Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The potential of oncolytic virus therapy for pancreatic cancer

Abstract

The objective of this paper was to review a new category of gene therapy using oncolytic viruses for the treatment of pancreatic cancer. The eligibility and feasibility of oncolytic virus therapy as a novel therapeutic agent against pancreatic cancer are discussed as well as basic research for clinical trials, including a historical perspective and the current status of these novel agents. Even combination therapy, such as surgery with radiation and chemotherapy, has not significantly improved the survival rate of pancreatic cancer. Recently, a clinical trial (phase I and II) using an oncolytic adenovirus, ONYX-015, was completed in patients with pancreatic cancer. The phase II trial yielded beneficial results (tumor reduction or stabilization) in about 50% of the patients. A phase I study of the efficacy of oncolytic herpes viruses, G207, OncoVEX GM-CSF, and 1716 against a variety of tumors has been completed, and G207 is in phase II trials for use against brain tumors. In addition, a phase I trial using the herpesvirus showed good tolerance at all dosages. We discuss the basic scientific principles and current results of the above clinical trials with respect to these oncolytic viruses, and then compare the relative advantages and disadvantages of adenoviruses and herpesviruses as oncolytic agents. We also review the published literature on newly developed oncolytic viruses. The concept of oncolytic therapy has been studied for a century. Recent technological developments have made these oncolytic viruses more tumor-specific by exploiting the tumor cell environments. In addition, these viruses have been reported to increase the immunosusceptibility of the tumor cells, and have been designed to express other genes to increase the susceptibility of tumor cells to other therapeutic agents. Oncolytic virus therapy certainly appears to be a feasible treatment for pancreatic cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Warshaw AL, Fernandez-del Castillo C . Pancreatic carcinoma. N Engl J Med. 1992;326:455–465.

    Article  CAS  PubMed  Google Scholar 

  2. Yeo CJ, Cameron JL, Lillemoe KD, et al. Pancreaticoduodenectomy for cancer of the head of the pancreas. 201 patients. Ann Surg. 1995;221:721–731.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Landis SH, Murray T, Bolden S, et al. Cancer statistics, 1999. CA Cancer J Clin. 1999;49:8–31.

    CAS  PubMed  Google Scholar 

  4. Matuno M . The statistics of pancreatic cancer in Japan. J Jpn Pancreatic Soc. 2003;18:97–169.

    Google Scholar 

  5. Kaneko T, Nakao A, Inoue S, et al. Links intraoperative ultrasonography by high-resolution annular array transducer for intraductal papillary mucinous tumors of the pancreas. Surgery. 2001;129:55–65.

    CAS  PubMed  Google Scholar 

  6. Kaneko T, Nakao A, Inoue S, et al. Intraportal endovascular ultrasonography in the diagnosis of portal vein invasion by pancreatobiliary carcinoma. Ann Surg. 1995;222:711–718.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaneko T, Nakao A, Takagi H . Intraportal endovascular ultrasonography for pancreatic cancer. Semin Surg Oncol. 1998;15:47–51.

    CAS  PubMed  Google Scholar 

  8. Kaneko T, Nakao A, Nomoto S, et al. Intraportal endovascular ultrasonography for assessment of vascular invasion by biliary tract cancer. Gastrointest Endosc. 1998;47:33–41.

    CAS  PubMed  Google Scholar 

  9. DePace N . Sulla scomparsa di un enorme cancro vegetante del collo dell'utero senza cura chirurgia. Ginecologia. 1912;9:82–89.

    Google Scholar 

  10. Levaditi C, Nicolau S . Sur le culture du virus vaccinal dans les neoplasmes epithelieux. CR Soc Biol. 1922;86:928.

    Google Scholar 

  11. Pack GT . Note on the experimental use of rabies vaccine for melanomatosis. Arch Dermatol. 1950;62:694–695.

    CAS  Google Scholar 

  12. Southan CM, Moore AE . Clinical studies of viruses as antineoplastic agents, with particular reference to Egypt 101 virus. Cancer. 1952;5:1025–1034.

    Google Scholar 

  13. Southan CM, Moore AE . Induced virus infections in man by the Egypt isolates of West Nile virus. J Trop Med Hyg. 1954;3:19–50.

    Google Scholar 

  14. Southan CM . Virus in human cancer cells in vivo. Virology. 1958;5:395–400.

    Google Scholar 

  15. Newman W, Southam CM . Virus treatment in advanced cancer. Cancer. 1954;7:106–118.

    CAS  PubMed  Google Scholar 

  16. Southam CM, Hilleman MR, Werner JH . Pathogenicity and oncolytic capacity of RI virus strain RI-67 in man. Trans NY Acad Sci. 1960;22:657–673.

    CAS  Google Scholar 

  17. Lichtenstein DL, Toth K, Doronin K, et al. Functions and mechanisms of action of the adenovirus E3 proteins. Int Rev Immunol. 2004;23:75–111.

    CAS  PubMed  Google Scholar 

  18. Zou A, Atencio I, Huang WM, et al. Overexpression of adenovirus E3-11.6 K protein induces cell killing by both caspase-dependent and caspase-independent mechanisms. Virology. 2004;326:240–249.

    CAS  PubMed  Google Scholar 

  19. Takakuwa H, Goshima F, Nozawa N, et al. Oncolyticviral therapy using a spontaneously generated herpes simplex virus type 1 variant for disseminated peritoneal tumor in immunocompetent mice. Arch Virol. 2003;148:813–825.

    CAS  PubMed  Google Scholar 

  20. Wakimoto H, Johnson PR, Knipe DM, et al. Effects of innate immunity on herpes simplex virus and its ability to kill tumor cells. Gene Therapy. 2003;10:983–990.

    CAS  PubMed  Google Scholar 

  21. Ikeda K, Ichikawa T, Wakimoto H, et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med. 1999;5:881–887.

    CAS  PubMed  Google Scholar 

  22. Khuri FR, Nemunaitis J, Ganly I, et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med. 2000;6:879–885.

    CAS  PubMed  Google Scholar 

  23. Nemunaitis J, Ganly I, Khuri F, et al. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res. 2000;60:6359–6366.

    CAS  PubMed  Google Scholar 

  24. Nemunaitis J, Khuri F, Ganly I, et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J Clin Oncol. 2001;19:289–298.

    CAS  PubMed  Google Scholar 

  25. Ganly I, Kirn D, Eckhardt G, et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res. 2000;6:798–806.

    CAS  PubMed  Google Scholar 

  26. [No authors listed]. Onyx plans phase III trial of ONYX-015 for head and neck cancer. Oncologist. 1999;4:432.

  27. Rogulski KR, Freytag SO, Zhang K, et al. In vivo antitumor activity of ONYX-015 is influenced by p53 status and is augmented by radiotherapy. Cancer Res. 2000;60:1193–1196.

    CAS  PubMed  Google Scholar 

  28. Heise C, Lemmon M, Kirn D . Efficacy with a replication-selective adenovirus plus cisplatin-based chemotherapy: dependence on sequencing but not p53 functional status or route of administration. Clin Cancer Res. 2000;6:4908–4914.

    CAS  PubMed  Google Scholar 

  29. Habib NA, Sarraf CE, Mitry RR, et al. E1B-deleted adenovirus (dl1520) gene therapy for patients with primary and secondary liver tumors. Hum Gene Ther. 2001;12:219–226.

    CAS  PubMed  Google Scholar 

  30. Motoi F, Sunamura M, Ding L, et al. Effective gene therapy for pancreatic cancer by cytokines mediated by restricted replication-competent adenovirus. Hum Gene Ther. 2000;11:223–235.

    Article  CAS  PubMed  Google Scholar 

  31. Kurihara T, Brough DE, Kovesdi I, Kufe DW . Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest. 2000;106:763–771.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Goldstein DJ, Weller SK . Factor(s) present in herpes simplex virus type 1-infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterization of an ICP6 deletion mutant. Virology. 1988;166:41–51.

    CAS  PubMed  Google Scholar 

  33. Kasuya H, Nishiyama Y, Nomoto S, et al. Intraperitoneal delivery of hrR3 and ganciclovir prolongs survival in mice with disseminated pancreatic cancer. J Surg Oncol. 1999;72:136–141.

    CAS  PubMed  Google Scholar 

  34. Kasuya H, Mizuno M, Yoshida J, et al. Combined effects of adeno-associated virus vector and a herpes simplex virus mutant as neoplastic therapy. J Surg Oncol. 2000;74:214–218.

    CAS  PubMed  Google Scholar 

  35. McAuliffe PF, Jarnagin WR, Johnson P, et al. Effective treatment of pancreatic tumors with two multimutated herpes simplex oncolytic viruses. J Gastrointest Surg. 2000;4:580–588.

    CAS  PubMed  Google Scholar 

  36. Advani SJ, Sibley GS, Song PY, et al. Enhancement of replication of genetically engineered herpes simplex viruses by ionizing radiation: a new paradigm for destruction of therapeutically intractable tumors. Gene Therapy. 1998;5:160–165.

    CAS  PubMed  Google Scholar 

  37. Advani SJ, Chung SM, Yan SY, et al. Replication-competent, nonneuroinvasive genetically engineered herpes virus is highly effective in the treatment of therapy-resistant experimental human tumors. Cancer Res. 1999;59:2055–2058.

    CAS  PubMed  Google Scholar 

  38. Strong JE, Coffey MC, Tang D, et al. The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J. 1998;17:3351–3362.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Strong JE, Lee PW . The v-erbB oncogene confers enhanced cellular susceptibility to reovirus infection. J Virol. 1996;70:612–616.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Strong JE, Tang D, Lee PW . Evidence that the epidermal growth factor receptor on host cells confers reovirus infection efficiency. Virology. 1993;197:405–411.

    CAS  PubMed  Google Scholar 

  41. McFall A, Ulku A, Lambert QT, et al. Oncogenic Ras blocks anoikis by activation of a novel effector pathway independent of phosphatidylinositol 3-kinase. Mol Cell Biol. 2001;21:5488–5499.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Coffey MC, Strong JE, Forsyth PA, Lee PW . Reovirus therapy of tumors with activated Ras pathway. Science. 1998;282:1332–1334.

    CAS  PubMed  Google Scholar 

  43. Hirasawa K, Yoon C, Nishikawa SG, et al. Reovirus therapy of metastatic cancer models in immune-competent mice. Proc AACR. 2001;42:2437a.

    Google Scholar 

  44. Sauthoff H, Heitner S, Rom WN, Hay JG . Deletion of the adenoviral E1b-19kD gene enhances tumor cell killing of a replicating adenoviral vector. Hum Gene Ther. 2000;11:379–388.

    CAS  PubMed  Google Scholar 

  45. Harrison D, Sauthoff H, Heitner S, et al. Wild-type adenovirus decreases tumor xenograft growth, but despite viral persistence complete tumor responses are rarely achieved — deletion of the viral E1b-19-kD gene increases the viral oncolytic effect. Hum Gene Ther. 2001;12:1323–1332.

    CAS  PubMed  Google Scholar 

  46. Cheng G, Gross M, Brett ME, He B . AlaArg motif in the carboxyl terminus of the gamma(1)34.5 protein of herpes simplex virus type 1 is required for the formation of a high-molecular-weight complex that dephosphorylates eIF-2alpha. J Virol. 2001;75:3666–3674.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cassady KA, Gross M, Roizman B . The herpes simplex virus US11 protein effectively compensates for the gamma1 (34.5) gene if present before activation of protein kinase R by precluding its phosphorylation and that of the alpha subunit of eukaryotic translation initiation factor 2. J Virol. 1998;72:8620–8626.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cassady KA, Gross M, Roizman B . The second-site mutation in the herpes simplex virus recombinants lacking the gamma1 34.5 genes precludes shutoff of protein synthesis by blocking the phosphorylation of eIF-2alpha. J Virol. 1998;72:7005–7011.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. He B, Gross M, Roizman B . The gamma(1) 34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1 alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA. 1997;94:843–848.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chou J, Chen JJ, Gross M, Roizman B . Association of a M(r) 90,000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF-2 alpha and premature shutoff of protein synthesis after infection with gamma 134.5-mutants of herpes simplex virus 1. Proc Natl Acad Sci USA. 1995;92:10516–10520.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Todo T, Feigenbaum F, Rabkin SD, et al. Viral shedding and biodistribution of G207, a multimutated, conditionally replicating herpes simplex virus type 1, after intracerebral inoculation in aotus. Mol Ther. 2000;2:588–595.

    CAS  PubMed  Google Scholar 

  52. Varghese S, Newsome JT, Rabkin SD, et al. Preclinical safety evaluation of G207, a replication-competent herpes simplex virus type 1, inoculated intraprostatically in mice and nonhuman primates. Hum Gene Ther. 2001;12:999–1010.

    CAS  PubMed  Google Scholar 

  53. Hunter WD, Martuza RL, Feigenbaum F, et al. Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation of intracerebral injection in nonhuman primates. J Virol. 1999;73:6319–6326.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mineta T, Rabkin SD, Yazaki T, et al. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med. 1995;1:938–943.

    CAS  PubMed  Google Scholar 

  55. Liu BL, Robinson M, Han ZQ, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Therapy. 2003;10:292–303.

    CAS  PubMed  Google Scholar 

  56. Mulvihill S, Warren R, Venook A, et al. Safety and feasibility of injection with an E1B-55 kDa gene-deleted, replication-selective adenovirus (ONYX-015) into primary carcinomas of the pancreas: a phase I trial. Gene Therapy. 2001;8:308–315.

    CAS  PubMed  Google Scholar 

  57. Lamont JP, Nemunaitis J, Kuhn JA, et al. A prospective phase II trial of ONYX-015 adenovirus and chemotherapy in recurrent squamous cell carcinoma of the head and neck (the Baylor experience). Ann Surg Oncol. 2000;7:588–592.

    CAS  PubMed  Google Scholar 

  58. Nemunaitis J, Cunningham C, Buchanan A, et al. Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Therapy. 2001;8:746–759.

    CAS  PubMed  Google Scholar 

  59. Heise C, Ganly I, Kim YT, et al. Efficacy of a replication-selective adenovirus against ovarian carcinomatosis is dependent on tumor burden, viral replication and p53 status. Gene Therapy. 2000;7:1925–1929.

    CAS  PubMed  Google Scholar 

  60. Habib NA, Sarraf CE, Mitry RR, et al. E1B-deleted adenovirus (dl1520) gene therapy for patients with primary and secondary liver tumors. Hum Gene Ther. 2001;12:219–226.

    CAS  PubMed  Google Scholar 

  61. Reid TR, Galanis E, Abbruzzese J, et al. Intra-arterial administration of a replication-selective adenovirus Ci-1042 (ONYX-015) in patients with colorectal carcinoma metastatic to the liver: safety, feasibility and biological activity. Proc Am Soc Clin Oncol. 2001;8:308–315.

    Google Scholar 

  62. Hecht JR, Bedford R, Abbruzzese JL, et al. A phase I/II trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res. 2003;9:555–561.

    CAS  PubMed  Google Scholar 

  63. Khuri FR, Nemunaitis J, Ganly I, et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med. 2000;6:879–885.

    CAS  PubMed  Google Scholar 

  64. Mineta T, Rabkin SD, Yazaki T, et al. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med. 1995;1:938–943.

    CAS  PubMed  Google Scholar 

  65. Markert JM, Medlock MD, Rabkin SD, et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Therapy. 2000;7:867–874.

    CAS  PubMed  Google Scholar 

  66. MediGene clinical trial for G207.(http://www.medigene.net) (http://www.neurovir.com).

  67. Phase I trial of NV1020 against liver metastasis. (http://clinicaltrials.gov).

  68. Phase I, II trial of OncoVEX GM-CSF. (http://www.biovex.com/).

  69. Hu JC, McNeish I, Shorrock C, et al. A phase I clinical trial with OncoVexGM-csf. Proc Am Soc Clin Oncol. 2003;22:185.

    Google Scholar 

  70. Rampling R, Cruickshank G, Papanastassiou V, et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Therapy. 2000;7:859–866.

    CAS  PubMed  Google Scholar 

  71. Roizman B, Furlong D . The replication of herpesviruses. In: Fraenkel-Conrat H, Wangner RR, eds. Comprehensive Virology. Vol 3. New York: Plenum Press; 1974: 229–403.

    Google Scholar 

  72. Roizman B, Sears A . Herpes simplex viruses and their replication. In: Roizman B, Whitley RJ, Lopez C, eds. The Human Herpesviruses. New York: Raven Press; 1993: 11–68.

    Google Scholar 

  73. Batterson W, Furlong D, Roizman B . Molecular genetics of herpes simplex virus. VIII: further characterization of a temperature-sensitive mutant defective in release of viral DNA and in other stages of the viral reproductive cycle. J Virol. 1983;45:397–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Carroll NM, Chiocca EA, Takahashi K, Tanabe KK . Enhancement of gene therapy specificity for diffuse colon carcinoma liver metastases with recombinant herpes simplex virus. Ann Surg. 1996;224:323–329; discussion 329–330.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sawada T, Ho JJL, Chung Y-S, et al. Stimulation of cellular motility by factor(s) released by SW1990 pancreatic cancer cells [abstract]. Gastroenterology. 1993;104:A334.

    Google Scholar 

  76. Aoki K, Yoshida T, Matsumoto N, et al. Suppression of Ki-ras p21 levels leading to growth inhibition of pancreatic cancer cell lines with Ki-ras mutation but not those without Ki-ras mutation. Mol Carcinogen. 1997;20:251–258.

    CAS  Google Scholar 

  77. Chung RY, Saeki Y, Chiocca EA . B-myb promoter retargeting of herpes simplex virus gamma34.5 gene-mediated virulence toward tumor and cycling cells. J Virol. 1999;73:7556–7564.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mullen JT, Kasuya H, Yoon SS, et al. Regulation of herpes simplex virus 1 replication using tumor-associated promoters. Ann Surg. 2002;236:502–512.

    PubMed  PubMed Central  Google Scholar 

  79. Kasuya H, Pawlik TM, Mullen JT, et al. Selectivity of an oncolytic herpes simplex virus for cells expressing the DF3/MUC1 antigen. Cancer Res. 2004;64:2561–2567.

    CAS  PubMed  Google Scholar 

  80. Miyatake SI, Tani S, Feigenbaum F, et al. Hepatoma-specific antitumor activity of an albumin enhancer/promoter regulated herpes simplex virus in vivo. Gene Therapy. 1999;6:564–572.

    CAS  PubMed  Google Scholar 

  81. Kurihara T, Brough DE, Kovesdi I, Kufe DW . Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest. 2000;106:763–771.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Boviatsis EJ, Park JS, Sena-Esteves M, et al. Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidine kinase gene. Cancer Res. 1994;54:5745–5751.

    CAS  PubMed  Google Scholar 

  83. Block A, Chen SH, Kosai K, et al. Adenoviral-mediated herpes simplex virus thymidine kinase gene transfer: regression of hepatic metastasis of pancreatic tumors. Pancreas. 1997;15:25–34.

    CAS  PubMed  Google Scholar 

  84. Aoki K, Yoshida T, Matsumoto N, et al. Gene therapy for peritoneal dissemination of pancreatic cancer by liposome-mediated transfer of herpes simplex virus thymidine kinase gene. Hum Gene Ther. 1997;8:1105–1113.

    CAS  PubMed  Google Scholar 

  85. Makinen K, Loimas S, Wahlfors J, et al. Evaluation of herpes simplex thymidine kinase mediated gene therapy in experimental pancreatic cancer. J Gene Med. 2000;2:361–367.

    CAS  PubMed  Google Scholar 

  86. Nakamura H, Mullen JT, Chandrasekhar S, et al. Multimodality therapy with a replication-conditional herpes simplex virus 1 mutant that expresses yeast cytosine deaminase for intratumoral conversion of 5-fluorocytosine to 5-fluorouracil. Cancer Res. 2001;61:5447–5452.

    CAS  PubMed  Google Scholar 

  87. Evoy D, Hirschowitz EA, Naama HA, et al. In vivo adenoviral-mediated gene transfer in the treatment of pancreatic cancer. J Surg Res. 1997;69:226–231.

    CAS  PubMed  Google Scholar 

  88. Chase M, Chung RY, Chiocca EA . An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclophosphamide chemotherapy. Nat Biotechnol. 1998;16:444–448.

    CAS  PubMed  Google Scholar 

  89. Mullen JT, Donahue JM, Chandrasekhar S, et al. Oncolysis by viral replication and inhibition of angiogenesis by a replication-conditional herpes simplex virus that expresses mouse endostatin. Cancer. 2004;101:869–877.

    CAS  PubMed  Google Scholar 

  90. Jacobs A, Tjuvajev JG, Dubrovin M, et al. Positron emission tomography-based imaging of transgene expression mediated by replication-conditional, oncolytic herpes simplex virus type 1 mutant vectors in vivo. Cancer Res. 2001;61:2983–2995.

    CAS  PubMed  Google Scholar 

  91. Jacobs A, Voges J, Reszka R, et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet. 2001;358:727–729.

    CAS  PubMed  Google Scholar 

  92. Kimata H, Takakuwa H, Goshima F, et al. Effective treatment of disseminated peritoneal colon cancer with new replication-competent herpes simplex viruses. Hepatogastroenterology. 2003;50:961–966.

    PubMed  Google Scholar 

  93. Teshigahara O, Goshima F, Takao K, et al. Oncolytic viral therapy for breast cancer with herpes simplex virus type 1 mutant HF 10. J Surg Oncol. 2004;85:42–47.

    CAS  PubMed  Google Scholar 

  94. Nakao A, Kimata H, Imai T, et al. Intratumoral injection of herpes simplex virus HF10 in recurrent breast cancer. Ann Oncol. 2004;15:988–989.

    CAS  PubMed  Google Scholar 

  95. Hamid O, Varterasian ML, Wadler S, et al. Phase II trial of intravenous CI-1042 in patients with metastatic colorectal cancer. J Clin Oncol. 2003;21:1498–1504.

    CAS  PubMed  Google Scholar 

  96. Makower D, Rozenblit A, Kaufman H, et al. Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumors with correlative p53 studies. Clin Cancer Res. 2003;9:693–702.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Kasuya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasuya, H., Takeda, S., Nomoto, S. et al. The potential of oncolytic virus therapy for pancreatic cancer. Cancer Gene Ther 12, 725–736 (2005). https://doi.org/10.1038/sj.cgt.7700830

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700830

Keywords

This article is cited by

Search

Quick links