Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

The promise of human induced pluripotent stem cells for research and therapy

Abstract

Induced pluripotent stem (iPS) cells are human somatic cells that have been reprogrammed to a pluripotent state. There are several hurdles to be overcome before iPS cells can be considered as a potential patient-specific cell therapy, and it will be crucial to characterize the developmental potential of human iPS cell lines. As a research tool, iPS-cell technology provides opportunities to study normal development and to understand reprogramming. iPS cells can have an immediate impact as models for human diseases, including cancer.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reprogramming between differentiated and default epigenetic states.
Figure 2: iPS cells as models for human disease.

References

  1. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  2. Aoi, T. et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 14 Feb 2008 (doi:10.1126/science.1154884)

  3. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  Google Scholar 

  4. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  5. Yu, J. et al. Induced pluripotent stem cells from adult human somatic cells. Science 318, 1917–1920 (2007).

    CAS  Google Scholar 

  6. Park, I.-H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–147 (2008).

    Article  CAS  Google Scholar 

  7. Lowry, W. E. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl Acad. Sci. USA 105, 2883–2888 (2008).

    Article  CAS  Google Scholar 

  8. Blelloch, R. et al. Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1, 245–247 (2007).

    Article  CAS  Google Scholar 

  9. Takahashi, K., Okita, K., Nakagawa, M. & Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nature Protoc. 2, 3081–3089 (2007).

    Article  CAS  Google Scholar 

  10. Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1, 39–49 (2007).

    Article  CAS  Google Scholar 

  11. Cibelli, J. Development: is therapeutic cloning dead? Science 318, 1879–1880 (2007).

    Article  CAS  Google Scholar 

  12. Jaenisch, R. & Young, R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567–582 (2008).

    Article  CAS  Google Scholar 

  13. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  Google Scholar 

  14. Cowan, C. A., Atienza, J., Melton, D. A. & Eggan, K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369–1373 (2005).

    Article  CAS  Google Scholar 

  15. Do, J. T., Han, D. W. & Scholer, H. R. Reprogramming somatic gene activity by fusion with pluripotent cells. Stem Cell Rev. 2, 257–264 (2006).

    Article  CAS  Google Scholar 

  16. Hochedlinger, K. & Jaenisch, R. Nuclear reprogramming and pluripotency. Nature 441, 1061–1067 (2006).

    Article  CAS  Google Scholar 

  17. Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    Article  CAS  Google Scholar 

  18. Lerou, P. H. & Daley, G. Q. Therapeutic potential of embryonic stem cells. Blood Rev. 19, 321–331 (2005).

    Article  Google Scholar 

  19. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    Article  CAS  Google Scholar 

  20. Maherali, N. et al. Directly reprogrammed fibroblasts show epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    Article  CAS  Google Scholar 

  21. Hanna, J. et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318, 1920–1923 (2007).

    Article  CAS  Google Scholar 

  22. The International Stem Cell Initiative. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotech. 25, 803–816 (2007).

    Article  Google Scholar 

  23. Gottweis, H. & Minger, S. iPS cells and the politics of promise. Nature Biotech. 26, 271–272 (2008).

    Article  CAS  Google Scholar 

  24. Cyranoski, D. Five things to know before jumping on the iPS bandwagon. Nature 452, 406–408 (2008).

    Article  CAS  Google Scholar 

  25. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotech. 26, 101–106 (2008).

    Article  CAS  Google Scholar 

  26. Osafune, K. et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotech. 26, 313–315 (2008).

    Article  CAS  Google Scholar 

  27. US Department of Health and Human Services. Guidance for human somatic cell therapy and gene therapy. Food and Drug Administration [online] (1998).

  28. Segers, V. F. M. & Lee, R. T. Stem cell therapy for cardiac disease. Nature 451, 937–942 (2008).

    Article  CAS  Google Scholar 

  29. Rajasekhar, V. K. & Begemann, M. Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective. Stem Cells 25, 2498–2510 (2007).

    Article  CAS  Google Scholar 

  30. Spivakov, M. & Fisher, A. G. Epigenetic signatures of stem-cell identity. Nature Rev. Genetics 8, 263–271 (2007).

    Article  CAS  Google Scholar 

  31. Holden, C. & Vogel, G. A seismic shift for stem cell research. Science 319, 560–563 (2008).

    Article  CAS  Google Scholar 

  32. Walker, F. O. Huntington's disease. Lancet 369, 218–228 (2007).

    Article  CAS  Google Scholar 

  33. Hanna, J. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250–264 (2008).

    Article  CAS  Google Scholar 

  34. National Cancer Institute. Cancer biomedical informatics grid. National Cancer Institute [online] (2008).

  35. Blelloch, R. H. et al. Nuclear cloning of embryonal carcinoma cells. Proc. Natl Acad. Sci. USA 101, 13985–13990 (2004).

    CAS  PubMed  Google Scholar 

  36. Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nature Rev. Genetics 8, 286–298 (2007).

    Article  CAS  Google Scholar 

  37. Hochedlinger, K. et al. Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev. 18, 1875–1885 (2004).

    Article  CAS  Google Scholar 

  38. Huebert, D. J. Kamal, M., O'Donovan, A. & Bernstein, B. E. Genome-wide analysis of histone modifications by ChIP-on-chip. Methods 40, 365–369 (2006).

    Article  CAS  Google Scholar 

  39. Robertson, G. et al. Genome-wide profiling of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods 4, 651–657 (2007).

    Article  CAS  Google Scholar 

  40. Shultz, L. D., Ishikawa, F. & Greiner, D. L. Humanized mice in translational biomedical research. Nature Rev. Immunol. 7, 118–130 (2007).

    Article  CAS  Google Scholar 

  41. Dimos, J. T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 31 July 2008 (doi:10.1126/science.1158799)

  42. Park, I. -H et al. Disease-specific induced pluripotent stem cells. Cell (in the press).

  43. Kim, J. B. et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646–650 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. L. Wong and A. J. Hwa for helpful comments.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Shin-ichi Nishikawa's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishikawa, Si., Goldstein, R. & Nierras, C. The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol 9, 725–729 (2008). https://doi.org/10.1038/nrm2466

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2466

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing