Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subaqueous foraging among carnivorous dinosaurs

Abstract

Secondary aquatic adaptations evolved independently more than 30 times from terrestrial vertebrate ancestors1,2. For decades, non-avian dinosaurs were believed to be an exception to this pattern. Only a few species have been hypothesized to be partly or predominantly aquatic3,4,5,6,7,8,9,10,11. However, these hypotheses remain controversial12,13, largely owing to the difficulty of identifying unambiguous anatomical adaptations for aquatic habits in extinct animals. Here we demonstrate that the relationship between bone density and aquatic ecologies across extant amniotes provides a reliable inference of aquatic habits in extinct species. We use this approach to evaluate the distribution of aquatic adaptations among non-avian dinosaurs. We find strong support for aquatic habits in spinosaurids, associated with a marked increase in bone density, which precedes the evolution of more conspicuous anatomical modifications, a pattern also observed in other aquatic reptiles and mammals14,15,16. Spinosaurids are revealed to be aquatic specialists with surprising ecological disparity, including subaqueous foraging behaviour in Spinosaurus and Baryonyx, and non-diving habits in Suchomimus. Adaptation to aquatic environments appeared in spinosaurids during the Early Cretaceous, following their divergence from other tetanuran theropods during the Early Jurassic17.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Osteohistology and ecological variation among amniotes, including the analysed spinosaurid taxa.
Fig. 2: Relationship between midshaft density of femur, diameter and major lifestyle among amniotes including Spinosauridae.
Fig. 3: Relationship between dorsal ribs density, diameter and major lifestyle among amniotes including Spinosauridae.

Similar content being viewed by others

Data availability

All data described and used in this manuscript are freely available. The measurements and provenance information for fossil specimens can be found in the extended data figures and in the Supplementary Dataset. The phylogenetic datasets and the R coding are available as Supplementary Material. The CT scan datasets collected for this study are available in Morphosource (specific links for each taxon can be found in the Supplementary Dataset).

References

  1. Kelley, N. P. & Pyenson, N. D. Evolutionary innovation and ecology in marine tetrapods from the Triassic to the Anthropocene. Science 348, aaa3716 (2015).

    Article  PubMed  Google Scholar 

  2. Gutarra, S. & Rahman, I. A. The locomotion of extinct secondarily aquatic tetrapods. Biol. Rev. 97, 67–98 (2022).

    Article  PubMed  Google Scholar 

  3. Owen, R. A description of a portion of the skeleton of the Cetiosaurus, a gigantic extinct saurian reptile occurring in the oolitic formations of different portions of England. Proc. Geol. Soc. Lond. 3, 457–462 (1841).

    Google Scholar 

  4. Cope, E. On the characters of the skull in the Hadrosauridae. Proc. Natl Acad. Nat. Sci. USA 35, 97–107 (1883).

    Google Scholar 

  5. Bidar, A., Demay, L. & Thomel, G. Compsognathus corallestris, une nouvelle espèce de dinosaurien théropode du Portlandien de Canjuers (Sud-Est de la France). Annales Muséum d’Histoire Naturelle de Nice 1, 9–40 (1972).

    Google Scholar 

  6. Norell, M. A., Makovicky, P. J. & Currie, P. J. The beaks of ostrich dinosaurs. Nature 412, 873–874 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Tereschenko, V. S. Adaptive features of protoceratopoids (Ornithischia: Neoceratopsia). Paleontol. J. 42, 273–286 (2008).

    Article  Google Scholar 

  8. Lee, Y. N. et al. Resolving the long-standing enigmas of a giant ornithomimosaur Deinocheirus mirificus. Nature 515, 257–260 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Ibrahim, N. et al. Semiaquatic adaptations in a giant predatory dinosaur. Science 345, 1613–1616 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Cau, A. et al. Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs. Nature 552, 395–399 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Ibrahim, N. et al. Tail-propelled aquatic locomotion in a theropod dinosaur. Nature 581, 67–70 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Henderson, D. M. A buoyancy, balance and stability challenge to the hypothesis of a semi-aquatic Spinosaurus Stromer, 1915 (Dinosauria: Theropoda). PeerJ 6, e5409 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hone, D. W. E. & Holtz, T. R. Jr Evaluating the ecology of Spinosaurus: shoreline generalist or aquatic pursuit specialist? Palaeontol. Electronica 24, a03 (2021).

    Google Scholar 

  14. Thewissen, J. G., Cooper, L. N., Clementz, M. T., Bajpai, S. & Tiwari, B. N. Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450, 1190–1194 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Houssaye, A. Bone histology of aquatic reptiles: what does it tell us about secondary adaptation to an aquatic life? Biol. J. Linn. Soc. 108, 3–21 (2013).

    Article  Google Scholar 

  16. Motani, R. et al. A basal ichthyosauriform with a short snout from the Lower Triassic of China. Nature 517, 485–488 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Rauhut, O. W. & Pol, D. Probable basal allosauroid from the early Middle Jurassic Cañadón Asfalto Formation of Argentina highlights phylogenetic uncertainty in tetanuran theropod dinosaurs. Sci. Rep. 9, 1–9 (2019).

    Article  Google Scholar 

  18. You, H. L. et al. A nearly modern amphibious bird from the Early Cretaceous of northwestern China. Science 312, 1640–1643 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Wilson, L. E. & Chin, K. Comparative osteohistology of Hesperornis with reference to pygoscelid penguins: the effects of climate and behaviour on avian bone microstructure. R. Soc. Open Sci. 1, 140245 (2014).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  20. Gatesy, S. M. & Dial, K. P. Locomotor modules and the evolution of avian flight. Evolution 50, 331–340 (1996).

    Article  PubMed  Google Scholar 

  21. Amiot, R. et al. Oxygen isotope evidence for semi-aquatic habits among spinosaurid theropods. Geology 38, 139–142 (2010).

    Article  CAS  ADS  Google Scholar 

  22. Hassler, A. et al. Calcium isotopes offer clues on resource partitioning among Cretaceous predatory dinosaurs. Proc. R. Soc. B 285, 20180197 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Larramendi, A., Paul, G. S. & Hsu, S. Y. A review and reappraisal of the specific gravities of present and past multicellular organisms, with an emphasis on tetrapods. Anat. Rec. 304, 1833–1888 (2021).

    Article  Google Scholar 

  24. Charig, A. J. & Milner, A. C. Baryonyx, a remarkable new theropod dinosaur. Nature 324, 359–361 (1986).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Schoener, T. W. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Houssaye, A. “Pachyostosis” in aquatic amniotes: a review. Integr. Zool. 4, 325–340 (2009).

    Article  PubMed  Google Scholar 

  27. Houssaye, A., Sander, M. P. & Klein, N. Adaptive patterns in aquatic amniote bone microanatomy—more complex than previously thought. Integr. Comp. Biol. 56, 1349–1369 (2016).

    Article  PubMed  Google Scholar 

  28. Quemeneur, S., De Buffrenil, V. & Laurin, M. Microanatomy of the amniote femur and inference of lifestyle in limbed vertebrates. Biol. J. Linn. Soc. 109, 644–655 (2013).

    Article  Google Scholar 

  29. Canoville, A., de Buffrénil, V. & Laurin, M. Microanatomical diversity of amniote ribs: an exploratory quantitative study. Biol. J. Linn. Soc. 118, 706–733 (2016).

    Article  Google Scholar 

  30. Amson, E., de Muizon, C., Laurin, M., Argot, C. & de Buffrénil, V. Gradual adaptation of bone structure to aquatic lifestyle in extinct sloths from Peru. Proc. R. Soc. B 281, 20140192 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. B 326, 119–157 (1989).

    CAS  ADS  Google Scholar 

  32. Liem, K. F. Adaptive significance of intra-and interspecific differences in the feeding repertoires of cichlid fishes. Am. Zool. 20, 295–314 (1980).

    Article  Google Scholar 

  33. Turner, A. H., Pol, D., Clarke, J. A., Erickson, G. M. & Norell, M. A. A basal dromaeosaurid and size evolution preceding avian flight. Science 317, 1378–1381 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Voeten, D. F. et al. Wing bone geometry reveals active flight in Archaeopteryx. Nat. Commun. 9, 1319 (2018).

    Article  Google Scholar 

  35. Houssaye, A., Martin, F., Boisserie, J. R. & Lihoreau, F. Paleoecological inferences from long bone microanatomical specializations in Hippopotamoidea (Mammalia, Artiodactyla). J. Mamm. Evol. 28, 847–870 (2021).

    Article  Google Scholar 

  36. Amson, E. & Bibi, F. Differing effects of size and lifestyle on bone structure in mammals. BMC Biol. 19, 87 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Malafaia, E. et al. A new spinosaurid theropod (Dinosauria: Megalosauroidea) from the upper Barremian of Vallibona, Spain: Implications for spinosaurid diversity in the Early Cretaceous of the Iberian Peninsula. Cret. Res. 106, 104221 (2020).

    Article  Google Scholar 

  38. Sereno, P. C. et al. A long-snouted predatory dinosaur from Africa and the evolution of spinosaurids. Science 282, 1298–1302 (1998).

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Aureliano, T. et al. Semi-aquatic adaptations in a spinosaur from the Lower Cretaceous of Brazil. Cret. Res. 90, 283–295 (2018).

    Article  Google Scholar 

  40. Barker, C. T. et al. New spinosaurids from the Wessex Formation (Early Cretaceous, UK) and the European origins of Spinosauridae. Sci. Rep. 11, 19340 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Taquet, P. Géologie et Paléontologie du Gisement de Gadoufaoua (Aptien du Niger) (Éditions du Centre national de la Recherche Scientifique, 1976).

  42. Rayfield, E. J., Milner, A. C., Xuan, V. B. & Young, P. G. Functional morphology of spinosaur ‘crocodile-mimic’ dinosaurs. J. Vertebr. Paleontol. 27, 892–901 (2007).

    Article  Google Scholar 

  43. Benson, R. B., Butler, R. J., Carrano, M. T. & O’Connor, P. M. Air‐filled postcranial bones in theropod dinosaurs: physiological implications and the ‘reptile’–bird transition. Biol. Rev. 87, 168–193 (2012).

    Article  PubMed  Google Scholar 

  44. Reid, R. E. H. Zonal “growth rings” in dinosaurs. Mod. Geol. 15, 19–48 (1990).

    Google Scholar 

  45. Chinsamy, A. & Raath, M. A. Preparation of fossil bone for histological examination. Palaeont. Afr. 29, 39–44 (1992).

    Google Scholar 

  46. Griffin, C. T. et al. Assessing ontogenetic maturity in extinct saurian reptiles. Biol. Rev. 96, 470–525 (2021).

    Article  Google Scholar 

  47. Carrano, M. T., Benson, R. B. & Sampson, S. D. The phylogeny of Tetanurae (Dinosauria: Theropoda). J. Syst. Palaeontol. 10, 211–300 (2012).

    Article  Google Scholar 

  48. Ibrahim, N. et al. Geology and paleontology of the Upper Cretaceous Kem Kem Group of eastern Morocco. ZooKeys 928, 1–216 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Smyth, R. S., Ibrahim, N. & Martill, D. M. Sigilmassasaurus is Spinosaurus: a reappraisal of African spinosaurines. Cret. Res. 114, 104520 (2020).

    Article  Google Scholar 

  50. Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786 (2008).

    Article  Google Scholar 

  51. Erickson, G. M. Assessing dinosaur growth patterns: a microscopic revolution. Trends Ecol. Evol. 20, 677–684 (2005).

    Article  PubMed  Google Scholar 

  52. Hayashi, S. et al. Bone inner structure suggests increasing aquatic adaptations in Desmostylia (Mammalia, Afrotheria). PLoS ONE 8, e59146 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  53. Straehl, F. R., Scheyer, T. M., Forasiepi, A. M., MacPhee, R. D. E. & Sánchez-Villagra, M. R. Evolutionary patterns of bone histology and bone compactness in xenarthran mammal long bones. PLoS ONE 8, e69275 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  54. Houssaye, A., Tafforeau, P., de Muizon, C. & Gingerich, P. D. Transition of Eocene whales from land to sea: evidence from bone microstructure. PLoS ONE 10, e0118409 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Girondot, M. & Laurin, M. Bone profiler: a tool to quantify, model, and statistically compare bone-section compactness profiles. J. Vertebr. Paleontol. 23, 458–461 (2003).

    Article  Google Scholar 

  56. De Ricqlès, A. J., Padian, K., Horner, J. R., Lamm, E. T. & Myhrvold, N. Osteohistology of Confuciusornis sanctus (Theropoda: Aves). Journ. Vertebr. Paleontol. 23, 373–386 (2003).

    Article  Google Scholar 

  57. Maddison, W. P. Mesquite: a modular system for evolutionary analysis. Evolution 62, 1103–1118 (2008).

    Google Scholar 

  58. Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Simoes, T. R. et al. The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature 557, 706–709 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  60. Nesbitt, S. J. et al. The earliest bird-line archosaurs and the assembly of the dinosaur body plan. Nature 544, 484–487 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Langer, M. C. et al. Untangling the dinosaur family tree. Nature 551, E1–E3 (2017).

    Article  PubMed  Google Scholar 

  62. Brusatte, S. L., Lloyd, G. T., Wang, S. C. & Norell, M. A. Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition. Curr. Biol. 24, 2386–2392 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  64. Bapst, D. W. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807 (2012).

    Article  Google Scholar 

  65. Schmitz, L. & Motani, R. Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science 332, 705–708 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  66. Motani, R. & Schmitz, L. Phylogenetic versus functional signals in the evolution of form–function relationships in terrestrial vision. Evolution 65, 2245–2257 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge P. Barrett and S. Chapman for access to the holotype of Baryonyx at the Natural History Museum, London, J. Scannella for access to thin sections of Tyrannosaurus housed at the Museum of the Rockies, and M. Fox and J. Gauthier for access to Poposaurus at the Yale Peabody Museum. The Moroccan Ministry of Energy, Mines, and the Environment is thanked for providing fieldwork permits to N. I. Members of the 2015–2019 expedition seasons are thanked for their assistance in the field. We thank J. Choiniere, P. Falkingham, S. Nesbitt and the other, anonymous, reviewer for constructive comments that improved the manuscript. Funding was received from the European Union’s Horizon 2020 research and innovation program 2014–2018, starting grant (R. B. J. B., 677774); a National Geographic Society grant (N.I., CP-143R-170); a National Geographic Emerging Explorer Grant (N.I.); the Jurassic Foundation (M.F.); the Paleontological Society grant (M.F.), as well as the Explorers Club (grant awarded to M.F.). The Lokschuppen (Rosenheim, Germany) and J. Pfauntsch provided additional financial support for fieldwork led by N.I. in Morocco.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M.F. Data collection and curation: all authors. Data quantification: M.F. Methodology: M.F., G.N. and R.B.J.B. Formal analysis: M.F., G.N. and R.B.J.B. Resources: all authors. Writing, original draft preparation: M.F. Writing, review and editing: all authors. Visualization: M.F. and G.N.; Supervision: M.F., G.N., R.B.J.B. and N.I. Funding acquisition: M.F., R.B.J.B. and N.I.

Corresponding authors

Correspondence to Matteo Fabbri, Guillermo Navalón or Roger B. J. Benson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Jonah Choiniere, Peter Falkingham, Sterling Nesbitt and the other, anonymous, reviewers for their contribution to the peer review of this work. Peer review reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Comparative array of archosaurian femoral diaphysis included in the dataset.

Numerical values represent the bone density quantified for each taxon. Asterisks indicate femoral diaphysis that were retro-deformed before quantification of bone density due to taphonomic deformation and/or fragmentation present in the fossil.

Extended Data Fig. 2 Comparative array of non-avian and avian femoral diaphysis included in the dataset.

Numerical values represent the bone density quantified for each taxon.

Extended Data Fig. 3 Comparative array of avian and lepidosaur femoral diaphysis included in the dataset.

Numerical values represent the bone density quantified for each taxon.

Extended Data Fig. 4 Comparative array of amniote femoral diaphysis included in the dataset.

Numerical values represent the bone density quantified for each taxon.

Extended Data Fig. 5 Comparative array of mammalian femoral diaphysis included in the dataset.

Numerical values represent the bone density quantified for each taxon.

Extended Data Fig. 6 Comparative array of archosaurian dorsal rib cross sections included in the dataset.

Numerical values represent the bone density quantified for each taxon.

Extended Data Fig. 7 Comparative array of amniote dorsal rib cross sections included in the dataset.

Numerical values represent the bone density quantified for each taxon.

Extended Data Fig. 8

Bone density and femur diameter phylogenetic distribution plotted on the informal consensus tree used for discriminant analyses representing the phylogenetic relationships of the taxa included in our study.

Extended Data Fig. 9

Bone density and dorsal rib diameter phylogenetic distribution plotted on the informal consensus tree used for discriminant analyses representing the phylogenetic relationships of the taxa included in our study.

Extended Data Fig. 10 Qualitative comparison of bone compactness in selected skeletal elements between osteosclerotic spinosaurids and other non-avian dinosaurs.

Baryonyx and Spinosaurus possess dense, compact bone throughout the postcranial skeleton, namely in the neural spines, ribs, scapula, ilium, pubis, ischium, femur, and fibula. Increased bone density is found in postcranial elements of Spinosaurus as well; a reduced medullary cavity is present in the ribs, dorsal and caudal neural spines, manual phalanges, femur, tibia, and fibula. Abbreviations: bd=bone density.

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–3 and Tables 1–10

Reporting Summary

Peer Review File

Supplementary Dataset

This folder contains the list of taxa analysed in this study; R coding; phylogenetic dataset from Malafaia et al. (2020) and phylogenetic dataset from Rauhut & Pol (2019)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabbri, M., Navalón, G., Benson, R.B.J. et al. Subaqueous foraging among carnivorous dinosaurs. Nature 603, 852–857 (2022). https://doi.org/10.1038/s41586-022-04528-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04528-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing