimos, A. T., Wang, L. & Golden, A. B. Atenolol versus propranolol for treatment of infantile hemangiomas during the proliferative phase: a retrospective noninferiority study. Pediatr. Dermatol. 34, 413–421 (2017).

    Article  PubMed  Google Scholar 

  7. Liu, C. et al. Exosomal Mir-27a-3p derived from tumor-associated macrophage suppresses propranolol sensitivity in infantile hemangioma. Cell Immunol. 370, 104442 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Shah, S. D. et al. Rebound growth of infantile hemangiomas after propranolol therapy. Pediatrics 137, e20151754 (2016).

    Article  PubMed  Google Scholar 

  9. Léauté-Labrèze, C., Harper, J. I. & Hoeger, P. H. Infantile haemangioma. Lancet 390, 85–94 (2017).

    Article  PubMed  Google Scholar 

  10. Khan, Z. A. et al. Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J. Clin. Invest. 118, 2592–2599 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. North, P. E. et al. A unique microvascular phenotype shared by Juvenile hemangiomas and human placenta. Arch. Dermatol. 137, 559–570 (2001).

    CAS  PubMed  Google Scholar 

  12. Rodriguez Bandera, A. I., Sebaratnam, D. F., Wargon, O. & Wong, L. F. Infantile hemangioma. Part 1: epidemiology, pathogenesis, clinical presentation and assessment. J. Am. Acad. Dermatol. 85, 1379–1392 (2021).

    Article  PubMed  Google Scholar 

  13. Diederichs, S. Non-coding Rna and disease. RNA Biol. 9, 701–702 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Yan, H. & Bu, P. Non-coding Rna in cancer. Essays Biochem. 65, 625–639 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matsui, M. & Corey, D. R. Non-coding Rnas as drug targets. Nat. Rev. Drug Discov. 16, 167–179 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Cech, T. R. & Steitz, J. A. The noncoding Rna revolution-trashing old rules to forge new ones. Cell 157, 77–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Li, Y. et al. Non-coding Rna in bladder cancer. Cancer Lett. 485, 38–44 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Qu, L. et al. Circular Rna vaccines against Sars-Cov-2 and emerging variants. Cell 185, 1728–1744.e1716 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hong, D. S. et al. Phase 1 study of Mrx34, a liposomal Mir-34a Mimic, in patients with advanced solid tumours. Br. J. Cancer 122, 1630–1637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, X., Xiao, Y., Ma, J. & Wang, A. Circular Rna: a novel potential biomarker for skin diseases. Pharm. Res. 158, 104841 (2020).

    Article  CAS  Google Scholar 

  21. Lee, R. C., Feinbaum, R. L., Ambros, V. & The, C. Elegans heterochronic gene Lin-4 encodes small rnas with antisense complementarity to Lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Herter, E. K. & Xu Landen, N. Non-coding Rnas: new players in skin wound healing. Adv. Wound Care (N. Rochelle) 6, 93–107 (2017).

    Article  Google Scholar 

  23. Bail, S. et al. Differential regulation of microrna stability. Rna 16, 1032–1039 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, H. et al. Colorectal cancer-derived exosomal Mir-106b-3p promotes metastasis by down-regulating Dlc-1 expression. Clin. Sci. (Lond.) 134, 419–434 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Du, J. et al. Gastric cancer cell-derived exosomal microrna-23a promotes angiogenesis by targeting Pten. Front Oncol. 10, 326 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. van der Ree, M. H. et al. Miravirsen dosing in chronic hepatitis C patients results in decreased microrna-122 levels without affecting other micrornas in plasma. Aliment Pharm. Ther. 43, 102–113 (2016).

    Article  Google Scholar 

  27. He, B. et al. Mirna-based biomarkers, therapies, and resistance in cancer. Int. J. Biol. Sci. 16, 2628–2647 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu, Z. B., Shi, S. L., Pan, F. J., Li, L. & Chen, H. Y. Propranolol inhibits infantile hemangioma by regulating the Mir-424/vascular endothelial growth factor-a (Vegfa) axis. Transl. Pediatr. 10, 1867–1876 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fei, Z. et al. Microrna424 suppresses the proliferation of hemangiomaderived endothelial cells by targeting Vegfr2. Mol. Med. Rep. 18, 4065–4071 (2018).

    CAS  PubMed  Google Scholar 

  30. Yang, L. et al. The expression and function of Mir-424 in infantile skin hemangioma and its mechanism. Sci. Rep. 7, 11846 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li, M. M. et al. Lncrna-Malat1 promotes tumorogenesis of infantile hemangioma by competitively binding Mir-424 to stimulate Mekk3/Nf-Kappab pathway. Life Sci. 239, 116946 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Mong, E. F. et al. Modulation of Lin28b/Let-7 signaling by propranolol contributes to infantile hemangioma involution. Arterioscler Thromb. Vasc. Biol. 38, 1321–1332 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rybak, A. et al. A feedback loop comprising Lin-28 and Let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat. Cell Biol. 10, 987–993 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Chang, L. et al. Infantile hemangioma: factors causing recurrence after propranolol treatment. Pediatr. Res. 83, 175–182 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, S. J. et al. Long non-coding Rna 00152 slicing represses the growth and aggressiveness of hemangioma cell by modulating Mir-139-5p. Biomed. Pharmacother. Biomed. Pharmacother. 120, 109385 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Wu, Y. et al. Mir1395p affects cell proliferation, migration and adipogenesis by targeting insulinlike growth factor 1 receptor in hemangioma stem cells. Int. J. Mol. Med. 45, 569–577 (2020).

    CAS  PubMed  Google Scholar 

  37. Yuan, X., Xu, Y., Wei, Z. & Ding, Q. Circap2a2 acts as a cerna to participate in infantile hemangiomas progression by sponging Mir-382-5p via regulating the expression of vegfa. J. Clin. Lab Anal. 34, e23258 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, D., Li, P., Guo, Z., Wang, H. & Pan, W. Downregulation of Mir-382 by propranolol inhibits the progression of infantile hemangioma via the pten-mediated Akt/Mtor pathway. Int. J. Mol. Med. 39, 757–763 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Wu, M. et al. Mir-206 promotes extracellular matrix accumulation and relieves infantile hemangioma through targeted inhibition of Dnmt3a. Cell Cycle 20, 978–992 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, S., Ren, L., Shen, G., Liu, M. & Luo, J. The knockdown of Malat1 inhibits the proliferation, invasion and migration of hemangioma endothelial cells by regulating Mir-206/Vegfa Axis. Mol. Cell Probes 51, 101540 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Anand, S. et al. Microrna-132-mediated loss of P120rasgap activates the endothelium to facilitate pathological angiogenesis. Nat. Med. 16, 909–914 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Biswas, A. et al. Urinary excretion of microrna-126 is a biomarker for hemangioma proliferation. Plast. Reconstr. Surg. 139, 1277e–1284e (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Strub, G. M. et al. Endothelial and circulating C19mc micrornas are biomarkers of infantile hemangioma. JCI Insight 1, e88856 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang, Y. et al. Long noncoding Rna Dscam-As1 facilitates proliferation and migration of hemangioma endothelial cells by targeting Mir-411-5p/Tpd52 axis. Biomed. Res. Int. 2022, 8696432 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Peng, K. et al. Alkbh5 promotes the progression of infantile hemangioma through regulating the Neat1/Mir-378b/Fosl1 axis. Mol. Cell Biochem. 477, 1527–1540 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Fu, C., Yang, K., Zou, Y. & Huo, R. Identification of key micrornas and genes in infantile hemangiomas. Front. Genet. 13, 766561 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, H. & Li, Y. Circular Rna Hsa_Circ_0000915 promotes propranolol resistance of hemangioma stem cells in infantile haemangiomas. Hum. Genom. 16, 43 (2022).

    Article  CAS  Google Scholar 

  48. Zhou, L., Jia, X. & Yang, X. Lncrna-Tug1 promotes the progression of infantile hemangioma by regulating Mir-137/Igfbp5 axis. Hum. Genom. 15, 50 (2021).

    Article  CAS  Google Scholar 

  49. Hu, Z. et al. Knockdown of Lncrna Meg8 inhibits cell proliferation and invasion, but promotes cell apoptosis in hemangioma, via Mir203induced mediation of the notch signaling pathway. Mol. Med. Rep. 24, 872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hu, X. et al. Mir-200c-3p increased hdmec proliferation through the notch signaling pathway. Exp. Biol. Med. 246, 897–905 (2021).

    Article  CAS  Google Scholar 

  51. Zeng, Z., Chen, H., Cai, J., Huang, Y. & Yue, J. Il-10 regulates the malignancy of hemangioma-derived endothelial cells via regulation of Pcna. Arch. Biochem Biophys. 688, 108404 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Yu, L. et al. Silencing long noncoding Rna Neat1 suppresses the tumorigenesis of infantile hemangioma by competitively binding Mir33a5p to stimulate Hif1alpha/Nfkappab pathway. Mol. Med. Rep. 22, 3358–3366 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zeng, Z. et al. Mir-501 promotes hemangioma progression by targeting Hoxd10. Am. J. Transl. Res. 11, 2439–2446 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu, X., Liu, X., Wang, R. & Wang, L. Long non-coding Rna Neat1 promotes the progression of hemangioma via the Mir-361-5p/Vegfa pathway. Biochem. Biophys. Res. Commun. 512, 825–831 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Lu, S., Chen, L. & Tang, L. Upregulation of Akt1 and downregulation of Akt3 caused by dysregulation of micrornas contributes to pathogenesis of hemangioma by promoting proliferation of endothelial cells. J. Cell. Physiol. 234, 21342–21351 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, Z., Kang, Z., Dai, Y., Zheng, H. & Wang, Y. Long noncoding Rna Linc00342 promotes growth of infantile hemangioma by sponging Mir-3619-5p from Hdgf. Am. J. Physiol. Heart Circ. Physiol. 317, H830–H839 (2019).

    Article  PubMed  Google Scholar 

  57. Huang, C., Huang, J., Ma, P. & Yu, G. Microrna-143 acts as a suppressor of hemangioma growth by targeting Bcl-2. Gene 628, 211–217 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Kopp, F. & Mendell, J. T. Functional classification and experimental dissection of long noncoding Rnas. Cell 172, 393–407 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao, Y. et al. Noncode 2016: an informative and valuable data source of long non-coding Rnas. Nucleic Acids Res. 44, D203–D208 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Ulitsky, I. & Bartel, D. P. Lincrnas: genomics, evolution, and mechanisms. Cell 154, 26–46 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, S. J. et al. Crispri-based genome-scale identification of functional long noncoding Rna Loci in human cells. Science 355, aah7111 (2017).

    Article  PubMed  Google Scholar 

  62. Yang, W. et al. Lncrna Brcat54 inhibits the tumorigenesis of non-small cell lung cancer by binding to Rps9 to transcriptionally regulate Jak-Stat and calcium pathway genes. Carcinogenesis 42, 80–92 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Lv, Z., Yang, K. & Wang, Y. Long non-coding Rna breast cancer-associated transcript 54 sponges microrna-1269b to suppress the proliferation of hemangioma-derived endothelial cells. Bioengineered 13, 6188–6195 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wen, S. et al. Long non-coding Rna Neat1 promotes bone metastasis of prostate cancer through N6-methyladenosine. Mol. Cancer 19, 171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ji, P. et al. Malat-1, a novel noncoding Rna, and thymosin Beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22, 8031–8041 (2003).

    Article  PubMed  Google Scholar 

  66. Ma, Q. et al. Silencing long non-coding Rna Meg8 inhibits the proliferation and induces the ferroptosis of hemangioma endothelial cells by regulating Mir-497-5p/Notch2 Axis. Biochem. Biophys. Res. Commun. 556, 72–78 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Wu, J. K. et al. A switch in notch gene expression parallels stem cell to endothelial transition in infantile hemangioma. Angiogenesis 13, 15–23 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, Y. et al. Linc00152 knockdown inactivates the Akt/Mtor and Notch1 pathways to exert its anti-hemangioma effect. Life Sci. 223, 22–28 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Lee, J. C., Modiri, O., England, R. W., Shawber, C. J. & Wu, J. K. Propranolol therapy in infantile hemangioma: it is not just about the beta. Plast. Reconstr. Surg. 147, 875–885 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Li, X. et al. Linking circular intronic Rna degradation and function in transcription by Rnase H1. Sci. China Life Sci. 64, 1795–1809 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Xu, X. et al. Circrna inhibits DNA damage repair by interacting with host gene. Mol. Cancer 19, 128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Piwecka, M. et al. Loss of a mammalian circular Rna locus causes mirna deregulation and affects brain function. Science 357, eaam8526 (2017).

    Article  PubMed  Google Scholar 

  73. Fu, C. et al. Circular Rna profile of infantile hemangioma by microarray analysis. PloS One 12, e0187581 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Li, Z. et al. Circular Rna expression profiles in the plasma of patients with infantile hemangioma determined using microarray analysis. Exp. Ther. Med. 21, 634 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, J., Li, Q., Chen, L., Gao, Y. & Li, J. Expression Profile of Circular Rnas in Infantile Hemangioma Detected by Rna-Seq. Med. (Baltim.) 97, e10882 (2018).

    Article  CAS  Google Scholar 

  76. Tian, Y. et al. Geo database screening combined with in vitro experiments to study the mechanism of Hsa_Circ_0003570 in infantile hemangiomas. Comput Math. Methods Med. 2022, 5643742 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gu, D., Lou, H., Li, Y. & Xu, G. Identification of a functional circrna-mirna-mrna regulatory network in infantile hemangioma by bioinformatics analysis. Med. (Baltim.) 101, e30791 (2022).

    Article  CAS  Google Scholar 

  78. Ruszkowska, A. Mettl16, methyltransferase-like protein 16: current insights into structure and function. Int. J. Mol. Sci. 22, 2176 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Morais, P., Adachi, H. & Yu, Y. T. Spliceosomal snrna epitranscriptomics. Front. Genet. 12, 652129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Suzuki, H. et al. Recurrent noncoding U1 snrna mutations drive cryptic splicing in shh medulloblastoma. Nature 574, 707–711 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Xiao, L., Wang, J., Ju, S., Cui, M. & Jing, R. Disorders and roles of tsrna, snorna, snrna and pirna in cancer. J. Med. Genet. 59, 623–631 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Romano, G., Veneziano, D., Acunzo, M. & Croce, C. M. Small non-coding Rna and cancer. Carcinogenesis 38, 485–491 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wajahat, M., Bracken, C. P. & Orang, A. Emerging functions for snornas and snorna-derived fragments. Int. J. Mol. Sci. 22, 10193 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zheng, D. et al. Small nucleolar Rna 78 promotes the tumorigenesis in non-small cell lung cancer. J. Exp. Clin. Cancer Res. 34, 49 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lee, Y. S., Shibata, Y., Malhotra, A. & Dutta, A. A novel class of small Rnas: Trna-derived Rna fragments (Trfs). Genes Dev. 23, 2639–2649 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, Q., Zhang, X., Shi, J., Yan, M. & Zhou, T. Origins and evolving functionalities of Trna-derived small Rnas. Trends Biochem. Sci. 46, 790–804 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xie, Y. et al. Action mechanisms and research methods of Trna-derived small Rnas. Signal Transduct. Target Ther. 5, 109 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xiong, Q., Zhang, Y., Li, J. & Zhu, Q. Small non-coding rnas in human cancer. Genes (Basel) 13, 2072 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Gu, W. et al. Peripheral blood non-canonical small non-coding Rnas as novel biomarkers in lung cancer. Mol. Cancer 19, 159 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The figures were drawn using BioRender online software.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the content discussion. Study conception and design were performed by Qizhang Wang and Jian Pan. The first draft of the manuscript was written by Qizhang Wang. Data acquisition and analysis were performed by Chengzhi Zhao, Qianxin Du, and Zhiwei Cao. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jian Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhao, C., Du, Q. et al. Non-coding RNA in infantile hemangioma. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03250-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03250-z

Search

Quick links