Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Palaeomicrobiology: current issues and perspectives

Key Points

  • The discipline of palaeomicrobiology involves the detection, identification and characterization of microorganisms in ancient remains. The materials examined include mummified tissues, bone and dental pulp. Although a variety of techniques have been used in palaeomicrobiological analyses, most data have been obtained using PCR-based techniques.

  • As palaeomicrobiology is a relatively new discipline that deals with samples that can be many thousands of years old, the establishment of generally agreed standards for palaeomicrobiological studies is a very welcome, but fairly new, development, and many of the published studies do not conform to these standards. In this article, the authors summarize the data obtained in important paleomicrobiological studies using a classification system for authenticity and strength of evidence based on that used in evidence-based medicine.

  • In addition to solving long-standing historical mysteries, it is hoped that the palaeomicrobiological analysis of ancient pathogens could influence current models of emerging infections and could contribute to the development of appropriate preventative measures.

Abstract

Palaeomicrobiology is an emerging field that is devoted to the detection, identification and characterization of microorganisms in ancient remains. Data indicate that host-associated microbial DNA can survive for almost 20,000 years, and environmental bacterial DNA preserved in permafrost samples has been dated to 400,000–600,000 years. In addition to frozen and mummified soft tissues, bone and dental pulp can also be used to search for microbial pathogens. Various techniques, including microscopy and immunodetection, can be used in palaeomicrobiology, but most data have been obtained using PCR-based molecular techniques. Infections caused by bacteria, viruses and parasites have all been diagnosed using palaeomicrobiological techniques. Additionally, molecular typing of ancient pathogens could help to reconstruct the epidemiology of past epidemics and could feed into current models of emerging infections, therefore contributing to the development of appropriate preventative measures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prevention of contamination in palaeomicrobiology.
Figure 2: Tooth processing for the collection of dental pulp.
Figure 3: Techniques used for the detection of ancient pathogens.

Similar content being viewed by others

References

  1. Jackson, P. J. et al. PCR analysis of tissue samples from the 1979 Sverdlovsk anthrax victims: the presence of multiple Bacillus anthracis strains in different victims. Proc. Natl Acad. Sci. USA 95, 1224–1229 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spigelman, M. & Lemma, E. The use of the polymerase chain reaction to detect Mycobacterium tuberculosis in ancient skeletons. Int. J. Osteoarchaeol. 3, 143 (1993).

    Article  Google Scholar 

  3. Salo, W. L., Aufderheide, A. C., Buikstra, J. & Holcomb, T. A. Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc. Natl Acad. Sci. USA 91, 2091–2094 (1994). One of the first contributions to the palaeomicrobiology of tuberculosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Drancourt, M., Aboudharam, G., Signoli, M., Dutour, O. & Raoult, D. Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia. Proc. Natl Acad. Sci. USA 95, 12637–12640 (1998). The first demonstration of Y. pestis in ancient human skeletons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Raoult, D. et al. Molecular identification by 'suicide PCR' of Yersinia pestis as the agent of medieval black death. Proc. Natl Acad. Sci. USA 97, 12800–12803 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zink, A. R., Reischl, U., Wolf, H. & Nerlich, A. G. Molecular analysis of ancient microbial infections. FEMS Microbiol. Lett. 213, 141–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Donoghue, H. D. et al. Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA. Lancet Infect. Dis. 4, 584–592 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Kish, M. A. Guide to development of practice guidelines. Clin. Infect. Dis. 32, 851–854 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Gilbert, M. T. et al. Absence of Yersinia pestis-specific DNA in human teeth from five European excavations of putative plague victims. Microbiology 150, 341–354 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Zink, A., Reischl, U., Wolf, H. & Nerlich, A. G. Molecular evidence of bacteremia by gastrointestinal pathogenic bacteria in an infant mummy from ancient Egypt. Arch. Pathol. Lab. Med. 124, 1614–1618 (2000).

    CAS  PubMed  Google Scholar 

  11. Baron, H., Hummel, S. & Hermann, B. Mycobacterium tuberculosis complex DNA in ancient human bones. J. Archaeol. Sci. 23, 667–671 (1996).

    Article  Google Scholar 

  12. Gernaey, A. M. et al. Mycolic acids and ancient DNA confirm an osteological diagnosis of tuberculosis. Tuberculosis (Edinb.) 81, 259–265 (2001).

    Article  CAS  Google Scholar 

  13. Borst, A., Box, A. T. & Fluit, A. C. False-positive results and contamination in nucleic acid amplification assays: suggestions for a prevent and destroy strategy. Eur. J. Clin. Microbiol. Infect. Dis. 23, 289–299 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Grijalva, M., Horvath, R., Dendis, M., Erny, J. & Benedik, J. Molecular diagnosis of culture negative infective endocarditis: clinical validation in a group of surgically treated patients. Heart 89, 263–268 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gauduchon, V. et al. Molecular diagnosis of infective endocarditis by PCR amplification and direct sequencing of DNA from valve tissue. J. Clin. Microbiol. 41, 763–766 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ou, C. Y., Moore, J. L. & Schochetman, G. Use of UV irradiation to reduce false positivity in polymerase chain reaction. Biotechniques 10, 442–446 (1991).

    CAS  PubMed  Google Scholar 

  17. Gilbert, M. T. et al. Distribution patterns of postmortem damage in human mitochondrial DNA. Am. J. Hum. Genet. 72, 32–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Montiel, R. et al. DNA sequences of Mycobacterium leprae recovered from ancient bones. FEMS Microbiol. Lett. 226, 413–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Rothschild, B. M. et al. Mycobacterium tuberculosis complex DNA from an extinct bison dated 17,000 years before the present. Clin. Infect. Dis. 33, 305–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Spencer, M. & Howe, C. J. Authenticity of ancient-DNA results: a statistical approach. Am. J. Hum. Genet. 75, 240–250 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hofreiter, M., Serre, D., Poinar, H. N., Kuch, M. & Paabo, S. Ancient DNA. Nature Rev. Genet. 2, 353–359 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Ward, R. & Stringer, C. A molecular handle on the Neanderthals. Nature 388, 225–226 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Vreeland, R. H., Rosenzweig, W. D. & Powers, D. W. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407, 897–900 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Nickle, D. C., Learn, G. H., Rain, M. W., Mullins, J. I. & Mittler, J. E. Curiously modern DNA for a '250 million-year-old' bacterium. J. Mol. Evol. 54, 134–137 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Kolman, C. J. & Tuross, N. Ancient DNA analysis of human populations. Am. J. Phys. Anthropol. 111, 5–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Drancourt, M. et al. Genotyping, Orientalis-like Yersinia pestis, and plague pandemic. Emerg. Infect. Dis. 10, 1585–1592 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hoss, M., Jaruga, P., Zastawny, T. H., Dizdaroglu, M. & Paabo, S. DNA damage and DNA sequence retrieval from ancient tissues. Nucleic Acids Res. 24, 1304–1307 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cooper, A. & Poinar, H. N. Ancient DNA: do it right or not at all. Science 289, 1139 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Poinar, H. N. & Stankiewicz, B. A. Protein preservation and DNA retrieval from ancient tissues. Proc. Natl Acad. Sci. USA 96, 8426–8431 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kolman, C. J., Centurion-Lara, A., Lukehart, S. A., Owsley, D. W. & Tuross, N. Identification of Treponema pallidum subspecies pallidum in a 200-year-old skeletal specimen. J. Infect. Dis. 180, 2060–2063 (1999). Demonstration of ancient reactive immunoglobulins.

    Article  CAS  PubMed  Google Scholar 

  31. Donoghue, H. D., Spigelman, M., Zias, J., Gernaey-Child, A. M. & Minnikin, D. E. Mycobacterium tuberculosis complex DNA in calcified pleura from remains 1400 years old. Lett. Appl. Microbiol. 27, 265–269 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Zink, A. R., Grabner, W., Reischl, U., Wolf, H. & Nerlich, A. G. Molecular study on human tuberculosis in three geographically distinct and time delineated populations from ancient Egypt. Epidemiol. Infect. 130, 239–249 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marr, J. S. & Calisher, C. H. Alexander the Great and West Nile virus encephalitis. Emerg. Infect. Dis. 9, 1599–1603 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bard, E., Rostek, F. & Menot-Combes, G. Paleoclimate. A better radiocarbon clock. Science 303, 178–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Ponel, P. Rissian, Eemian and Wurmian coleoptera assemblages from La Grande Pile (Vosges France). Palaeogeogr. Palaeoclimatol. Palaeoecol. 114, 1–41 (1995).

    Article  Google Scholar 

  36. Vernesi, C. et al. Genetic characterization of the body attributed to the evangelist Luke. Proc. Natl Acad. Sci. USA 98, 13460–13463 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anonymous. Stone age man goes 'home' to Italy. Nature 391, 318 (1998).

  38. Meers, P. D. Smallpox still entombed? Lancet 1, 1103 (1985).

    Article  CAS  PubMed  Google Scholar 

  39. Hopkins, D. R. Beyond smallpox eradication. Assignment Child. 69-72, 235–242 (1985).

    CAS  PubMed  Google Scholar 

  40. Rollo, F., Luciani, S., Canapa, A. & Marota, I. Analysis of bacterial DNA in skin and muscle of the Tyrolean iceman offers new insight into the mummification process. Am. J. Phys. Anthropol. 111, 211–219 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Reid, A. H., Fanning, T. G., Janczewski, T. A. & Taubenberger, J. K. Characterization of the 1918 'Spanish' influenza virus neuraminidase gene. Proc. Natl Acad. Sci. USA 97, 6785–6790 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reid, A. H., Fanning, T. G., Hultin, J. V. & Taubenberger, J. K. Origin and evolution of the 1918 'Spanish' influenza virus hemagglutinin gene. Proc. Natl Acad. Sci. USA 96, 1651–1656 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tumpey, T. M. et al. Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proc. Natl Acad. Sci. USA 101, 3166–3171 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tumpey, T. M. et al. Existing antivirals are effective against influenza viruses with genes from the 1918 pandemic virus. Proc. Natl Acad. Sci. USA 99, 13849–13854 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Allison, M. J., Pezzia, A., Gerszten, E. & Mendosa, D. A case of Carrion's disease associated with human sacrifice from the Huari cluture of Southern Peru. Am. J. Phys. Anthropol. 41, 295–300 (1970).

    Article  Google Scholar 

  46. Nerlich, A. G., Haas, C. J., Zink, A., Szeimies, U. & Hagedorn, H. G. Molecular evidence for tuberculosis in an ancient Egyptian mummy. Lancet 350, 1404 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Fletcher, H. A., Donoghue, H. D., Holton, J., Pap, I. & Spigelman, M. Widespread occurrence of Mycobacterium tuberculosis DNA from 18th–19th century Hungarians. Am. J. Phys. Anthropol. 120, 144–152 (2003).

    Article  PubMed  Google Scholar 

  48. Zink, A. R. et al. Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J. Clin. Microbiol. 41, 359–367 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Taubenberger, J. K., Reid, A. H., Krafft, A. E., Bijwaard, K. E. & Fanning, T. G. Initial genetic characterization of the 1918 'Spanish' influenza virus. Science 275, 1793–1796 (1997). Pioneering work in the field of palaeovirology.

    Article  CAS  PubMed  Google Scholar 

  50. Lo, K. C., Geddes, J. F., Daniels, R. S. & Oxford, J. S. Lack of detection of influenza genes in archived formalin-fixed, paraffin wax-embedded brain samples of encephalitis lethargica patients from 1916 to 1920. Virchows Arch. 442, 591–596 (2003).

    CAS  PubMed  Google Scholar 

  51. Crubezy, E. et al. Identification of Mycobacterium DNA in an Egyptian Pott's disease of 5,400 years old. C. R. Acad. Sci. III 321, 941–951 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Taylor, G. M., Goyal, M., Legge, A. J., Shaw, R. J. & Young, D. Genotypic analysis of Mycobacterium tuberculosis from medieval human remains. Microbiology 145, 899–904 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Mays, S., Fysh, E. & Taylor, G. M. Investigation of the link between visceral surface rib lesions and tuberculosis in a Medieval skeletal series from England using ancient DNA. Am. J. Phys. Anthropol. 119, 27–36 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Arriaza, B. T., Salo, W., Aufderheide, A. C. & Holcomb, T. A. Pre-Columbian tuberculosis in northern Chile: molecular and skeletal evidence. Am. J. Phys. Anthropol. 98, 37–45 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Haas, C. J., Zink, A., Palfi, G., Szeimies, U. & Nerlich, A. G. Detection of leprosy in ancient human skeletal remains by molecular identification of Mycobacterium leprae. Am. J. Clin. Pathol. 114, 428–436 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Mays, S. & Taylor, M. A first prehistoric case of tuberculosis from Britain. Int. J. Osteoarchaeol. 13, 189–196 (2003).

    Article  Google Scholar 

  57. Donoghue, H. D., Holton, J. & Spigelman, M. PCR primers that can detect low levels of Mycobacterium leprae DNA. J. Med. Microbiol. 50, 177–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Paabo, S. Molecular cloning of Ancient Egyptian mummy DNA. Nature 314, 644–645 (1985).

    Article  CAS  PubMed  Google Scholar 

  59. Guhl, F., Jaramillo, C., Yockteng, R., Vallejo, G. A. & Cardenas–Arroyo, F. Trypanosoma cruzi DNA in human mummies. Lancet 349, 1370 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Konomi, N., Lebwohl, E., Mowbray, K., Tattersall, I. & Zhang,D. Detection of mycobacterial DNA in Andean mummies. J. Clin. Microbiol. 40, 4738–4740 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Haynes, S., Searle, J. B., Bretman, A. & Dobney, K. M. Bone preservation and ancient DNA: the application of screening methods for predicting DNA survival. J. Archaeol. Sci. 29, 585–592 (2002).

    Article  Google Scholar 

  62. Potsch, L., Meyer, U., Rothschild, S., Schneider, P. M. & Rittner, C. Application of DNA techniques for identification using human dental pulp as a source of DNA. Int. J. Legal Med. 105, 139–143 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. Aboudharam, G., Lascola, B., Raoult, D. & Drancourt, M. Detection of Coxiella burnetii DNA in dental pulp during experimental bacteremia. Microb. Pathog. 28, 249–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Aboudharam, G., Drancourt, M. & Raoult, D. Culture of C. burnetii from the dental pulp of experimentally infected guinea pigs. Microb. Pathog. 36, 349–350 (2004).

    Article  PubMed  Google Scholar 

  65. Aboudharam, G., La, V. D., Davoust, B., Drancourt, M. & Raoult, D. Molecular detection of Bartonella spp. in the dental pulp of stray cats buried for a year. Microb. Pathog. (in the press).

  66. Aboudharam, G. et al. Molecular detection of Bartonella quintana DNA in the dental pulp of a homeless patient. J. Clin. Microbiol. Infect. Dis. (in the press).

  67. Glick, M., Trope, M., Bagasra, O. & Pliskin, M. E. Human immunodeficiency virus infection of fibroblasts of dental pulp in seropositive patients. Oral Surg. Oral Med. Oral Pathol. 71, 733–736 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Glick, M., Trope, M. & Pliskin, M. E. Detection of HIV in the dental pulp of a patient with AIDS. J. Am. Dent. Assoc. 119, 649–650 (1989).

    Article  CAS  PubMed  Google Scholar 

  69. Paabo, S. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc. Natl Acad. Sci. USA 86, 1939–1943 (1989). One of the initial demonstrations that ancient DNA was available for laboratory work.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Willerslev, E. et al. Long-term persistence of bacterial DNA. Curr. Biol. 14, R9–R10 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Hanni, C., Brousseau, T., Laudet, V. & Stehelin, D. Isopropanol precipitation removes PCR inhibitors from ancient bone extracts. Nucleic Acids Res. 23, 881–882 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Siebert, P. D. & Larrick, J. W. PCR MIMICS: competitive DNA fragments for use as internal standards in quantitative PCR. Biotechniques 14, 244–249 (1993).

    CAS  PubMed  Google Scholar 

  73. Di Bernardo, G. et al. Enzymatic repair of selected cross-linked homoduplex molecules enhances nuclear gene rescue from Pompeii and Herculaneum remains. Nucleic Acids Res. 30, e16 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pusch, C. M., Giddings, I. & Scholz, M. Repair of degraded duplex DNA from prehistoric samples using Escherichia coli DNA polymerase I and T4 DNA ligase. Nucleic Acids Res. 26, 857–859 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Andersen, J. G. & Manchester, K. The rhinomaxillary syndrome in leprosy: a clinical, radiological and paleopathological study. Int. J. Osteoarchaeol. 2, 121–129 (1992).

    Article  Google Scholar 

  76. Haas, C. J. et al. Molecular evidence for different stages of tuberculosis in ancient bone samples from Hungary. Am. J. Phys. Anthropol. 113, 293–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Spigelman, M. & Donoghue, H. D. Brief communication: unusual pathological condition in the lower extremities of a skeleton from ancient Israel. Am. J. Phys. Anthropol. 114, 92–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Drancourt, M. & Raoult, D. Molecular insights into the history of plague. Microbes Infect. 4, 105–109 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Enselme, J. [Commentaries on the great plague of 1348 in Avignon]. Rev. Lyon. Med. 17, 697–710 (1969).

    CAS  PubMed  Google Scholar 

  80. Scott, S., Duncan, C. J. & Duncan, S. R. The plague in Penrith, Cumbria, 1597/8: its causes, biology and consequences. Ann. Hum. Biol. 23, 1–21 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Twigg, G. The Black Death. A biological reappraisal. (Batsford, London, 1984).

    Google Scholar 

  82. Weiss, E. in Encyclopedia of Microbiology. (ed. Lederberg J.) 585–610 (Academic San Diego, 2000).

    Google Scholar 

  83. Prentice, M. B., Gilbert, T. & Cooper, A. Was the Black Death caused by Yersinia pestis? Lancet Infect. Dis. 4, 72 (2004).

    Article  PubMed  Google Scholar 

  84. Drancourt, M. & Raoult, D. Molecular detection of Yersinia pestis in dental pulp. Microbiology 150, 263–264 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Torres, J. M., Borja, C. & Olivares, E. G. Immunoglobulin G in 1. 6 million-year-old fossil bones from Venta Micena (Granada, Spain). J. Archaeol. Sci. 29, 167–175 (2002).

    Article  Google Scholar 

  86. Marshall, W. F. et al. Detection of Borrelia burgdorferi DNA in museum specimens of Peromyscus leucopus. J. Infect. Dis. 170, 1027–1032 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Matuschka, F. R., Ohlenbusch, A., Eiffert, H., Richter, D. & Spielman, A. Characteristics of Lyme disease spirochetes in archived European ticks. J. Infect. Dis. 174, 424–426 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Persing, D. H. et al. Detection of Borrelia burgdorferi DNA in museum specimens of Ixodes dammini ticks. Science 249, 1420–1423 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Postic, D. et al. Common ancestry of Borrelia burgdorferi sensu lato strains from North America and Europe. J. Clin. Microbiol. 37, 3010–3012 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ras, N. M., Postic, D., Foretz, M. & Baranton, G. Borrelia burgdorferi sensu stricto, a bacterial species 'made in the USA' ? Int. J. Syst. Bacteriol. 47, 1112–1117 (1997).

    Article  CAS  Google Scholar 

  91. Wier, A. et al. Spirochete and protist symbionts of a termite (Mastotermes electrodominicus) in Miocene amber. Proc. Natl Acad. Sci. USA 99, 1410–1413 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Drancourt, M., Tran-Hung, L., Courtin, J., De Lumley, H. & Raoult, D. Bartonella quintana in a 4,000-year–old human tooth. J. Infect. Dis. (in the press).

  93. La, V. D. et al. Molecular detection of Bartonella henseale DNA in the dental pulp of French 800-year–old cats. Clin. Infect. Dis. (in the press).

  94. Rhodes, A. N. et al. Identification of bacterial isolates obtained from intestinal contents associated with 12,000-year-old mastodon remains. Appl. Environ. Microbiol. 64, 651–658 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zias, J. & Mumcuoglu, K. Y. Pre-pottery neolithic B head lice from Nahal hemar cave. Atiqot 20, 167–168 (1991).

    Google Scholar 

  96. Ewing, H. E. Lice from human mummies. Science 60, 389–390 (1924).

    Article  CAS  PubMed  Google Scholar 

  97. Mumcuoglu, Y. K. & Zias, J. Head lice, Pediculus humanus capitis (Anoplura: Pediculidae) from hair combs excavated in Israel and dated from the first century B. C. to the eighth century A. D. J. Med. Entomol. 25, 545–547 (1988).

    Article  CAS  PubMed  Google Scholar 

  98. El-Najjar, M. Y. & Mulinski, T. M. J. in Mummies, Diseases and Ancient Cultures (eds Cokburn, A & Cokburn, E.) 121–137 (Cambridge Univ. Press, 1983).

    Google Scholar 

  99. Reinhard, K. J. & Buikstra, J. Louse infestation of the Chiribaya culture, southern Peru: variation in prevalence by age and sex. Mem. Inst. Oswaldo Cruz 98 (Suppl. 1), 173–179 (2003).

    Article  PubMed  Google Scholar 

  100. Mumcuoglu, K. Y., Zias, J., Tarshis, M., Lavi, M. & Stiebel, G. D. Body louse remains found in textiles excavated at Masada, Israel. J. Med. Entomol. 40, 585–587 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Rick, F. M. et al. Crab louse infestation in pre-Columbian America. J. Parasitol. 88, 1266–1267 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Ruffer, M. A. Note on the presence of Bilharzia haematobia in Egyptian mummies of the twentieth dynasty (1250–1000 BC). Br. Med. J. 1, 16 (1910).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bouchet, F. et al. Parasite remains in archaeological sites. Mem. Inst. Oswaldo Cruz 98 (Suppl. 1), 47–52 (2003).

    Article  PubMed  Google Scholar 

  104. Harter, S., Le Bailly, M., Janot, F. & Bouchet, F. First paleoparasitological study of an embalming rejects jar found in Saqqara, Egypt. Mem. Inst. Oswaldo Cruz 98 (Suppl. 1), 119–121 (2003).

    Article  PubMed  Google Scholar 

  105. Iniguez, A. M., Araujo, A., Ferreira, L. F. & Vicente, A. C. Analysis of ancient DNA from coprolites: a perspective with random amplified polymorphic DNA-polymerase chain reaction approach. Mem. Inst. Oswaldo Cruz 98 (Suppl. 1), 63–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Aufderheide, A. C. et al. A 9,000-year record of Chagas' disease. Proc. Natl Acad. Sci. USA 101, 2034–2039 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Taylor, G. M., Rutland, P. & Molleson, T. A sensitive polymerase chain reaction method for the detection of Plasmodium species DNA in ancient human remains. Anc. Biomol. 1, 193–203 (1997).

    CAS  Google Scholar 

  108. Sallares, R. & Gomzi, S. Biomolecular archaeology of malaria. Anc. Biomol. 3, 195–213 (2001).

    CAS  Google Scholar 

  109. Li, H. C. et al. The presence of ancient human T-cell lymphotropic virus type I provirus DNA in an Andean mummy. Nature Med. 5, 1428–1432 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Vandamme, A. M., Hall, W. W., Lewis, M. J., Goubau, P. & Salemi, M. Origins of HTLV-1 in South America. Nature Med. 6, 232–233 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Gessain, A., Pecon-Slattery, J., Meertens, L. & Mahieux, R. Origins of HTLV-1 in South America. Nature Med. 6, 232 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Stead, W. W. et al. When did Mycobacterium tuberculosis infection first occur in the New World? An important question with public health implications. Am. J. Respir. Crit. Care Med. 151, 1267–1268 (1995).

    CAS  PubMed  Google Scholar 

  113. Brosch, R. et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl Acad. Sci. USA 99, 3684–3689 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Devignat, R. Varieties of Pasteurella pestis; new hypothesis. Bull. World Health Organ. 4, 247–263 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Antia, R., Regoes, R. R., Koella, J. C. & Bergstrom, C. T. The role of evolution in the emergence of infectious diseases. Nature 426, 658–661 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yong, Z., Fournier, P. E., Rydkina, E. & Raoult, D. The geographical segregation of human lice preceded that of Pediculus humanus capitis and Pediculus humanus humanus. C. R. Biol. 326, 565–574 (2003).

    Article  PubMed  Google Scholar 

  117. Taylor, G. M., Crossey, M., Saldanha, J. A. & Waldron, T. Detection of Mycobacterium tuberculosis bacterial DNA in medieval human skeletal remains using polymerase chain reaction. J. Archaeol. Sci. 23, 789–798 (1996).

    Article  Google Scholar 

  118. Broekhuijsen, M. et al. Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp tularensis. J. Clin. Microbiol. 41, 2924–2931 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gutacker, M. M. et al. Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms: resolution of genetic relationships among closely related microbial strains. Genetics 162, 1533–1543 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Stevens, J. et al. Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303, 1866–1870 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Lemey, P. et al. Tracing the origin and history of the HIV-2 epidemic. Proc. Natl Acad. Sci. USA 100, 6588–6592 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhu, T. et al. An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature 391, 594–597 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Froland, S. S. et al. HIV-1 infection in Norwegian family before 1970. Lancet 1, 1344–1345 (1988).

    Article  CAS  PubMed  Google Scholar 

  124. Fricker, E. J., Spigelman, M. & Fricker, C. R. The detection of Escherichia coli DNA in the ancient remains of Lindow Man using the polymerase chain reaction. Lett. Appl. Microbiol. 24, 351–354 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Bouchet, F. et al. Toxocara canis (Werner, 1782) eggs in the pleistocene site of Menez-Dregan, France (300,000–500,000 years before present). Mem. Inst. Oswaldo Cruz 98 (Suppl. 1), 137–139 (2003).

    Article  PubMed  Google Scholar 

  126. Iniguez, A. M., Vicente, A. C., Araujo, A., Ferreira, L. F. & Reinhard, K. J. Enterobius vermicularis: specific detection by amplification of an internal region of 5S ribosomal RNA intergenic spacer and trans-splicing leader RNA analysis. Exp. Parasitol. 102, 218–222 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge G. Aboudharam, L. V. Dang and L. Tran-Hung for expert help in the preparation of teeth pictures and P. Kelly for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Raoult.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Entrez

Bartonella henselae

Coxiella burnetti

Mycobacterium leprae

Mycobacterium tuberculosis

Treponema pallidum

Yersinia pestis

FURTHER INFORMATION

Didier Raoult's laboratory

Encyclopedia of Life Sciences

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drancourt, M., Raoult, D. Palaeomicrobiology: current issues and perspectives. Nat Rev Microbiol 3, 23–35 (2005). https://doi.org/10.1038/nrmicro1063

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing