Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The mRNA cap-binding protein eIF4E in post-transcriptional gene expression

Abstract

Eukaryotic initiation factor 4E (eIF4E) has central roles in the control of several aspects of post-transcriptional gene expression and thereby affects developmental processes. It is also implicated in human diseases. This review explores the relationship between structural, biochemical and biophysical aspects of eIF4E and its function in vivo, including both long-established roles in translation and newly emerging ones in nuclear export and mRNA decay pathways.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interactions of eIF4E.
Figure 2: Structural features of the cap-binding complex.
Figure 3: The effect of eIF4E on translation, mRNA degradation and mRNA export is determined by its protein ligands.
Figure 4: Models for the transition from translation to mRNA degradation.

Similar content being viewed by others

References

  1. Shatkin, A.J. Capping of eucaryotic mRNAs. Cell 9, 645–653 (1976).

    CAS  PubMed  Google Scholar 

  2. Hershey, J.W.B. & Merrick, W.C. Pathway and mechanism of initiation of protein synthesis. In Translational Control of Gene Expression (eds. Sonenberg, N., Hershey, J.W.B. & Mathews, M.B.) 33–88 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2000).

    Google Scholar 

  3. McCarthy, J.E.G. Post-transcriptional control of gene expression in yeast. Microbiol. Mol. Biol. Rev. 62, 1492–1553 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kozak, M. The scanning model for translation: an update. J. Cell. Biol. 108, 229–241 (1989).

    CAS  PubMed  Google Scholar 

  5. de Moor, C.H. & Richter, J.D. Translational control in vertebrate development. Int. Rev. Cytol. 203, 567–608 (2001).

    CAS  PubMed  Google Scholar 

  6. Dua, K., Williams, T.M. & Beretta, L. Translational control of the proteome: relevance to cancer. Proteomics 1, 1191–1199 (2001).

    CAS  PubMed  Google Scholar 

  7. DeFatta, R.J., Li, Y. & De Benedetti, A. Selective killing of cancer cells based on translational control of a suicide gene. Cancer Gene Ther. 9, 573–578 (2002).

    CAS  PubMed  Google Scholar 

  8. Scheper, G.C. & Proud, C.G. Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur. J. Biochem. 269, 5350–5359 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Marcotrigiano, J., Gingras, A.C., Sonenberg, N. & Burley, S.K. Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89, 951–961 (1997).

    CAS  PubMed  Google Scholar 

  10. Marcotrigiano, J., Gingras, A.C., Sonenberg, N. & Burley, S.K. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol. Cell 3, 707–716 (1999).

    CAS  PubMed  Google Scholar 

  11. Matsuo, H. et al. Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nat. Struct. Biol. 4, 717–724 (1997).

    CAS  PubMed  Google Scholar 

  12. Gross, J.D. et al. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell 115, 739–750 (2003).

    CAS  PubMed  Google Scholar 

  13. Tomoo, K. et al. Structural features of human initiation factor 4E, studied by X-ray crystal analyses and molecular dynamics simulations. J. Mol. Biol. 328, 365–383 (2003).

    CAS  PubMed  Google Scholar 

  14. Niedzwiecka, A. et al. Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5′ cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins. J. Mol. Biol. 319, 615–635 (2002).

    CAS  PubMed  Google Scholar 

  15. Ditzelmüller, G., Wöhrer, W., Kubicek, C.P. & Röhr, M. Nucleotide pools of growing, synchronized and stressed cultures of Saccharomyces cerevisiae. Arch. Microbiol. 135, 63–67 (1983).

    PubMed  Google Scholar 

  16. von der Haar, T. & McCarthy, J.E.G. Intracellular translation initiation factor levels in Saccharomyces cerevisiae and their role in cap-complex function. Mol. Microbiol. 46, 531–544 (2002).

    CAS  PubMed  Google Scholar 

  17. van Dijk, E., Le Hir, H. & Séraphin, B. DcpS can act in the 5′-3′ mRNA decay pathway in addition to the 3′-5′ pathway. Proc. Natl. Acad. Sci. USA 100, 12081–12086 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. McGuire, A.M., Matsuo, H. & Wagner, G. Internal and overall motions of the translation factor eIF4E: cap binding and insertion in a CHAPS detergent micelle. J. Biomol. NMR 12, 73–88 (1998).

    CAS  PubMed  Google Scholar 

  19. Matsuo, H. et al. Efficient synthesis of 13C, 15N-labeled RNA containing the cap structure m7GPA. J. Am. Chem. Soc. 122, 2417–2421 (2000).

    CAS  Google Scholar 

  20. Spivak-Kroizman, T. et al. Mutations in the S4-H2 loop of eIF4E which increase the affinity for m7GTP. FEBS Lett. 516, 9–14 (2002).

    CAS  PubMed  Google Scholar 

  21. Carberry, S.E., Friedland, D.E., Rhoads, R.E. & Goss, D.J. Binding of protein synthesis initiation factor 4E to oligoribonucleotides: effects of cap accessibility and secondary structure. Biochemistry 31, 1427–1432 (1992).

    CAS  PubMed  Google Scholar 

  22. von der Haar, T., Ball, P.D. & McCarthy, J.E.G. Stabilization of eukaryotic initiation factor 4E binding to the mRNA 5′-cap by domains of eIF4G. J. Biol. Chem. 275, 30551–30555 (2000).

    CAS  PubMed  Google Scholar 

  23. McCubbin, W.D., Edery, I., Altmann, M., Sonenberg, N. & Kay, C.M. Circular dichroism and fluorescence studies on protein synthesis initiation factor eIF-4E and two mutant forms from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 263, 17663–17671 (1988).

    CAS  PubMed  Google Scholar 

  24. Cohen, N. et al. PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA. EMBO J. 20, 4547–4559 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Youtani, T., Tomoo, K., Ishida, T., Miyoshi, H. & Miura, K. Regulation of human eIF4E by 4E-BP1: binding analysis using surface plasmon resonance. IUBMB Life 49, 27–31 (2000).

    CAS  PubMed  Google Scholar 

  26. Wieczorek, Z. et al. Fluorescence studies on association of human translation initiation factor eIF4E with mRNA cap-analogues. Z. Naturforsch. 54, 278–284 (1999).

    CAS  Google Scholar 

  27. Sha, M. et al. Interaction of wheat germ protein synthesis initiation factor eIF-(iso)4F and its subunits p28 and p86 with m7GTP and mRNA analogues. J. Biol. Chem. 270, 29904–29909 (1995).

    CAS  PubMed  Google Scholar 

  28. Minich, W.B., Balasta, M.L., Goss, D.J. & Rhoads, R.E. Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E: increased cap affinity of the phosphorylated form. Proc. Natl. Acad. Sci. USA 91, 7668–7672 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ptushkina, M. et al. A second eIF4E protein in Schizosaccharomyces pombe has distinct eIF4G-binding properties. Nucleic Acids Res. 29, 4561–4569 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ptushkina, M., von der Haar, T., Karim, M.M., Hughes, J.M. & McCarthy, J.E.G. Repressor binding to a dorsal regulatory site traps human eIF4E in a high cap-affinity state. EMBO J. 18, 4068–4075 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Scheper, G.C. et al. Phosphorylation of eukaryotic initiation factor 4E markedly reduces its affinity for capped mRNA. J. Biol. Chem. 277, 3303–3309 (2002).

    CAS  PubMed  Google Scholar 

  32. Blachut-Okrasinska, E. et al. Stopped-flow and Brownian dynamics studies of electrostatic effects in the kinetics of binding of 7-methyl-GpppG to the protein eIF4E. Eur. Biophys. J. 29, 487–498 (2000).

    CAS  PubMed  Google Scholar 

  33. Ptushkina, M. et al. Cooperative modulation by eIF4G of eIF4E-binding to the mRNA 5′ cap in yeast involves a site partially shared by p20. EMBO J. 17, 4798–4808 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hershey, P.E.C. et al. The Cap-binding protein eIF4E promotes folding of a functional domain of yeast translation initiation factor eIF4G1. J. Biol. Chem. 274, 21297–21304 (1999).

    CAS  PubMed  Google Scholar 

  35. Marcotrigiano, J. et al. A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery. Mol. Cell 7, 193–203 (2001).

    CAS  PubMed  Google Scholar 

  36. Berset, C., Zurbriggen, A., Djafarzadeh, S., Altmann, M. & Trachsel, H. RNA-binding activity of translation initiation factor eIF4G1 from Saccharomyces cerevisiae. RNA 9, 871–880 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fletcher, C.M. & Wagner, G. The interaction of eIF4E with 4E-BP1 is an induced fit to a completely disordered protein. Protein Sci. 7, 1639–1642 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cao, Q. & Richter, J.D. Dissolution of the maskin-eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation. EMBO J. 21, 3852–3862 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wilhelm, J.E., Hilton, M., Amos, Q. & Henzel, W.J. Cup is an eIF4E binding protein required for both the translational repression of oskar and the recruitment of Barentsz. J. Cell Biol. 163, 1197–1204 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Niessing, D., Blanke, S. & Jackle, H. Bicoid associates with the 5′-cap-bound complex of caudal mRNA and represses translation. Genes Dev. 16, 2576–2582 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Topisirovic, I. et al. The proline-rich homeodomain protein, PRH, is a tissue-specific inhibitor of eIF4E-dependent cyclin D1 mRNA transport and growth. EMBO J. 22, 689–703 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Altmann, M., Schmitz, N., Berset, C. & Trachsel, H. A novel inhibitor of cap-dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E. EMBO J. 16, 1114–1121 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kentsis, A. et al. The RING domains of the promyelocytic leukemia protein PML and the arenaviral protein Z repress translation by directly inhibiting translation initiation factor eIF4E. J. Mol. Biol. 312, 609–623 (2001).

    CAS  PubMed  Google Scholar 

  44. Haghighat, A. & Sonenberg, N. eIF4G dramatically enhances the binding of eIF4E to the mRNA 5′-cap structure. J. Biol. Chem. 272, 21677–21680 (1997).

    CAS  PubMed  Google Scholar 

  45. Wei, C.C., Balasta, M.L., Ren, J. & Goss, D.J. Wheat germ poly(A) binding protein enhances the binding affinity of eukaryotic initiation factor 4F and (iso)4F for cap analogues. Biochemistry 37, 1910–1916 (1998).

    CAS  PubMed  Google Scholar 

  46. Luo, Y. & Goss, D.J. Homeostasis in mRNA initiation: wheat germ poly(A)-binding protein lowers the activation energy barrier to initiation complex formation. J. Biol. Chem. 276, 43083–43086 (2001).

    CAS  PubMed  Google Scholar 

  47. Borman, A.M., Michel, Y.M. & Kean, K.M. Biochemical characterisation of cap-poly(A) synergy in rabbit reticulocyte lysates: the eIF4G-PABP interaction increases the functional affinity of eIF4E for the capped mRNA 5′-end. Nucleic Acids Res. 28, 4068–4075 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Deardorff, J.A. & Sachs, A.B. Differential effects of aromatic and charged residue substitutions in the RNA binding domains of the yeast poly(A)-binding protein. J. Mol. Biol. 269, 67–81 (1997).

    CAS  PubMed  Google Scholar 

  49. Gingras, A.C., Raught, B. & Sonenberg, N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913–963 (1999).

    CAS  PubMed  Google Scholar 

  50. Duncan, R., Milburn, S.C. & Hershey, J.W. Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control. Heat shock effects on eIF-4F. J. Biol. Chem. 262, 380–388 (1987).

    CAS  PubMed  Google Scholar 

  51. Hiremath, L.S., Webb, N.R. & Rhoads, R.E. Immunological detection of the messenger RNA cap-binding protein. J. Biol. Chem. 260, 7843–7849 (1985).

    CAS  PubMed  Google Scholar 

  52. Clemens, M.J. Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins. J. Cell. Mol. Med. 5, 221–239 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rau, M., Ohlmann, T., Morley, S.J. & Pain, V.M. A reevaluation of the cap-binding protein, eIF4E, as a rate-limiting factor for initiation of translation in reticulocyte lysate. J. Biol. Chem. 271, 8983–8990 (1996).

    CAS  PubMed  Google Scholar 

  54. Khaleghpour, K., Pyronnet, S., Gingras, A.C. & Sonenberg, N. Translational homeostasis: eukaryotic translation initiation factor 4E control of 4E-binding protein 1 and p70 S6 kinase activities. Mol. Cell. Biol. 19, 4302–4310 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Pause, A. et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371, 762–767 (1994).

    CAS  PubMed  Google Scholar 

  56. Grifo, J.A., Abramson, R.D., Satler, C.A. & Merrick, W.C. RNA-stimulated ATPase activity of eukaryotic initiation factors. J. Biol. Chem. 259, 8648–8654 (1984).

    CAS  PubMed  Google Scholar 

  57. Ray, B.K., Lawson, T.G., Abramson, R.D., Merrick, W.C. & Thach, R.E. Recycling of messenger RNA cap-binding proteins mediated by eukaryotic initiation factor 4B. J. Biol. Chem. 261, 11466–11470 (1986).

    CAS  PubMed  Google Scholar 

  58. Lang, V., Zanchin, N.I., Lünsdorf, H., Tuite, M. & McCarthy, J.E.G. Initiation factor eIF-4E of Saccharomyces cerevisiae. Distribution within the cell, binding to mRNA, and consequences of its overproduction. J. Biol. Chem. 269, 6117–6123 (1994).

    CAS  PubMed  Google Scholar 

  59. Saghir, A.N., Tuxworth, W.J., Jr., Hagedorn, C.H. & McDermott, P.J. Modifications of eukaryotic initiation factor 4F (eIF4F) in adult cardiocytes by adenoviral gene transfer: differential effects on eIF4F activity and total protein synthesis rates. Biochem. J. 356, 557–566 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wakiyama, M. et al. Analysis of the isoform of Xenopus eukaryotic translation initiation factor 4E. Biosci. Biotechnol. Biochem. 65, 232–235 (2001).

    CAS  PubMed  Google Scholar 

  61. Danaie, P., Altmann, M., Hall, M.N., Trachsel, H. & Helliwell, S.B. CLN3 expression is sufficient to restore G1-to-S-phase progression in Saccharomyces cerevisiae mutants defective in translation initiation factor eIF4E. Biochem. J. 340 (Pt 1), 135–141 (1999).

    Google Scholar 

  62. Rosenwald, I.B., Lazaris-Karatzas, A., Sonenberg, N. & Schmidt, E.V. Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol. Cell. Biol. 13, 7358–7363 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Shantz, L.M. & Pegg, A.E. Overproduction of ornithine decarboxylase caused by relief of translational repression is associated with neoplastic transformation. Cancer Res. 54, 2313–2316 (1994).

    CAS  PubMed  Google Scholar 

  64. Kevil, C., Carter, P., Hu, B. & DeBenedetti, A. Translational enhancement of FGF-2 by eIF-4 factors, and alternate utilization of CUG and AUG codons for translation initiation. Oncogene 11, 2339–2348 (1995).

    CAS  PubMed  Google Scholar 

  65. Hoover, D.S., Wingett, D.G., Zhang, J., Reeves, R. & Magnuson, N.S. Pim-1 protein expression is regulated by its 5′-untranslated region and translation initiation factor elF-4E. Cell Growth Differ. 8, 1371–1380 (1997).

    CAS  PubMed  Google Scholar 

  66. Kevil, C.G. et al. Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int. J. Cancer. 65, 785–790 (1996).

    CAS  PubMed  Google Scholar 

  67. Lawson, T.G. et al. Discriminatory interaction of purified eukaryotic initiation factors 4F plus 4A with the 5′ ends of reovirus messenger RNAs. J. Biol. Chem. 263, 7266–7276 (1988).

    CAS  PubMed  Google Scholar 

  68. Svitkin, Y.V. et al. The requirement for eukaryotic initiation factor 4A (eIF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7, 382–394 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rosenwald, I.B. et al. Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J. Biol. Chem. 270, 21176–21180 (1995).

    CAS  PubMed  Google Scholar 

  70. Parker, R. & Song, H. The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. 11, 121–127 (2004).

    CAS  PubMed  Google Scholar 

  71. Vilela, C., Velasco, C., Ptushkina, M. & McCarthy, J.E.G. The eukaryotic mRNA decapping protein Dcp1 interacts physically and functionally with the eIF4F translation initiation complex. EMBO J. 19, 4372–4382 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ramirez, C.V., Vilela, C., Berthelot, K. & McCarthy, J.E.G. Modulation of eukaryotic mRNA stability via the cap-binding translation complex eIF4F. J. Mol. Biol. 318, 951–962 (2002).

    CAS  PubMed  Google Scholar 

  73. Schwartz, D.C. & Parker, R. mRNA decapping in yeast requires dissociation of the cap binding protein, eukaryotic translation initiation factor 4E. Mol. Cell. Biol. 20, 7933–7942 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Caponigro, G. & Parker, R. Multiple functions for the poly(A)-binding protein in mRNA decapping and deadenylation in yeast. Genes Dev. 9, 2421–2432 (1995).

    CAS  PubMed  Google Scholar 

  75. Coller, J.M., Gray, N.K. & Wickens, M.P. mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation. Genes Dev. 12, 3226–3235 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Coller, J.M., Tucker, M., Sheth, U., Valencia-Sanchez, M.A. & Parker, R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA 7, 1717–1727 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Schwartz, D., Decker, C.J. & Parker, R. The enhancer of decapping proteins, Edc1p and Edc2p, bind RNA and stimulate the activity of the decapping enzyme. RNA 9, 239–251 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tharun, S. & Parker, R. Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol. Cell 8, 1075–1083 (2001).

    CAS  PubMed  Google Scholar 

  79. Sheth, U. & Parker, R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805–808 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ptushkina, M., Malys, N. & McCarthy, J.E.G. eIF4E isoform 2 in Schizosaccharomyces pombe is a novel stress-response factor. EMBO Rep. 5, 311–316 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, Z. & Kiledjian, M. Functional link between the mammalian exosome and mRNA decapping. Cell 107, 751–762 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.v.d.H. and J.E.G.M. acknowledge support from the Biotechnology and Biological Sciences Research Council, Wellcome Trust, Royal Society and Wolfson Foundation (UK). J.D.G. is a research scholar of the Worcester Foundation for Biomedical Research. G.W. acknowledges support by US National Institutes of Health grant CA68262.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tobias von der Haar or John E G McCarthy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von der Haar, T., Gross, J., Wagner, G. et al. The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol 11, 503–511 (2004). https://doi.org/10.1038/nsmb779

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb779

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing