Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two-dimensional supersolidity in a dipolar quantum gas

Abstract

Supersolid states simultaneously feature properties typically associated with a solid and with a superfluid. Like a solid, they possess crystalline order, manifesting as a periodic modulation of the particle density; but unlike a typical solid, they also have superfluid properties, resulting from coherent particle delocalization across the system. Such states were initially envisioned in the context of bulk solid helium, as a possible answer to the question of whether a solid could have superfluid properties1,2,3,4,5. Although supersolidity has not been observed in solid helium (despite much effort)6, ultracold atomic gases provide an alternative approach, recently enabling the observation and study of supersolids with dipolar atoms7,8,9,10,11,12,13,14,15,16. However, unlike the proposed phenomena in helium, these gaseous systems have so far only shown supersolidity along a single direction. Here we demonstrate the extension of supersolid properties into two dimensions by preparing a supersolid quantum gas of dysprosium atoms on both sides of a structural phase transition similar to those occurring in ionic chains17,18,19,20, quantum wires21,22 and theoretically in chains of individual dipolar particles23,24. This opens the possibility of studying rich excitation properties25,26,27,28, including vortex formation29,30,31, and ground-state phases with varied geometrical structure7,32 in a highly flexible and controllable system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Calculated phases of dipolar droplet array.
Fig. 2: Linear to zigzag transition in an anisotropic trap.
Fig. 3: Coherence in linear and zigzag states.

Similar content being viewed by others

Data availability

Data pertaining to this work can be found at https://doi.org/10.5281/zenodo.4729519.

Code availability

Code used for this work is available from the corresponding author upon reasonable request.

References

  1. Gross, E. P. Unified theory of interacting bosons. Phys. Rev. 106, 161–162 (1957).

    Article  ADS  CAS  MATH  Google Scholar 

  2. Gross, E. P. Classical theory of boson wave fields. Ann. Phys. 4, 57–74 (1958).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Andreev, A. F. & Lifshitz, I. M. Quantum theory of defects in crystals. Sov. Phys. JETP 29, 1107–1114 (1969).

    ADS  Google Scholar 

  4. Chester, G. V. Speculations on Bose–Einstein condensation and quantum crystals. Phys. Rev. A 2, 256–258 (1970).

    Article  ADS  Google Scholar 

  5. Leggett, A. J. Can a solid be “superfluid”? Phys. Rev. Lett. 25, 1543–1546 (1970).

    Article  ADS  CAS  Google Scholar 

  6. Chan, M. H.-W., Hallock, R. & Reatto, L. Overview on solid 4He and the issue of supersolidity. J. Low Temp. Phys. 172, 317–363 (2013).

    Article  ADS  CAS  Google Scholar 

  7. Lu, Z.-K., Li, Y., Petrov, D. S. & Shlyapnikov, G. V. Stable dilute supersolid of two-dimensional dipolar bosons. Phys. Rev. Lett. 115, 075303 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  8. Baillie, D. & Blakie, P. B. Droplet crystal ground states of a dipolar Bose gas. Phys. Rev. Lett. 121, 195301 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Roccuzzo, S. M. & Ancilotto, F. Supersolid behavior of a dipolar Bose–Einstein condensate confined in a tube. Phys. Rev. A 99, 041601 (2019).

    Article  ADS  CAS  Google Scholar 

  10. Boninsegni, M. & Prokof’ev, N. V. Colloquium: Super-solids: what and where are they? Rev. Mod. Phys. 84, 759–776 (2012).

    Article  ADS  CAS  Google Scholar 

  11. Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).

    Google Scholar 

  13. Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).

    CAS  Google Scholar 

  14. Guo, M. et al. The low-energy Goldstone mode in a trapped dipolar super-solid. Nature 574, 386–389 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Natale, G. et al. Excitation spectrum of a trapped dipolar supersolid and its experimental evidence. Phys. Rev. Lett. 123, 050402 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Tanzi, L. et al. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 574, 382–385 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Birkl, G., Kassner, S. & Walther, H. Multiple-shell structures of laser-cooled 24Mg+ ions in a quadrupole storage ring. Nature 357, 310–313 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Raizen, M. G., Gilligan, J. M., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Ionic crystals in a linear Paul trap. Phys. Rev. A 45, 6493–6501 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Fishman, S., De Chiara, G., Calarco, T. & Morigi, G. Structural phase transitions in low-dimensional ion crystals. Phys. Rev. B 77, 064111 (2008).

    Article  ADS  CAS  Google Scholar 

  20. Shimshoni, E., Morigi, G. & Fishman, S. Quantum zigzag transition in ion chains. Phys. Rev. Lett. 106, 010401 (2011).

    Article  ADS  PubMed  CAS  Google Scholar 

  21. Hew, W. K. et al. Incipient formation of an electron lattice in a weakly confined quantum wire. Phys. Rev. Lett. 102, 056804 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Mehta, A. C., Umrigar, C. J., Meyer, J. S. & Baranger, H. U. Zigzag phase transition in quantum wires. Phys. Rev. Lett. 110, 246802 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  23. Astrakharchik, G. E., Morigi, G., De Chiara, G. & Boronat, J. Ground state of low-dimensional dipolar gases: linear and zigzag chains. Phys. Rev. A 78, 063622 (2008).

    Article  ADS  CAS  Google Scholar 

  24. Ruhman, J., Dalla Torre, E. G., Huber, S. D. & Altman, E. Nonlocal order in elongated dipolar gases. Phys. Rev. B 85, 125121 (2012).

    Article  ADS  CAS  Google Scholar 

  25. Santos, L., Shlyapnikov, G. V. & Lewenstein, M. Roton-maxon spectrum and stability of trapped dipolar Bose–Einstein condensates. Phys. Rev. Lett. 90, 250403 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Ronen, S., Bortolotti, D. C. E. & Bohn, J. L. Radial and angular rotons in trapped dipolar gases. Phys. Rev. Lett. 98, 030406 (2007).

    Article  ADS  PubMed  CAS  Google Scholar 

  27. Wilson, R. M., Ronen, S., Bohn, J. L. & Pu, H. Manifestations of the roton mode in dipolar Bose–Einstein condensates. Phys. Rev. Lett. 100, 245302 (2008).

    Article  ADS  PubMed  CAS  Google Scholar 

  28. Bisset, R. N., Baillie, D. & Blakie, P. B. Roton excitations in a trapped dipolar Bose–Einstein condensate. Phys. Rev. A 88, 043606 (2013).

    Article  ADS  CAS  Google Scholar 

  29. Gallemí, A., Roccuzzo, S. M., Stringari, S. & Recati, A. Quantized vortices in dipolar supersolid Bose–Einstein-condensed gases. Phys. Rev. A 102, 023322 (2020).

    Article  ADS  Google Scholar 

  30. Roccuzzo, S. M., Gallemí, A., Recati, A. & Stringari, S. Rotating a supersolid dipolar gas. Phys. Rev. Lett. 124, 045702 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Ancilotto, F., Barranco, M., Pi, M. & Reatto, L. Vortex properties in the extended supersolid phase of dipolar Bose–Einstein condensates. Phys. Rev. A 103, 033314 (2021).

    Article  ADS  CAS  Google Scholar 

  32. Zhang, Y.-C., Maucher, F. & Pohl, T. Supersolidity around a critical point in dipolar Bose–Einstein condensates. Phys. Rev. Lett. 123, 015301 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Li, J.-R. et al. A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. Nature 543, 91–94 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  35. Kadau, H. et al. Observing the Rosensweig instability of a quantum ferrofluid. Nature 530, 194–197 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenzel, M. & Pfau, T. Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 116, 215301 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  37. Chomaz, L. et al. Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016).

    Google Scholar 

  38. Wächtler, F. & Santos, L. Quantum filaments in dipolar Bose–Einstein condensates. Phys. Rev. A 93, 061603 (2016).

    Article  ADS  CAS  Google Scholar 

  39. Bisset, R. N., Wilson, R. M., Baillie, D. & Blakie, P. B. Ground-state phase diagram of a dipolar condensate with quantum fluctuations. Phys. Rev. A 94, 033619 (2016).

    Article  ADS  CAS  Google Scholar 

  40. Lavoine, L. & Bourdel, T. Beyond-mean-field crossover from one dimension to three dimensions in quantum droplets of binary mixtures. Phys. Rev. A 103, 033312 (2021).

    Article  ADS  CAS  Google Scholar 

  41. Sohmen, M. et al. Birth, life, and death of a dipolar supersolid. Phys. Rev. Lett. 126, 233401 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Hadzibabic, Z., Stock, S., Battelier, B., Bretin, V. & Dalibard, J. Interference of an array of independent Bose–Einstein condensates. Phys. Rev. Lett. 93, 180403 (2004).

    Article  ADS  PubMed  CAS  Google Scholar 

  43. Schmidt, J.-N. et al. Roton excitations in an oblate dipolar quantum gas. Phys. Rev. Lett. 126, 193002 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Pyka, K. et al. Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals. Nat. Commun. 4, 2291 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Ulm, S. et al. Observation of the Kibble–Zurek scaling law for defect formation in ion crystals. Nat. Commun. 4, 2290 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Trautmann, A. et al. Dipolar quantum mixtures of erbium and dysprosium atoms. Phys. Rev. Lett. 121, 213601 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Chomaz, L. et al. Observation of roton mode population in a dipolar quantum gas. Nat. Phys. 14, 442–446 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lima, A. R. P. & Pelster, A. Quantum fluctuations in dipolar Bose gases. Phys. Rev. A 84, 041604 (2011).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Innsbruck Erbium team, T. Bland, G. Morigi and B. Blakie for discussions. We acknowledge R. M. W. van Bijnen for developing the code for our eGPE ground-state simulations. The experimental team is financially supported through an ERC Consolidator Grant (RARE, number 681432), an NFRI grant (MIRARE, number ÖAW0600) of the Austrian Academy of Science, the QuantERA grant MAQS by the Austrian Science Fund FWF number I4391-N. L.S. and F.F. acknowledge the DFG/FWF via FOR 2247/PI2790. M.S. acknowledges support by the Austrian Science Fund FWF within the DK-ALM (number W1259-N27). L.S. thanks the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC-2123 QuantumFrontiers - 390837967. M.A.N. has received funding as an ESQ Postdoctoral Fellow from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 801110 and the Austrian Federal Ministry of Education, Science and Research (BMBWF). M.J.M. acknowledges support through an ESQ Discovery Grant by the Austrian Academy of Sciences. We also acknowledge the Innsbruck Laser Core Facility, financed by the Austrian Federal Ministry of Science, Research and Economy. Part of the computational results presented have been achieved using the HPC infrastructure LEO of the University of Innsbruck.

Author information

Authors and Affiliations

Authors

Contributions

M.A.N., C.P., L.K., M.S., M.J.M. and F.F. contributed experimental work. E.P. and R.N.B. performed eGPE calculations. L.S. contributed variational model. All authors contributed to interpretation of results and preparation of manuscript.

Corresponding author

Correspondence to Francesca Ferlaino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Fourier transforms of in-trap images.

The upper row shows individual in-trap images for different trap aspect ratios, as shown in Fig. 2b. The lower row shows the data for the same parameters in the Fourier domain, with k the associated wavenumber. As the trap aspect ratio is increased, the modulation goes from being present along a single direction to two, and a clear hexagonal pattern is visible.

Extended Data Fig. 2 Supersolid droplet array with more than two rows.

a, In-trap image of a droplet array with more than two rows. b, Averaged Fourier transform of 309 images in conditions of a, showing that a regular modulated structure persists in the more extended system. c, Calculated ground state from the eGPE for trap parameters (fxfy, fz) = (22, 55, 140) Hz, and N = 60,000 atoms in the droplets, representative of the experimental conditions in a, b. d, Averaged TOF interference pattern for the conditions of a, b. The inset shows the measured 2D density profile and the main panel shows a radially averaged density, normalized to the peak density of the averaged image. The grey lines represent individual trials and the red line is the average. The repeatability of the modulation indicates the presence of phase coherence between droplets.

Extended Data Fig. 3 Prospects for larger and isotropic droplet arrays.

The panels show eGPE-calculated ground-state density profiles with fixed average atomic density (see text) and either fixed atom number and trap volume (upper row) or fixed fx (lower row). Here N refers to the total number of atoms in the simulation (droplets plus halo), in contrast to the definition used elsewhere to compare with experimental conditions (droplets only).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norcia, M.A., Politi, C., Klaus, L. et al. Two-dimensional supersolidity in a dipolar quantum gas. Nature 596, 357–361 (2021). https://doi.org/10.1038/s41586-021-03725-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03725-7

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing