Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Tumour dormancy: not so sleepy after all

Removal of a primary tumour can result in a burst of growth in previously ‘dormant’ micrometastases and is associated with onset of angiogenesis and a reduced incidence of apoptosis (see pages 149–153)

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Holmgren, L., O'Reilly, M.S. & Folkman, J. Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med. 1, 149–153 (1995)

    Article  CAS  Google Scholar 

  2. Folkman, J., Merler, E., Abernathy, C. & Williams, G. Isolation of a tumour factor responsible for angiogenesis. J. exp. Med. 133, 275–288 (1971).

    Article  CAS  Google Scholar 

  3. Folkman, J. Tumor angiogenesis: Therapeutic implications. New. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  Google Scholar 

  4. Folkman, J. What is the evidence that tumors are angiogenesis dependent. J. natl. Cancer Inst. 82, 4–6 (1990).

    Article  CAS  Google Scholar 

  5. Kim, K.J., et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841–844 (1993).

    Article  CAS  Google Scholar 

  6. Hori, A. et al. Suppression of solid tumor growth by immunoneutralizing monoclonal antibody against human basic fibroblast growth factor. Cancer Res. 51, 6180–6184 (1991).

    CAS  PubMed  Google Scholar 

  7. Rastinejad, F., Polverini, P. & Bouk, N.P. Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56, 345–355 (1989).

    Article  CAS  Google Scholar 

  8. Dameron, K.M., Volpert, K.V., Tainsky, M.A. & Bouk, N.P. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582–1584 (1994).

    Article  CAS  Google Scholar 

  9. Van Meir, E.G., et al. Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nature Genet. 8, 171–176 (1994).

    Article  CAS  Google Scholar 

  10. O'Reilly, M.S., et al. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    Article  CAS  Google Scholar 

  11. Weinstat-Saslow, D.L. et al. Transfection of thombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, mestastatic potential, angiogenesis. Cancer Res. 54, 6504–6511 (1994).

    CAS  PubMed  Google Scholar 

  12. Demicheli, R., et al. Local recurrences following mastectomy: Support for the concept of tumor dormancy. J. natl. Cancer Inst. 86, 45–48 (1994).

    Article  CAS  Google Scholar 

  13. Weidner, N., Semple, J., Welch, W. & Folkman, J. Tumor angiogenesis correlates with metastasis in invasive breast carcinoma. New. Engl. J. Med. 324, 1–8 (1991).

    Article  CAS  Google Scholar 

  14. Fox, S.B. et al. relationship of endothelial cell proliferation to tumor vascularity in human breast cancer. Cancer Res. 53, 4161–4163 (1993).

    CAS  PubMed  Google Scholar 

  15. Schultz-Hector, S. & Haghayegh, S. β-Fibroblast growth factor expression in human and murine squamous cell carcinomas and its relationship to regional endothelial cell proliferation. Cancer Res. 53, 1444–1449 (1993).

    CAS  PubMed  Google Scholar 

  16. Kandel, J. et al. Neovascularization is associated with a switch to the export of bFGF in the multi-step development of fibrosarcoma. Cell 66, 1095–1104 (1991).

    Article  CAS  Google Scholar 

  17. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hy-poxia may mediate hypoxia-initiated angio-genessis. Nature 359, 843–845 (1992).

    Article  CAS  Google Scholar 

  18. Plate, K.H., Breier, G., Weich, H.A. & Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359, 845–848 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, C. Tumour dormancy: not so sleepy after all. Nat Med 1, 117–118 (1995). https://doi.org/10.1038/nm0295-117

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0295-117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing