Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stem-cell niches: nursery rhymes across kingdoms

Key Points

  • Animal and plant stem-cell niches have conserved cellular organization. Both maintain stem cells by short-range signals that originate from organizing centres.

  • The positioning of two different types of plant stem-cell niches is determined by combinatorial codes of plant-specific transcription factors. Combinatorial coding is also important in animal stem cells.

  • Plant behaviour requires flexible developmental strategies. In line with this, stem-cell programming in plants is dynamic, and this is reflected in multiple feedback connections between stem-cell-maintenance factors and -differentiation factors.

  • New approaches are needed for dynamic studies on plant stem cells. Improved imaging techniques and computational modelling are important steps towards this goal.

  • The importance of epigenetic programming for the stem-cell state has been recognized for both animals and plants. The current challenge is to determine whether the epigenetic control mechanisms that are used are similar between animals and plants.

Abstract

Despite the large evolutionary distance between the plant and animal kingdoms, stem cells in both reside in specialized cellular contexts called stem-cell niches. Although stem-cell-specification factors have been recruited from plant-specific gene families, maintenance factors that repress stem-cell differentiation are conserved between plants and animals. Recent evidence indicates that stem cells in multicellular organisms can be specified by kingdom-specific patterning mechanisms that connect to a related core of epigenetic stem-cell factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stem cells in the plant kingdom.
Figure 2: Stem-cell-niche organization in animals and plants.
Figure 3: Stem-cell specification in the root apex.
Figure 4: Stem-cell specification in the shoot apex.
Figure 5: Secondary stem-cell niches for plant architecture.
Figure 6: Stem cells and chromatin modification.

Similar content being viewed by others

References

  1. Li, Z. & Li, L. Understanding hematopoietic stem-cell microenvironments. Trends Biochem. Sci. 31, 589–595 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Xie, T. & Spradling, A. C. decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94, 251–260 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell 116, 769–778 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Song, X., Zhu, C. H., Doan, C. & Xie, T. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science 296, 1855–1857 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Szakmary, A., Cox, D. N., Wang, Z. & Lin, H. Regulatory relationship among piwi, pumilio, and bag-of-marbles in Drosophila germline stem cell self-renewal and differentiation. Curr. Biol. 15, 171–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, D. & McKearin, D. Gene circuitry controlling a stem cell niche. Curr. Biol. 15, 179–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Tulina, N. & Matunis, E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK–STAT signaling. Science 294, 2546–2549 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. van den Berg C., Willemsen, V., Hendriks, G., Weisbeek, P. & Scheres, B. Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390, 287–289 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Sabatini, S., Heidstra, R., Wildwater, M. & Scheres, B. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev. 17, 354–358 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van den Berg C., Willemsen, V., Hage, W., Weisbeek, P. & Scheres, B. Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 378, 62–65 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Mayer, K. F. et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 805–815 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Laux, T., Mayer, K. F., Berger, J. & Jurgens, G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122, 87–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    Article  CAS  Google Scholar 

  15. Avilion, A. A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Loh, Y. H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet. 38, 431–440 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Nole-Wilson, S., Tranby, T. L. & Krizek, B. A. AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol. Biol. 57, 613–628 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Pysh, L. D., Wysocka-Diller, J. W., Camilleri, C., Bouchez, D. & Benfey, P. N. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J. 18, 111–119 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Blilou, I. et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39–44 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Aida, M. et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119, 109–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Helariutta, Y. et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101, 555–567 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Nakajima, K., Sena, G., Nawy, T. & Benfey, P. N. Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413, 307–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Heidstra, R., Welch, D. & Scheres, B. Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev. 18, 1964–1969 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sena, G., Jung, J. W. & Benfey, P. N. A broad competence to respond to SHORT ROOT revealed by tissue-specific ectopic expression. Development 131, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Reinhardt, D., Frenz, M., Mandel, T. & Kuhlemeier, C. Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development 130, 4073–4083 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, Y. et al. HANABA TARANU is a GATA transcription factor that regulates shoot apical meristem and flower development in Arabidopsis. Plant Cell 16, 2586–2600 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Long, J. A., Moan, E. I., Medford, J. I. & Barton, M. K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379, 66–69 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Aida, M., Ishida, T. & Tasaka, M. Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126, 1563–1570 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Furutani, M. et al. PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development 131, 5021–5030 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Aida, M., Vernoux, T., Furutani, M., Traas, J. & Tasaka, M. Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129, 3965–3974 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Moussian, B., Haecker, A. & Laux, T. ZWILLE buffers meristem stability in Arabidopsis thaliana. Dev. Genes Evol. 213, 534–540 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Moussian, B., Schoof, H., Haecker, A., Jurgens, G. & Laux, T. Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J. 17, 1799–1809 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lynn, K. et al. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 126, 469–481 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Lenhard, M., Jurgens, G. & Laux, T. The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development 129, 3195–3206 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Byrne, M. E. et al. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408, 967–971 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Byrne, M. E., Simorowski, J. & Martienssen, R. A. ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development 129, 1957–1965 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Leibfried, A. et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438, 1172–1175 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Jasinski, S. et al. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr. Biol. 15, 1560–1565 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Yanai, O. et al. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr. Biol. 15, 1566–1571 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Riou-Khamlichi, C., Huntley, R., Jacqmard, A. & Murray, J. A. Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283, 1541–1544 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Fletcher, J. C., Brand, U., Running, M. P., Simon, R. & Meyerowitz, E. M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283, 1911–1914 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Brand, U., Fletcher, J. C., Hobe, M., Meyerowitz, E. M. & Simon, R. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289, 617–619 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Schoof, H. et al. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635–644 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Brand, U., Grunewald, M., Hobe, M. & Simon, R. Regulation of CLV3 expression by two homeobox genes in Arabidopsis. Plant Physiol. 129, 565–575 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Clark, S. E. Cell signalling at the shoot meristem. Nature Rev. Mol. Cell Biol. 2, 276–284 (2001).

    Article  CAS  Google Scholar 

  47. Dievart, A. et al. CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development. Plant Cell 15, 1198–1211 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Clark, S. E., Williams, R. W. & Meyerowitz, E. M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89, 575–585 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Deyoung, B. J. et al. The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J. 45, 1–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Reddy, G. V. & Meyerowitz, E. M. Stem-cell homeostasis and growth dynamics can be uncoupled in the Arabidopsis shoot apex. Science 310, 663–667 (2005). Describes how new methods in image analysis combined with inducible inactivation of the CLV3 gene led to new insights in dynamic shoot stem-cell activity.

    Article  CAS  PubMed  Google Scholar 

  51. Muller, R., Borghi, L., Kwiatkowska, D., Laufs, P. & Simon, R. Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to CLV3 signaling. Plant Cell 18, 1188–1198 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Clark, S. E., Jacobsen, S. E., Levin, J. Z. & Meyerowitz, E. M. The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development 122, 1567–1575 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Carles, C. C., Choffnes-Inada, D., Reville, K., Lertpiriyapong, K. & Fletcher, J. C. ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis. Development 132, 897–911 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Kai, T. & Spradling, A. Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature 428, 564–569 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Blau, H. M., Brazelton, T. R. & Weimann, J. M. The evolving concept of a stem cell: entity or function? Cell 105, 829–841 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  57. Scheres, B. Plant cell identity. The role of position and lineage. Plant Physiol. 125, 112–114 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu, J. et al. A molecular framework for plant regeneration. Science 311, 385–388 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Gallois, J. L., Woodward, C., Reddy, G. V. & Sablowski, R. Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129, 3207–3217 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Gallois, J. L., Nora, F. R., Mizukami, Y. & Sablowski, R. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev. 18, 375–380 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Benkova, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Malamy, J. E. & Benfey, P. N. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124, 33–44 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Wilmoth, J. C. et al. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J. 43, 118–130 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Okushima, Y. et al. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17, 444–463 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fukaki, H., Tameda, S., Masuda, H. & Tasaka, M. Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J. 29, 153–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Fukaki, H., Nakao, Y., Okushima, Y., Theologis, A. & Tasaka, M. Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis. Plant J. 44, 382–395 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Geldner, N. et al. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131, 389–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. De Smet, I et al. Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134, 681–690 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Reinhardt, D. et al. Regulation of phyllotaxis by polar auxin transport. Nature 426, 255–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Heisler, M. G. et al. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15, 1899–1911 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Jonsson, H. et al. Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem. Bioinformatics. 21 (Suppl. 1), i232–i240 (2005).

    Article  PubMed  Google Scholar 

  72. de Reuille, P. B. et al. Computer simulations reveal properties of the cell–cell signaling network at the shoot apex in Arabidopsis. Proc. Natl Acad. Sci. USA 103, 1627–1632 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Smith, R. S. et al. A plausible model of phyllotaxis. Proc. Natl Acad. Sci. USA 103, 1301–1306 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jonsson, H., Heisler, M. G., Shapiro, B. E., Meyerowitz, E. M. & Mjolsness, E. An auxin-driven polarized transport model for phyllotaxis. Proc. Natl Acad. Sci. USA 103, 1633–1638 (2006). References 71–74 highlight how computer-modelling approaches help us to understand how feedback loops at the cellular and molecular level regulate spatial patterns of plant stem-cell and stem-cell-daughter activity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. McConnell, J. R. et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. McConnell, J. R. & Barton, M. K. Leaf polarity and meristem formation in Arabidopsis. Development 125, 2935–2942 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Emery, J. F. et al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13, 1768–1774 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Prigge, M. J. et al. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17, 61–76 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Keller, T., Abbott, J., Moritz, T. & Doerner, P. Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development. Plant Cell 18, 598–611 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Muller, D., Schmitz, G. & Theres, K. Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Cell 18, 586–597 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Greb, T. et al. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev. 17, 1175–1187 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Daimon, Y., Takabe, K. & Tasaka, M. The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant Cell Physiol. 44, 113–121 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Lenhard, M., Bohnert, A., Jurgens, G. & Laux, T. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105, 805–814 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Lohmann, J. U. et al. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105, 793–803 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Reddy, G. V., Heisler, M. G., Ehrhardt, D. W. & Meyerowitz, E. M. Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131, 4225–4237 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nature Cell Biol. 8, 532–538 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Muller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Wang, L. et al. Hierarchical recruitment of Polycomb group silencing complexes. Mol. Cell 14, 637–646 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Schwartz, Y. B. & Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nature Rev. Genet. 8, 9–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Meshorer, E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10, 105–116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hsieh, T. F., Hakim, O., Ohad, N. & Fischer, R. L. From flour to flower: how Polycomb group proteins influence multiple aspects of plant development. Trends Plant Sci. 8, 439–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Guitton, A. E. & Berger, F. Control of reproduction by Polycomb group complexes in animals and plants. Int. J. Dev. Biol. 49, 707–716 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Katz, A., Oliva, M., Mosquna, A., Hakim, O. & Ohad, N. FIE and CURLY LEAF Polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant J. 37, 707–719 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Schubert, D. et al. Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. EMBO J. 25, 4638–4649 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Makarevich, G. et al. Different Polycomb group complexes regulate common target genes in Arabidopsis. EMBO Rep. 7, 947–952 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chanvivattana, Y. et al. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 131, 5263–5276 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Kinoshita, T., Harada, J. J., Goldberg, R. B. & Fischer, R. L. Polycomb repression of flowering during early plant development. Proc. Natl Acad. Sci. USA 98, 14156–14161 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mylne, J. S. et al. LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC. Proc. Natl Acad. Sci. USA 103, 5012–5017 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sung, S. et al. Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nature Genet. 38, 706–710 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Kaya, H. et al. FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell 104, 131–142 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Ono, T. et al. Chromatin assembly factor 1 ensures the stable maintenance of silent chromatin states in Arabidopsis. Genes Cells 11, 153–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Wildwater, M. et al. The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell 123, 1337–1349 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Wyrzykowska, J., Schorderet, M., Pien, S., Gruissem, W. & Fleming, A. J. Induction of differentiation in the shoot apical meristem by transient overexpression of a retinoblastoma-related protein. Plant Physiol. 141, 1338–1348 (2006). References 105 and 106 demonstrate the sensitive response of plant stem-cell compartments to manipulation of the RBR gene.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Lipinski, M. M. & Jacks, T. The retinoblastoma gene family in differentiation and development. Oncogene 18, 7873–7882 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Skapek, S. X., Pan, Y. R. & Lee, E. Y. Regulation of cell lineage specification by the retinoblastoma tumor suppressor. Oncogene 25, 5268–5276 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Walkley, C. R. & Orkin, S. H. Rb is dispensable for self-renewal and multilineage differentiation of adult hematopoietic stem cells. Proc. Natl Acad. Sci. USA 103, 9057–9062 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Macaluso, M., Montanari, M. & Giordano, A. Rb family proteins as modulators of gene expression and new aspects regarding the interaction with chromatin remodeling enzymes. Oncogene 25, 5263–5267 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Kohler, C. et al. Arabidopsis MSI1 is a component of the MEA–FIE Polycomb group complex and required for seed development. EMBO J. 22, 4804–4814 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ach, R. A., Taranto, P. & Gruissem, W. A conserved family of WD-40 proteins binds to the retinoblastoma protein in both plants and animals. Plant Cell 9, 1595–1606 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kotake, Y. et al. pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4α tumor suppressor gene. Genes Dev. 21, 49–54 (2007). Connects RB activity to Polycomb-mediated gene silencing in human and mouse systems.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Many thanks to M. Aida and P. Doerner for providing images and to my laboratory members, and especially to B. Horvath and M. Laskowski, for critical reading of the manuscript. I am grateful to K. Scheres for 'vette' Photoshop drawings. Finally, I apologize to colleagues for not citing other relevant work owing to space constraints.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Tair

WUS

PLT1

PLT2

SHR

SCR

STM

PIN1

ZLL

LHP1

RBR

FURTHER INFORMATION

Ben Scheres's homepage

Glossary

Stem-cell niche

The cellular microenvironment that provides the signals and physical support to maintain stem cells.

Asymmetrical divisions

Mitotic divisions that generate distinct fates in the two daughter cells; in the case of stem cells, one daughter preserves the stem-cell state.

Transit-amplifying cells

Dividing stem-cell daughters that are fated for differentiation and that can retain the ability to divide.

Totipotent

Cells that can produce progeny that can form an entire organism.

Multipotent

Cells that can produce progeny that can form all cell types of a tissue.

Homeodomain

Conserved DNA-binding domain in both plant and animal transcription factors.

Pluripotent

Cells that can produce progeny that can form all cell lineages.

Auxin

Plant hormone that is implicated in a range of developmental processes, including cell-fate specification, cell division and cell expansion. In most plants, indole-3-acetic acid is the main active form.

PIN family

Transmembrane proteins that mediate auxin efflux, named after the founding member, PIN-FORMED1.

AP2 domain

A plant specific DNA-binding domain that was first found in the floral homeotic protein APETALA2. Members of a distinctive subclade of the AP2-domain family, which includes both APETALA2 and the PLETHORA genes, contain two AP2 domains.

GRAS family

A plant-specific transcription-factor family named after the first three members cloned: GIBBERELLIN-INSENSITIVE, RGA and SCARECROW.

GATA

Transcription-factor family in both plants and animals with zinc-finger DNA-binding domains.

NAC domain

A plant-specific DNA-binding domain first found in Petunia NO APICAL MERISTEM and Arabidopsis ATAF1 and CUP-SHAPED COTYLEDON2.

RNA-induced silencing complex

A complex that binds double-stranded RNA and targets it to homologous sequences to induce silencing.

Arabidopsis response regulators

(ARR). Transcription factors that are activated by phosphorelay in cytokinin signal transduction.

Cytokinin

Purine derivates that function as a plant hormone. Cytokinin is implicated in the control of cell division, but also in the determination of shoot identity.

Polycomb group

A class of genes and proteins that was originally identified in D. melanogaster through mutations that are unable to maintain the repression of homeotic genes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheres, B. Stem-cell niches: nursery rhymes across kingdoms. Nat Rev Mol Cell Biol 8, 345–354 (2007). https://doi.org/10.1038/nrm2164

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2164

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing