Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Community Corner
  • Published:

Unlocking the mysterious mechanisms of Myc

Subjects

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Lin, C.Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56–67 (2012).

    Article  CAS  Google Scholar 

  2. Nie, Z. et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151, 68–79 (2012).

    Article  CAS  Google Scholar 

  3. Seoane, J. et al. TGFb influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat. Cell Biol. 3, 400–408 (2001).

    Article  CAS  Google Scholar 

  4. Staller, P. et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nat. Cell Biol. 3, 392–399 (2001).

    Article  CAS  Google Scholar 

  5. van Riggelen, J. et al. The interaction between Myc and Miz1 is required to antagonize TGFb-dependent autocrine signaling during lymphoma formation and maintenance. Genes Dev. 24, 1281–1294 (2010).

    Article  CAS  Google Scholar 

  6. Oskarsson, T. et al. Skin epidermis lacking the c-Myc gene is resistant to Ras-driven tumorigenesis but can reacquire sensitivity upon additional loss of the p21Cip1 gene. Genes Dev. 20, 2024–2029 (2006).

    Article  CAS  Google Scholar 

  7. Liu, H. et al. MYC suppresses cancer metastasis by direct transcriptional silencing of av and b3 integrin subunits. Nat. Cell Biol. 14, 567–574 (2012).

    Article  CAS  Google Scholar 

  8. Gebhardt, A. et al. Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1. J. Cell Biol. 172, 139–149 (2006).

    Article  CAS  Google Scholar 

  9. Rahl, P.B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

    Article  CAS  Google Scholar 

  10. Eilers, M. & Eisenman, R.N. Myc's broad reach. Genes Dev. 22, 2755–2766 (2008).

    Article  CAS  Google Scholar 

  11. Sloan, E.J. & Ayer, D.E. Myc, Mondo, and Metabolism. Genes Cancer 1, 587–596 (2010).

    Article  CAS  Google Scholar 

  12. Lovén, J. et al. Revisiting global gene expression analysis. Cell 151, 476–482 (2012).

    Article  Google Scholar 

  13. Hermeking, H. et al. Identification of CDK4 as a target of c-MYC. Proc. Natl. Acad. Sci. USA 97, 2229–2234 (2000).

    Article  CAS  Google Scholar 

  14. Haggerty, T.J. et al. A strategy for identifying transcription factor binding sites reveals two classes of genomic c-Myc target sites. Proc. Natl. Acad. Sci. USA 100, 5313–5318 (2003).

    Article  CAS  Google Scholar 

  15. Lee, B.K. et al. Cell-type specific and combinatorial usage of diverse transcription factors revealed by genome-wide binding studies in multiple human cells. Genome Res. 22, 9–24 (2012).

    Article  CAS  Google Scholar 

Download references

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unlocking the mysterious mechanisms of Myc. Nat Med 19, 26–27 (2013). https://doi.org/10.1038/nm.3060

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3060

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer